
SkyscrapAR: An Augmented Reality
Visualization for Software Evolution

Rodrigo Souza1, Bruno Silva1, Thiago Mendes1,2, Manoel Mendonça1

1Computer Science Department, Federal University of Bahia (UFBA), Bahia, Brazil
2Information Technology Dept, Federal Institute of Bahia - Santo Amaro, Bahia, Brazil

{rodrigo, brunocs, thiagomendes, mgmendonca}@dcc.ufba.br

Abstract. Many software visualizations have been proposed to help
stakeholders identify potential threats in the design of evolving software
systems, often employing metaphors such as trees, graphs, constellations, maps,
and cities, among others. In this scenario, three-dimensional visualizations
have also been adopted. They can represent visual metaphors realistically and
efficiently engage users. However, the interaction with such visualizations is
either cumbersome or requires expensive equipment. This paper presents
SkyscrapAR, an augmented reality visualization that employs the city metaphor
to represent evolving software, along with its potential applications in the
practice. The use of augmented reality allows the user to interact with the city
in an intuitive way, by manipulating a marker, while requiring nothing but a
computer and an inexpensive camera to make it work.

1. Introduction

Software systems evolve by nature [Lehman 1980]. The activity of software development
becomes more complex as the system evolves, which leads to the need for preventive and
corrective maintenance. This complexity is reflected in the fact that about 90% of the
total costs of software systems are associated with their maintenance. Therefore, the area
represents a promising field for improvement [Erlikh 2000].

Visualization techniques have been used in software engineering as a viable
solution to the difficult task of understanding, maintaining and evolving software
systems. The visual metaphors are very useful in this context because sight is the most
developed sense in human being [Diehl 2007].

During the last decade, tools such as SeeSoft and CodeCity have used 3D
visualizations to represent, and hopefully provide a better understanding of software. 3D
visualization is sometimes more intuitive and adds an extra dimension that allows the
visualization of a larger amounts of information in relation to 2D visualization [Teyseyre
2009]. However, it also has an important limitation. The computer screen is bi-
dimensional and always occludes something that is represented in three dimensions. This
requires the user to continually interact with the visual scenarios to rotate the visual
scene. Current interface devices, such the computer mouse, make it cumbersome for users
to manipulate the six degrees of freedom (three translational axes and three rotational
axes) of a 3D scene.

A solution to the problem of interaction between the user and 3D software is the
use of augmented reality. This technology makes virtual objects visible in real
environments, facilitating virtual interaction with the user, since the communication can
be performed through gestures and movements [Azuma 1997].

II Workshop Brasileiro de Visualização de Software

 17

This paper presents SkyscrapAR, a new software evolution visualization approach
that uses a city graphical metaphor combined with augmented reality techniques.
SkyscrapAR represents software classes and packages in a particular project revision as
3D buildings. These buildings are laid over on a terrain baseline blueprint derived from
all versions of the software project. Buildings are sized up and colored by their size and
number of changes. The shown project revision can be dynamically chosen and buildings
can be dynamically filtered for better evolution analysis. The augmented reality resource
allows for easy manipulation of the produced visual scenarios. To our best knowledge,
there is no other work in the literature that uses this type of approach.

This paper is structured as follows. Section 2 introduces relevant related work.
Section 3 presents SkyscrapAR and its features. Then, Section 4 discusses some
applications of the tool. Finally, Section 5 concludes this article.

2. Related Work

According to Steinbrückner and Lewerentz (2010) and Teyseyre (2009), several tools
have been proposed in the literature that use 3D visualizations to support software
maintenance and evolution activities.

Without implementing it, Parnas (2003) proposed a 3D approach that depicts
software production cost related program information to support software maintenance.
The idea is to help maintainers and managers to decide which components in a system are
superfluous, cause high cost due to frequent changes, and needs to be revised.

Wettel and Lanza (2008) introduced an approach called CodeCity, which can help
to detect software design problems by presenting software in the form of a 3D city where
the artifacts are mapped to the city's neighborhoods and buildings. Buildings represent
classes sized accordingly to metrics such as number of methods and number of attributes.
SkyscrapAR is inspired by CodeCity, but it uses different metrics, such as lines of code
and code churn (the total number of lines changed in the evolving classes).

Maletic et al. (2001) proposed a virtual reality environment, called Imsovision, to
investigate how immersive visualization environments can assist in software development
and maintenance. Their environment requires CAVE, an expensive virtual reality system
composed of projectors, special glasses, and an electromagnetic tracking system.
Although SkyscrapAR does not create the same level of immersion, it provides an
intuitive way to manipulate 3D models while requiring only an inexpensive camera.

3. SkyscrapAR

SkyscrapAR is an augmented reality (AR) software evolution visualization based on the
metaphor of an evolving city, see Figure 1. Similarly to CodeCity, SkyscrapAR represents
packages (or folders in the source code file structure) as rectangular city lots, with sub-
packages being stacked on top of the package containing them. Classes (or source code
implementation files) are represented by buildings (boxes with different areas and
heights) located on top of their respective packages, with the area they occupy being
proportional to the size of the class, measured in lines of code. The user can browse over
revisions of the software, and see buildings appearing, disappearing, and changing their
shape to reflect successive modifications that they suffered over time.

WBVS 2012

18

Figure 1. The JUnit framework visualized as a city using SkyscrapAR.

Because the city (i.e., the software) evolves over time, it must have space to
accommodate all buildings that existed in some period of its history. That is why the city
terrain is divided in green lots, each one belonging to a building (i.e., a class). Each green
lot is large enough to fit its respective building when it reaches maximum area. So, for
example, buildings which present some green area in the last revision represent classes
that used to be larger but had their size reduced.

The city visualization is projected onto the user’s real-world environment, as
captured by a camera. The user interacts with the visualization as he would do with a
mock-up city, manipulating it with the hands so it can be seen from the desired viewpoint.

A demonstration video1 of the tool can be found online. Readers are urged to look
at it before reading further on. The full source code2 is also publicly available under an
open source license. The rest of this section describes SkyscrapAR in terms of its
architecture, used source code metrics, and its user interface.

Architecture

SkyscrapAR is composed of two executables: the extractor and the viewer. The extractor,
written in Java, reads a local Git repository containing Java source code and outputs a
XML file describing its revisions, along with information for each source code file that
was modified in each revision. The viewer, written in Processing, takes the XML file and
presents its data as a city that the user can view and interact with.

The hardware setup needed to use the visualization consists of a computer with a
camera and a printed marker. A marker is a piece of paper or any other object with a
predefined black and white square pattern printed on it, as shown in Figure 2a. The
marker signals where the city should appear within the user’s environment.

Each frame captured by the camera is converted to a binary, black and white
image, according to a configurable brightness threshold. After that, an algorithm detects
black square contours and then compares its inner region with a predefined pattern. If
they match, then it builds a local 3D coordinate system for the marker, as shown in Figure
2b. The 3D model of the city is then aligned with the local coordinate axes, as shown in
Figure 2c, so it moves together with the marker, giving the effect that it is a part of the
real world.

1 Available at http :// www . youtube . com / watch ? v = VVRjihr -40 U .
2 Available at https :// github . com / rodrigorgs / SkyscrapAR .

II Workshop Brasileiro de Visualização de Software

 19

http://www.youtube.com/watch?v=VVRjihr-40U
https://github.com/rodrigorgs/SkyscrapAR
https://github.com/rodrigorgs/SkyscrapAR
https://github.com/rodrigorgs/SkyscrapAR
https://github.com/rodrigorgs/SkyscrapAR
https://github.com/rodrigorgs/SkyscrapAR
https://github.com/rodrigorgs/SkyscrapAR
https://github.com/rodrigorgs/SkyscrapAR
https://github.com/rodrigorgs/SkyscrapAR
https://github.com/rodrigorgs/SkyscrapAR
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U
http://www.youtube.com/watch?v=VVRjihr-40U

(a)
(b) (c)

Figure 2. Augmented reality: (a) the camera captures a scene containing a marker; (b)
after the image is transformed to black and white, the marker is detected and its local
coordinate system is computed; (c) the 3D model is aligned with the coordinate axes.

Mapping Metrics to Visual Elements

A software system is composed of consecutive revisions. In each revision, two metrics
are computed for all the classes: number of lines of code (LOC) and code churn.

The LOC metric is the total number of lines in the respective source code file,
including comments and blank lines. This metric, although simple to measure, correlates
with many traditional complexity metrics that are used to predict development effort and
fault proneness [El Elmam et al. 2001].

Code churn refers to how much a particular file has been modified in its current
and previous revisions in the version control system. The code churn of a class in its
initial revision is equal to its LOC. Then, each time the class is modified, the code churn
is incremented by the number of lines of code added or removed in the revision, as
computed by Unix’s diff tool. That way, code churn always increases or is kept constant
over time. The rationale for code churn is that source code files modified frequently are
less stable and tend to be more prone to faults [Nagappan and Ball 2005].

The two metrics are mapped to visual attributes of the visualization. The LOC
metric for a class determines the area of the base of the respective building, so that larger
classes are represented by buildings that occupy a greater part of the city’s territory.

All buildings start with a fixed, minimum height. In the subsequent revisions, the
height of a building is determined by how much the code churn of its respective class
increased since its initial revision. Therefore, classes that undergone many changes since
their creation are represented by tall buildings, or skyscrapers.

It should be noted that code churn, unlike LOC, is a historical metric, i.e., its
value for one class in one revision reflects the evolution of the class in the previous
revisions. Its use in the visualization, therefore, enables the user to gather historical
information about the software by looking at a single static view.

User Interface

The user interface for SkyscrapAR displays the scene being captured by the camera and,
if a marker is on the scene, the 3D model of the city is superimposed on it. In the bottom

WBVS 2012

20

part of the screen, information about the current revision being visualized is displayed. It
includes the sequential number of the revision, together with the name of the developer
responsible for the change and the message describing the change.

Contrary to what happens in most 3D software visualizations, in which users
change their viewpoint by using the mouse or the keyboard, in SkyscrapAR, the user can
view the city from different angles by manipulating either the 3D marker or the camera.
With such interaction mechanism, the user can explore all six degrees of freedom of the
3D space (translation and rotation along three axes) in a natural way. For instance, the
city can be seen from the top, in an aerial view, evidencing the structure of the software,
or sideways, in a skyline view, evidencing skyscrapers, i.e., classes with high code churn.

In its current state, SkyscrapAR still depends on mouse and keyboard input,
although we plan to reduce this dependency. The mouse pointer is used to highlight
classes the user may want to focus on. The keyboard is used to navigate through revisions
(left and right arrow keys), filter out buildings (“H” key), zoom in (“Z” key), and zoom
out (“Shift-Z” key combination).

When the user advances the visualization to the next revision, buildings
representing classes that were modified in that revision appear in red, so they can be
easily spotted among the default gray buildings. It is expected that the buildings in red
changed its shape compared to the previous revision1 to reflect changes in the number of
lines of code (area of the base) or in its code churn (height). Such changes in shape are
presented as a smooth animation, by interpolating the dimensions of the buildings over a
short period of time (less than one second). That way, it is easier to track the changes in
the classes over time, enhancing the perception of evolution.

When the mouse pointer is over a building, the interface shows details on demand
for the respective class: name, package containing it, and the values for the LOC and
code churn metrics. The user can also highlight a set of buildings, which get painted in
yellow, by clicking on them. If a class is highlighted and has changed in the current
revision, it gets painted in orange instead (i.e., a red and yellow mix).

The purpose of the highlighting is twofold: it helps the user track the position of
some buildings while exploring the visualization, and enables the user to focus on the
changes of the highlighted buildings. When at least one building is selected, the
navigation among revisions is restricted to revisions in which at least one highlighted
class is changed. This is useful to study the evolution of a set of classes.

By pressing the “H” key on the keyboard, gray buildings are filtered out, i.e., only
highlighted classes and classes that were changed in the current revision are displayed.
This filter helps the user to analyze the scattering of changes throughout the packages.
When combined with the restricted navigation that takes place when classes are
highlighted, it also enables the user to visualize classes that evolve together within a
given set of classes.

4. Applications in Software Development Practice
Normally, developers spend more time understanding the code than modifying it [LaToza
2006], partly because, as time goes by, software systems get harder to understand and to
maintain unless effort is invested to simplify the design [Lehman 1980]. Code review
meetings and module inspections are examples of team effort for identifying design flaws
that could be mitigated to improve the software comprehension and maintenance.

1 One notable exception is the case when only the file permissions or ownership were changed, although
its contents were kept unchanged.

II Workshop Brasileiro de Visualização de Software

 21

(a) (b) (c)

Figure 3. Three distinct versions of the JUnit framework in which the class
BlockJUnit4ClassRunner (highlighted in orange) was modified.

Moreover, researchers have found demand for agile assessments, that is, a kind of
software product assessment that may provide valuable information rapidly and cheaply
to support program understanding and maintenance [Nierstrasz 2012]. We envision
several applications of SkycrapAR in this context. This section describes some of them
and shows screenshots of the tool to illustrate typical situations (see Figure 3).

Finding Skyscrapers
In a software project, it is common to find classes which change a lot—the so called
change-prone classes. In SkyscrapAR, they can be easily found as skyscrapers (see the
orange building in Figure 3). Analog to the real concept, skyscrapers in our visualization
are classes that concentrate a lot of the development effort. These classes deserve special
attention, since they are more likely to be fault-prone [Nagappan and Ball 2005].

Visualizing Scattering of Changes
Source code management systems usually list packages and classes that were changed in
each revision, but there is no visual information about the scattering of each commit
transaction that generates a revision. This is easily done in SkycrapAR (see red buildings
in Figure 3). Identifying scattered changes is important, as they represent modifications
that impacted several systems modules, pointing out system-wide maintenance activities,
such as refactorings or move operations among folders, or indicating that there are too
many dependencies between software modules. By focusing on this second issue,
developers can detect candidates for the Shotgun Surgery, identifying design flaws that
cause modifications in one module and trigger modifications in several other modules.

Visualizing Classes Co-change
Sometimes, classes have logical couplings even if they are not explicitly coupled to each
other by their internal structural elements [Gall 1998]. Classes may be connected by
means of implicit abstract elements related to the domain. For example, classes that are
not structurally coupled but implement concerns that are strongly dependent at the
requirements level. SkycrapAR provides information about the classes co-change by
highlighting in red the classes that changed together in each revision (see Figure 3).

Finding God Classes
A god class is a well-known code smell which refers to classes that perform too much
work on its own. It breaks one of the basic principles of object-oriented design which

WBVS 2012

22

states that a class should have one single responsibility. Also, god classes are more likely
to undergo changes as much as the evolution history targets the responsibilities
implemented by the class [Silva 2012]. SkyscrapAR helps developers reason about god
classes using the High Occupation of Territory metaphor—tall buildings occupying large
areas. An analogy can be made to a real city. While, in real world, buildings that occupy a
larger area require their dwellers to pay higher taxes, in the visualization it is the project
developers who have to pay the price of maintaining large classes.

Identifying Populous Districts and City Centers
Normally systems as cities have one or more neighborhoods with tall buildings and
packages with no or very few green area—those areas are Populous Districts. This
observation can be interpreted as the most touched parts of the system. If there is only a
single well-defined populous district, we call it the City Center. Finding the city center
(or other populous districts) may be useful to focus code inspection and testing on the
most modified and possibly the most fault-prone parts of the system. It may also help to
find refactoring opportunities on specific packages that suffered too many changes.

Identifying Rural Houses
Rural houses are classes that lost their functionality along with the software evolution, so
they are now presented as large green areas with a small building in the last revision of
the software. Classes like that should be examined for signs of dead code, i.e. they may
be obsolete and therefore be removed.

5. Final Remarks

This paper presented SkyscrapAR, an augmented reality visualization that employs the
city metaphor to display information about the evolution of a software system. To the best
of our knowledge, this is the first software visualization tool to employ augmented reality.
In addition to describing SkyscrapAR, the paper shows how it can be used to support
software comprehension tasks.

Currently, the tool has some limitations. In its current stage, only Java source code
is supported, although it should be easy to add support for other languages. Also, it is
limited to display one software system at a time, even if multiple markers are used.
Finally, the user interaction still relies on the use of mouse and keyboard, which reduces
the sense of immersion that characterizes augmented reality applications.

As future work, we intend to investigate interaction modes that dispense the use
of mouse and keyboard. Our goal is to create a user interface that is intuitive, while
discarding approaches that require expensive equipment such as virtual reality helmets
and gloves. We also plan to make better use of colors in the visualization in order to
display richer information. For instance, buildings can be painted in different colors to
represent distinct crosscutting concerns implemented by them or, still, the developers who
have contributed to the class. We plan to evaluate the tool with developers in academic or
industrial settings. The evaluation should focus on usability and the effectiveness of the
tool when used to support specific software comprehension tasks.

Acknowledgements

The authors wish to thank Michele Lanza for encouraging this publication.

This work was partially supported by CNPq/INES under grant 573964/2008-4.

II Workshop Brasileiro de Visualização de Software

 23

References

Azuma, R. (1997) “A Survey of Augmented Reality”. Presence: Teleoperators and Virtual
Environments, v. 6, n. 4, August, p. 355–385.

Diehl, S. (2007) “Software Visualization: Visualizing the Structure, Behaviour, and
Evolution of Software”, Springer-Verlag New York, Inc.

El Emam, K., Benlarbi, S., Goel N., and Rai S. N. (2001) “The Confounding Effect of
Class Size on the Validity of Object-Oriented Metrics”. IEEE Transasctions on
Software Engineering, 27(7).

Erlikh, L.(2000) “Leveraging legacy system dollars for e-business”. IEEE IT Pro, pp. 17–
23.

Gall, H., Hajek, K. and Jazayeri, M.. (1998) “Detection of Logical Coupling Based on
Product Release History”. In Proceedings of the International Conference on Software
Maintenance (ICSM '98). IEEE Computer Society, Washington, DC, USA.

Lanza, M., Marinescu, R, and Ducasse, S. (2005) “Object-Oriented Metrics in Practice”.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

LaToza, T., Venolia, G. and DeLine, R.. (2006) “Maintaining mental models: a study of
developer work habits". In ICSE '06: Proceedings of the 28th international conference
on Software engineering, pages 492–501, New York, NY, USA.

Lehman, M. M., (1980) "Program Life Cycles and Laws of Software Evolution,"
Proceedings of IEEE, Special Issue on Software Engineering, September, pp. 1060–
1076.

Maletic J. I., Marcus A., Dunlap G., and Leigh J., (2001) “Visualizing Object-Oriented
Software in Virtual Reality,” Proc. Ninth Int’l Workshop Program Comprehension
(IWPC ’01), p. 26.

Nagappan, N., and Ball, T., (2005) "Use of Relative Code Churn Measures to Predict
System Defect Density", Proc. the 27th International Conference on Software
Engineering (ICSE '05), St. Louis, MO, USA, May 15-21, 2005, pp. 284–292.

Nierstrasz, O. (2012) “Agile software assessment with Moose”. SIGSOFT Softw. Eng.
Notes 37, 3 (May 2012), 1-5.

Panas, T., Berrigan, R. and Grundy, J. (2003) “A 3D metaphor for software production
visualization”. International Conference on Information Visualization, page 314.

Silva, B., Sant’Anna C., Chavez, C. and Garcia, A. (2012) “Concern-based Cohesion:
Unveiling a Hidden Dimension of Cohesion Measurement”. In: 20th IEEE
International Conference on Program Comprehension, ICPC’12, Passau, Germany.

Steinbrückner, Frank, Lewerentz, Claus (2010) “Representing development history in
software cities”. SoftVis '10, Proceedings of the 5th international symposium on
software visualization. ACM, NY, USA.

Teyseyre, A. R., Campo, M. R., (2009) "An Overview of 3D Software Visualization",
IEEE Transactions on Visualization and Computer Graphics, pp. 87–105.

WBVS 2012

24

