
Extending Extreme Programming With Practices From Other

Agile Methodologies

Danilo Sato1, Dairton Bassi1, Alfredo Goldman1

1 Department of Computer Science

University of São Paulo (USP)

São Paulo - SP - BRAZIL

{dtsato,dairton,gold}@ime.usp.br

Abstract. In the second edition of Extreme Programming Explained, Kent Beck

breaks the original twelve practices in thirteen primary practices and eleven

corollary practices. He also clearly outlines the principles of the methodology

that should serve as guidelines when translating values into practices. Based

on these principles and on our experience, we present five practices that we

created, adapted, or brought from different agile methodologies and that we

have been using on several projects: Daily Stand-up Meetings, Retrospectives,

Refactoring Threshold, Story/Task Board, and Personas. For each practice we

explain its use and we present the associated principles and values.

Resumo. Na segunda edição do livro Extreme Programming Explained, Kent

Beck divide as doze práticas originais da metodologia em treze práticas

primárias e onze práticas corolárias. Além disso, ele também apresenta em

mais detalhes os princı́pios da metodologia, que guiam a conversão de valores

em práticas. Com base nesses princı́pios e na nossa experiência, apresentamos

cinco práticas que foram criadas, adaptadas ou trazidas de outras metodologias

ágeis e que utilizamos em diversos projetos: Reuniões Em Pé, Retrospectivas,

Limite para Refatoração, Quadro de Histórias/Tarefas e Personas. Para cada

prática, explicaremos sua utilização e apresentaremos os princı́pios e valores

associados.

1. Introduction

The most well-known Agile Method is Extreme Programming (XP) [Beck 1999].

It was developed by Kent Beck after many years of experience in software development.

He defined a set of values, principles, and practices to improve the productivity of a

software development team and to raise the quality of the produced system.

Since the beginning of 2000, we have been using XP in sev-

eral scenarios: teaching a full-semester course at the University of São

Paulo [Goldman et al. 2004] and implementing it in different projects [Sato et al. 2006,

Sato et al. 2007, Freire da Silva et al. 2005]. As we became more experienced

we started adapting and refining the methodology by bringing new practices

from other agile methodologies such as Scrum [Schwaber and Beedle 2001],

Lean [Poppendieck and Poppendieck 2003, Poppendieck and Poppendieck 2006],

Crystal Clear [Cockburn 2004], and also creating our own.

1



The remainder of this paper is organized as follows: Section 2 describes the evo-

lution of XP and its values, principles, and practices; Section 3 presents the practices that

we included in our approach of using XP; we conclude in Section 4 providing guidelines

for future work.

2. The Evolution of Extreme Programming

Initially, XP was based in four main values: Communication, Simplicity, Courage,

and Feedback, and twelve practices: On-site Customer, Metaphor, Small Releases, Plan-

ning Game, Pair Programming, Collective Code Ownership, Testing, Refactoring, Simple

Design, Continuous Integration, Coding Standards and 40-Hour Week [Beck 1999]. To

use XP, teams were encouraged to adopt all 12 practices, but that was a difficult task as

some practices may not be directly adapted to all environments. Then, after a while, a

new practice was proposed: “Fix XP when it breaks”. It suggests that you should adapt

XP to your team’s needs, when its original form is not a good fit for you.

In 2004, Kent Beck published with his wife, Cynthia Andres, the second edition of

the book that first introduced XP [Beck and Andres 2004] five years before. The new XP

included a new value, Respect, and broke down the original twelve practices in thirteen

primary practices: Sit Together, Whole Team, Informative Workspace, Energized Work,

Pair Programming, Stories, Weekly Cycle, Quarterly Cycle, Slack, Ten-Minute Build,

Continuous Integration, Test-First Programming, and Incremental Design; and eleven

corollary practices: Real Customer Involvement, Incremental Deployment, Team Conti-

nuity, Shrinking Teams, Root-Cause Analysis, Shared Code, Code and Tests, Single Code

Base, Daily Deployment, Negotiated Scope Contract, and Pay-Per-Use. He also clearly

outlines the principles of the methodology that should serve as guidelines when translating

values into practices. The fourteen principles are: Humanity, Economics, Mutual Bene-

fit, Self Similarity, Improvement, Diversity, Reflection, Flow, Opportunity, Redundancy,

Failure, Quality, Baby Steps, and Accepted Responsibility [Beck and Andres 2004].

3. Suggested Practices

This section describes the practices that we included in XP when implementing it

in different projects. These practices have helped us to improve the effectiveness of teams

adopting XP in our teaching and coaching experiences, but not necessarily all at the same

time. Each project has different needs and the application of each practice should take

that into account. Practices are local adaptations of broader values and principles.

Each practice will be presented in the following format: the context will describe

the scenario where the practice can be applied, the background will provide some ratio-

nale behind the practice followed by a description of the mechanics and day-to-day activ-

ities that the team should follow when implementing the practice. Existing XP practices,

principles and values will be referenced in italics to improve readability.

3.1. Daily Stand-up Meetings

Context: The goal of each iteration is to deliver an increment of potentially ship-

pable software. The team should work together to implement the user stories selected

during the Planning Game [Beck and Fowler 2000, Cohn 2005]. This goal is shared and

owned by the Whole Team. The Daily Stand-up Meeting is a simple way to reinforce this

shared commitment, providing daily status update regarding the project.

2



Background: Although used by many XP teams, it was not part of the original

twelve XP practices. It was proposed by Scrum as a way to foster self-organization in a

team [Schwaber and Beedle 2001]. This practice exposes three XP values: the Simplic-

ity of its structure keeps the meeting focused; it provides a channel of Communication

between team members; and provides frequent Feedback regarding the project status. It

is also related to two principles: Humanity, by enabling an environment of face-to-face

interaction, and Accepted Responsibility, by reinforcing each participant’s commitment to

the shared goal.

Description: The Daily Stand-up Meeting should be held preferably at the begin-

ning of the day to provide a quick status update. Participants should stand up to keep

the meeting short and focused. In turn, each team member should provide his peers with

three pieces of information [Schwaber and Beedle 2001]:

• What did you do since the last meeting?

• What will you do before the next meeting?

• Do you have any obstacles?

Jason Yip provides a set of patterns and anti-patterns for Daily Stand-up Meet-

ings [Yip 2006]. He proposes a change in the wording of the questions to focus on com-

mitment instead of tasks:

• Was I able to fulfill what I committed to?

• What am I comfortable committing to today?

• What is obstructing me in meeting my commitments?

The format of the questions is less important than the information they provide.

Therefore, when adopting this practice the participants should keep in mind the follow-

ing ideas: the meeting duration should be kept short, ideally no longer than 15 minutes;

the questions should be answered for the entire team and not for the facilitator; impedi-

ments should be raised during the meeting, but they will only be addressed later; always

conduct the meeting at the same time and same place; and avoid the interference from out-

side observers to make the Whole Team feel that they own the meeting, reinforcing their

commitment to the iteration goal; the customer can participate as a listener and cannot

interfere with his opinion.

3.2. Retrospectives

Context: Agile processes are not prescriptive by nature, they all require constant

adaptation to fit the team needs and help them deliver business value. XP is a method-

ology that embraces change and, as such, should be continuously improved by the team.

Improvement comes from learning, learning comes from reflection, and reflection comes

after the action. The act of telling stories is one of the most effective ways for sharing

experiences and learning. It has served the human species well for a long time and can be

applied to software development as well [Kerth 2001].

Background: A Retrospective is a valuable practice that helps a team to improve

and to find a methodology that is acceptable for them [Cockburn 2006]. As discussed in a

recent study, they also support the tracker of an agile team [Sato et al. 2006]. Also known

as Reflection Workshops, this is a top-level practice of Crystal Clear [Cockburn 2004].

This practice exposes three XP values: it improves Communication and Feedback and it

3



also shows Respect for the people, by acknowledging that everybody did the best they

could. It is also related to six XP principles: Humanity, by enabling a safe environment

where people can discuss issues without guilt; it creates an Opportunity for Reflection

and Improvement, by looking for Mutual Benefit solutions that will help all the involved

to increase the overall Quality and satisfaction.

Description: Retrospectives are meetings held at the end of an iteration to discuss

what went right and what went wrong in a project [Derby et al. 2006]. It should be held

in a safe environment, where people fell secure to hear and share their thoughts on how

to improve the process. During the meeting, people are often encouraged to avoid giving

names. The prime directive of Retrospectives highlights the importance of not trying to

find someone to blame [Kerth 2001]:

“Regardless of what we discover, we understand and truly believe that

everyone did the best job they could, given what they knew at the time, their

skills and abilities, the resources available, and the situation at hand.”

There are many formats for Retrospectives, but the most usual is composed of

four sections: the team first discusses the relevant events that happened during the last

iteration. This provides a context for the rest of the meeting. Then, they raise relevant

facts and discuss about “what worked well?”. Thinking about the good facts is a good way

to encourage Feedback. Finally, they discuss about “what should we do differently?” (or

“what could be improved?”), and “what puzzles us?”. By the end of the meeting, the team

have a clear picture of what happened and what can be improved. They then prioritize the

most relevant issues and build up a series of actions to implement in the next iteration.

The most important items from each section of the meeting are captured in a poster, along

with the corresponding actions. The poster is then placed in the Informative Workspace.

3.3. Refactoring Threshold

Context: During the course of a software project, an XP team identifies small

problems and possible refactorings [Fowler et al. 1999] at several levels like the architec-

ture, model, algorithms, tests, or specific pieces of code. Although necessary, sometimes

these changes can not be performed immediately or the team members prefer to do them

later. The use of a Refactoring Threshold helps the team to track these refactorings, re-

membering to make them later, and keeping the code easy to maintain and read.

Background: Refactoring is a practice that should be done all the

time [Beck 1999]. It is the fundamental mechanism for mitigating the risk and mini-

mizing the cost of complexity in a code base [Poppendieck and Poppendieck 2006]. Al-

most all XP values are reinforced by Refactoring Threshold. Communication and Feed-

back are improved because the workspace is enhanced with one more information radi-

ator [Cockburn 2006] that keeps customers and developers informed about the need for

refactoring. It gives Courage to the team that will frequently do refactorings and keep the

code Simplicity. It also strengthen 6 principles: it requires the Accepted Responsibility

of the team to maintain code Quality; it creates an Opportunity for Improvement that will

bring Mutual Benefit for all developers; by increasing quality and reliability, the software

will be closer to generating revenue and meeting Economic needs.

Description: The Refactoring Threshold is a chart that shows how many refactor-

ings are left to be done. In this chart the team members define two lines representing their

4



Comfort Threshold (CFT) and their Critical Threshold (CRT): the former is the number

of acceptable pending refactorings that still allows the team to feel comfortable with the

software quality, while the later indicates a critical limit, that should never be overcome

for more than one day.

The tracker should update the number of pending refactorings daily. Pending

refactorings can be resolved at any time. The goal is to reduce the number of pending

refactorings and never reach the CRT. When the chart is between CFT and CRT, the

team should pay attention and mitigate major refactorings whenever possible. If the chart

overcomes CRT, the team receives a penalty: all team members should work to eliminate

pending refactorings until it reaches at least CFT again.

We have been using Eclipse to track the pending refactorings by adding embedded

“TODOs” in the code. The team can also defines different categories of “TODOs” to

group related types of refactorings, like: user interface, architecture, model, tests, etc.

When adopting this practice, the team should be aware that: creating a refactoring

backlog may possibly generate a queue of work that might never be done, therefore the

team should wisely choose small values for CFT and CRT to avoid this problem; in an

ideal scenario, refactorings should be immediately mitigated, however it would be valu-

able if the team could evaluate the trade-off between delivering value and increasing code

quality. A team can only progress so much until the need for refactoring start interfering

their productivity. By tracking the progress of this chart, a team can learn and adapt their

CFT and CRT accordingly.

3.4. Story/Task Board

Context: An XP team works in an Informative Workspace, with information

spread over the walls and whiteboards in the form of post-its, graphs, sketches, and index

cards. Kent Beck proposes the use of a story board to track the progress of stories during

an iteration [Beck and Andres 2004]. It separates stories in categories such as: “to do”,

“in progress”, “to be estimated”, and “done”. When the customer is not used to write

small stories, they tend to stay “in progress” for a long time. Breaking the stories into

tasks and tracking their progress is a good way to provide more Feedback to the team and

display a more accurate information to help the customer understand the problem with

large stories and the value of breaking them into smaller increments of business value.

Background: The use of a story board in software development is a practice de-

rived from lean manufacturing. The lean thinking, originated in the Toyota Production

System, proposes the use of a kanban (kan is the word for card in Japanese, and ban is

the word for signal) to organize the work to be done [Poppendieck and Poppendieck 2003,

Poppendieck and Poppendieck 2006]. A kanban card contains a small amount of work,

like the description of a user story along with some acceptance scenarios. By displaying

the cards in a story board the work becomes self-directed, making it easy for the team to

figure out what to do next.

This practice exposes two XP values: it serves as a channel of Communication,

helping the team to organize and direct their daily activities, and provides frequent Feed-

back regarding the project status, because the progress becomes visible as the stories/tasks

are moved in the board. It is also related to three XP principles: aiming for smaller stories

and tasks expresses the principle of Baby Steps, which allows a more constant Flow of

5



valuable software. By working on the highest priority stories first, the team maximizes

the value of the project, being able to meet the Economics need of the customer.

Description: During the Planning Game, stories are prioritized by the customer

and estimated by the team. Stories are selected based on the velocity of previous itera-

tions. The team then breaks down each story into tasks, that should take no longer than

one day to complete. Stories are owned by the customer and should be written in a format

that exposes its business value, like the one described in Section 3.5. Tasks, on the other

hand, can be technical and very specific, therefore they are owned by the team. The team

is allowed to create, update, and destroy tasks during the iteration. The Story/Task Board

tracks the progress of stories in the vertical axis and tasks in the horizontal axis. Tasks are

moved from left to right between three out of fours columns in the board:

• The first column stores the stories selected for the iteration. They are sorted by

priority, from top to bottom.

• The second column stores the tasks for each story. Tasks are created by the team,

describing the activities that need to be done to finish that story and deliver an

increment of business value.

• The third column stores the tasks “in-progress”.

• The fourth column stores the tasks that are “done”.

Multi-tasking is a form of waste in software develop-

ment [Poppendieck and Poppendieck 2006]. By working simultaneously in several

stories and not getting anything done, the team can delay the delivery of business value.

Since the stories are already prioritized, the Whole Team should work together in the

tasks of the most valuable story first, to get it done faster. As soon as all the tasks of a

story are “done”, the story is completed and the team can move to the next story.

The Story/Task Board can also be helpful during a Daily Stand-up Meeting, de-

scribed in Section 3.1. When answering the three questions, each participant can update

the board by moving the tasks to the appropriate column. If a task remains “in-progress”

for more than one day, it should be marked and discussed later. The delay can be caused

by some reasons: the task was larger than expected, and therefore should be broken into

smaller tasks; or there are impediments that should be addressed.

Some things to keep in mind when using this practice: it requires a clear under-

standing of what “done” means. A story is “done” only after being completely imple-

mented, tested, and integrated into the code repository. Also, stories should be kept small

to be completed faster. When a story has too many tasks, it will become visible and the

customer can collaborate with the team to come up with smaller stories.

3.5. Personas

Context: When developing software, an XP team must deliver business value to

the customer and also create a pleasant experience to the end-user. This is usually the

role of an interaction designer and, according to Kent Beck, they collaborate with the

customer to write stories [Beck and Andres 2004]. The use of Personas helps the team

to identify user profiles and consider the different usage scenarios of interaction with the

system. Such scenarios are often forgotten by categorizing different kinds of user in only

one role. They also provide a common Metaphor for Communication among the team.

6



We use the format proposed in [Cohn 2005] to write user stories: “As a

<user/role> I want <feature/functionality> so that <business value>”. This template is

useful because it highlights the business value associated to the user story. Personas help

the customer to define users and roles when writing stories.

Background: The use of Personas in software development has been proposed by

Cooper [Cooper 1999]. Besides the value of Communication, it also reflects 3 principles:

Humanity by putting a human face on each profile it enhances our cognitive perception; it

fosters the Diversity of skills, by bringing the interaction designer closer to the team; and

it improves the perceived Quality of the system by creating a better user experience.

Description: A Persona is a fictional person who represents a major user

group of the system. Information about each Persona can be retrieved from sev-

eral sources, such as interviews, surveys, focus groups, usability tests, or market re-

search [Pruitt and Adlin 2006]. To store and show information about each Persona we

used index cards, including characteristics such as:

• A picture and a name

• Demographics (age, education, family status, etc.)

• Personal interests in the system

• Goals and tasks in relation to the system

• Other attributes such as skills, behavior, and personality.

Some things to keep in mind when adopting this practice: do not think that Per-

sonas will be enough to identify all the possibilities of interaction with the system; the

process of creating and improving Personas should be handled iteratively throughout the

project, by conducting usability tests and interviews with real users; and avoid spending

too much up front time and effort on finding all the possible Personas for the system, keep

focused on identifying the major audience groups.

4. Conclusion

In this paper we presented five practices that we, although not necessarily all at

the same time, have been using along with the traditional XP approach: Daily Stand-up

Meetings, Retrospectives, Refactoring Threshold, Story/Task Board, and Personas. Based

on our experience, they were adapted from different agile methodologies and have proved

to be effective in teaching and coaching XP teams.

The process proposed by Agile Methods, and XP in particular, should not be used

as a strict set of practices to be followed, but as a starting point where the team can

improve after realizing their strengths and weaknesses. These kinds of processes are often

called empirical, because knowledge is generated by reflecting on prior experiences. The

practices proposed in this paper have served us well in our environments, but you can try

and adapt them according to your needs.

In future work we plan to evaluate the effectiveness of the proposed practices by

creating quantitative metrics and tracking their progress in similar and different projects.

References

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Addison Wesley

Professional, 1st edition.

7



Beck, K. and Andres, C. (2004). Extreme Programming Explained: Embrace Change.

Addison Wesley Professional, 2nd edition.

Beck, K. and Fowler, M. (2000). Planning Extreme Programming. Addison Wesley

Professional.

Cockburn, A. (2004). Crystal Clear: A Human-Powered Methodology for Small Teams.

Addison Wesley Professional.

Cockburn, A. (2006). Agile Software Development: The Cooperative Game. Addison

Wesley Professional, 2nd edition.

Cohn, M. (2005). Agile Estimating and Planning. Prentice Hall PTR.

Cooper, A. (1999). The Inmates are Running the Asylum: Why High Tech Products Drive

Us Crazy and How to Restore the Sanity. Sams.

Derby, E., Larsen, D., and Schwaber, K. (2006). Agile Retrospectives: Making Good

Teams Great. Pragmatic Bookshelf.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999). Refactoring: Im-

proving the Design of Existing Code. Addison Wesley Professional.

Freire da Silva, A., Kon, F., and Torteli, C. (2005). XP south of the equator: An experience

implementing XP in Brazil. In Proceedings of the 6th International Conference on

Extreme Programming and Agile Processes in Software Engineering (XP’2005), pages

10–18.

Goldman, A., Kon, F., Silva, P. J. S., and Yoder, J. (2004). Being extreme in the classroom:

Experiences teaching XP. Journal of the Brazilian Computer Society, 10(2):1–17.

Kerth, N. L. (2001). Project Retrospectives: A Handbook for Team Reviews. Dorset

House Publishing Company, Incorporated.

Poppendieck, M. and Poppendieck, T. (2003). Lean Software Development: An Agile

Toolkit for Software Development Managers. Addison Wesley Professional.

Poppendieck, M. and Poppendieck, T. (2006). Implementing Lean Software Development:

From Concept to Cash. Addison Wesley Professional.

Pruitt, J. and Adlin, T. (2006). The Persona Lifecycle: Keeping People in Mind Through-

out Product Design. Morgan Kaufmann.

Sato, D., Bassi, D., Bravo, M., Goldman, A., and Kon, F. (2006). Experiences tracking

agile projects: an empirical study. Journal of the Brazilian Computer Society, Special

Issue on Experimental Software Engineering, 12(3):45–64. http://www.dtsato.

com/resources/default/jbcs-ese-2007.pdf.

Sato, D., Goldman, A., and Kon, F. (2007). Tracking the evolution of object oriented

quality metrics. In Proceedings of the 8th International Conference on Extreme Pro-

gramming and Agile Processes in Software Engineering (XP’2007), pages 84–92.

http://www.dtsato.com/resources/default/xp-2007.pdf.

Schwaber, K. and Beedle, M. (2001). Agile Software Development with Scrum. Prentice

Hall PTR.

Yip, J. (2006). It’s not just standing up: Patterns of daily stand-up meetings. http:

//martinfowler.com/articles/itsNotJustStandingUp.html.

8


