Towards a Scenario Based Project Management Paradigm

Doctoral Candidate:
Márcio de Oliveira Barros
{ marcio@cos.ufrj.br }

Thesis Supervisors:
Cláudia Maria Lima Werner
Guilherme Horta Travassos
COPPE / UFRJ

Introduction

✦ Several software projects still use more resources than planned, take more time to be concluded, and provide less functionality and quality than expected

✦ Two philosophical paradigms analyze such problems
 ➔ The technological paradigm
 ➔ The managerial paradigm
Introduction

- Current management techniques have some assumptions
 - Project behavior must be known from the beginning

- Complex projects break these assumptions
 - Need for innovative domains and domain integration
 - Ambiguity and complexity
 - Diseconomy of scale
 - Nonlinearities
 - Complex feedback loops

Modeling & Simulation

- Techniques that help to understand complex systems
 - Software development is a complex system

- System Dynamics
 - Modeling technique and language
 - Focus on structural aspects of the systems
 - Systems are described in mathematical formulations
 - Model cause-and-effect relationships
 - Model feedback loops
Thesis Proposal

- Apply SD modeling for operational project management
 - Some project models have already been developed
 - Abdel-Hamid and Madnick’s model
 - Extensions from Madachy, Tvedt, among others

- Proposed enhancements
 - Uncertainty representation
 - High-level project representation
 - Capturing differences among elements of the same category
 - Separation of facts from policies

Scenario Based Project Management

- A paradigm for project management
 - A manager defines an expected behavior for a project
 - This behavior can be affected by unexpected events
 - Project sensibility to combinations of such events is tested
 - Simulation helps the evaluation of project behavior

- SBPM is supported by
 - Risk management
 - Project modeling
 - Continuous-time simulation
SBPM Artifacts

- The project model
 - Defines project expected behavior
 - Based on descriptive process models
 - Can be translated to a system dynamics model

- Scenario models
 - Alternative routes to the project
 - Generic, recurrent, and reusable
 - Integrated to project models
 - Abstract models

Example - Project Model

```
TABLE COMMOVH 0, 0.015, 0.06, 0.135, 0.24, 0.375, 0.54;
RATE (SOURCE, <ACT:Duration>) COMMRATE
VAR<ACT:Duration> *
LOOKUP (COMMOVH, <ACT:RolesCount>, 0, 30);
```
Example - Project Behavior

Risk Management

- We define a risk management process
 - Risks faced by a project are represented as scenarios
 - Documenting risks through scenarios
 - Reusing scenarios along several projects
 - Simulating scenario combinations for risk evaluation

- Risk information
 - Risk archetypes conveys information about a software risk
 - Scenarios for risk impact evaluation and resolution strategies
Research Methodology

<table>
<thead>
<tr>
<th>Year</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>99/00</td>
<td>Risk Literature Review</td>
</tr>
<tr>
<td>99/00</td>
<td>SD Language</td>
</tr>
<tr>
<td></td>
<td>Uncertainty Representation</td>
</tr>
<tr>
<td></td>
<td>SD Simulator</td>
</tr>
<tr>
<td>Dez/00 2001</td>
<td>Meta model Definition</td>
</tr>
<tr>
<td></td>
<td>Meta Model Development</td>
</tr>
<tr>
<td></td>
<td>Meta model Evaluation</td>
</tr>
<tr>
<td>99/00</td>
<td>Risk Archetype Definition</td>
</tr>
<tr>
<td></td>
<td>Risk Process Definition</td>
</tr>
<tr>
<td></td>
<td>First Case Study</td>
</tr>
<tr>
<td>2001</td>
<td>Integration API</td>
</tr>
<tr>
<td></td>
<td>Scenario Examples</td>
</tr>
<tr>
<td></td>
<td>Major Validation</td>
</tr>
</tbody>
</table>

Expected Contributions

- A high-level project model description that can be translated to system dynamics
- The integration of such project model to separate scenario models, with an integration API
- A risk management process that uses models to evaluate the impact of software project risks and their resolution strategies
Questions?

A product related to the Odyssey Project (COPPE/UFRJ)

http://www.cos.ufrj.br/~odyssey

Come to our tool presentation!!

TRANSPARÊNCIAS COMPLEMENTARES
Proposal Application - Types of Project

- COCOMO I classification of software projects

<table>
<thead>
<tr>
<th>Feature</th>
<th>Organic</th>
<th>Semidetached</th>
<th>Embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational understanding of product objectives</td>
<td>Through</td>
<td>Considerable</td>
<td>General</td>
</tr>
<tr>
<td>Experience in working with related software systems</td>
<td>Extensive</td>
<td>Considerable</td>
<td>Moderate</td>
</tr>
<tr>
<td>Need for software conformance with pre-established requirements</td>
<td>Basic</td>
<td>Considerable</td>
<td>Full</td>
</tr>
<tr>
<td>Need for software conformance with external interface specifications</td>
<td>Basic</td>
<td>Considerable</td>
<td>Full</td>
</tr>
<tr>
<td>Need for innovative processing architectures and algorithms</td>
<td>Minimal</td>
<td>Some</td>
<td>Considerable</td>
</tr>
<tr>
<td>Premium for early completion</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
</tbody>
</table>

Proposal Application - Types of Project

- Adding size dimension to the classification schema

<table>
<thead>
<tr>
<th>Size</th>
<th>Organic</th>
<th>Semidetached</th>
<th>Embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>Very Low Risk</td>
<td>Low Risk</td>
<td>Medium Risk</td>
</tr>
<tr>
<td>Medium</td>
<td>Low Risk</td>
<td>Medium Risk</td>
<td>High Risk</td>
</tr>
<tr>
<td>Large</td>
<td>Medium Risk</td>
<td>High Risk</td>
<td>Very High Risk</td>
</tr>
</tbody>
</table>