
A Quasi-Systematic Review

on Software Visualization

Approaches for Software

Reuse

First round

Marcelo Schots, Renan Vasconcelos, Cláudia Werner

Systems Engineering and Computer Science Program (PESC)

Federal University of Rio de Janeiro – COPPE/UFRJ

schots@cos.ufrj.br, renanrv@cos.ufrj.br, werner@cos.ufrj.br

2014

2

Abstract

Reuse is present in the daily routine of software developers, yet mostly in an ad-hoc or

pragmatic way. Reuse practices allow for reducing the time and effort spent on software

development. However, organizations struggle in beginning and coping with a reuse program. A

crucial concern for facilitating the acceptance/consciousness and adoption of reuse is how to

provide appropriate reuse awareness.

Awareness mechanisms allow stakeholders to be percipient of what goes on in the

development scenario, and can provide them the necessary information and support for

performing their reuse-related tasks. One of the ways to increase awareness is by employing

visualization resources and techniques. Software visualization has been exploited as a way to

assist software development activities that involve human reasoning, helping people to deal with

the large amount and variety of information by providing appropriate abstractions.

Although there are several works that aim to assist software engineering stakeholders in

their day-to-day activities, little is known about the role of visualizations in supporting software

reuse tasks. There are some software visualization approaches in the literature that are intended

to support software reuse, but literature lacks a solid body of knowledge or a reference model of

software visualizations targeted to reuse. Approaches are spread in the literature and their

information is usually not clearly organized, classified and categorized. Consequently,

stakeholders may not be able to properly find and choose reuse-oriented visualizations (i.e.,

based on their quality and concrete evidence on their actual effectiveness) for a given scenario.

This work presents a characterization study of visualizations that provide support for

software reuse tasks, organized in terms of a task-oriented framework. Such framework was

extended in order to capture more detailed information that may be useful for assessing the

suitability of a particular visualization. Besides enabling a better organization of the findings, the

use of the extended framework allows to identify aspects that lack more support, indicating

opportunities for researchers on software reuse and software visualization. The results of the

study were organized in a website (http://www.cos.ufrj.br/~schots/survis_reuse/), in order to

allow a better exploration of the findings, as well as establish correlations between the

visualization dimensions.

3

Summary

1. Introduction ... 8

1.1. Context and Problem Definition ... 8

1.2. Organization .. 10

2. Planning .. 10

2.1. Goal ... 10

2.2. Object of Study ... 10

2.3. Expected Results ... 11

2.4. Methodology ... 11

2.5. Research Questions ... 11

2.6. Search String Definition and Source Selection ... 12

2.6.1. Research Question Structuring .. 12

2.6.2. Definition of Control Publications .. 13

2.6.3. Source Selection .. 13

2.6.4. Search String Calibration .. 17

2.7. Procedure for Studies Selection .. 21

2.7.1. Inclusion Criteria (IC) ... 21

2.7.2. Exclusion Criteria (EC) ... 22

2.8. Data Extraction .. 22

2.8.1. Task – why is the visualization needed? .. 23

2.8.2. Audience – who will use the visualization? .. 24

2.8.3. Target – what is the data source to represent? ... 24

2.8.4. Representation – how to represent the data? ... 24

2.8.5. Medium – where to present the visualization? .. 25

2.8.6. Requirements – which resources are required by or used in the visualization? 25

2.8.7. Evidence – are the proposed visualizations worthwhile? .. 25

2.8.8. Data Extraction Form .. 26

3. Execution .. 28

3.1. Execution Data from the Manual Search .. 28

3.2. Execution Data from the Search Engine ... 29

3.3. Study Selection .. 31

4. Analysis... 37

4

4.1. Visualization approaches supporting software reuse .. 38

4.2. Task – why is the visualization needed? ... 41

4.2.1. Pioneer works .. 41

4.2.2. Other works ... 42

4.2.3. Software engineering activities ... 45

4.2.4. Discussion.. 50

4.3. Audience – who will use the visualization? .. 51

4.3.1. Discussion.. 53

4.4. Target – what is the data source to represent? .. 53

4.4.1. Discussion.. 57

4.5. Representation – how to represent the data? ... 58

4.5.1. Discussion.. 64

4.6. Medium – where to present the visualization? .. 65

4.6.1. Discussion.. 66

4.7. Requirements – which resources are required by or used in the visualization? 66

4.7.1. Discussion.. 67

4.8. Evidence – are the proposed visualizations worthwhile? .. 67

4.8.1. Discussion.. 69

5. Final Remarks ... 69

5.1. Limitations .. 70

5.2. Open Questions and Future Works ... 71

Acknowledgements ... 72

References ... 72

Appendix A – Consensus information .. 77

Appendix B – Publication data extracted on the selection process .. 81

Appendix C – Visualization strategies and techniques ... 210

5

Figures

Figure 1. Reuse-based development [Kim & Stohr 1998] .. 8

Figure 2. Distribution of search results by subject area .. 20

Figure 3. Systematic review selection process ... 21

Figure 4. Dimensions of software visualizations (extended from [Maletic et al. 2002]) 23

Figure 5. Scopus data from study selection stages, by researcher .. 30

Figure 6. Word cloud indicating the 600 most frequent terms before the title reading stage 31

Figure 7. Word cloud indicating the 600 most frequent terms after the title reading stage (before

the abstract reading) .. 32

Figure 8. Word cloud indicating the 600 most frequent terms after the abstract reading stage

(before the full reading) .. 33

Figure 9. Word cloud indicating the 600 most frequent terms after the full reading stage (selected

publications) .. 34

Figure 10. Distribution of selected publications per year ... 39

Figure 11. Distribution of selected publications per author .. 40

Figure 12. Approaches and supported stakeholders (SQ2) ... 51

Figure 13. Visualized items/data by approach (SQ3) ... 54

Figure 14. Evaluation scenarios (A = Academic; C = Commercial/Industrial; OS = Open Source)

(TQ7.1) .. 68

6

Tables

Table 1. Analysis of title, abstract and keywords of control publications (occurrences of terms) 15

Table 2. Distribution of the search terms .. 16

Table 3. Search string definition ... 17

Table 4. Second round of the search string definition (filters in italic) .. 18

Table 5. Results from second attempt ... 19

Table 6. Search string in Portuguese... 20

Table 7. Data extraction form ... 27

Table 8. Study selection data (manual search).. 29

Table 9. Study selection data (search engines) ... 30

Table 10. Selected publications (sorted alphabetically) ... 35

Table 11. Visualization approaches (sorted by year) (PQ) ... 38

Table 12. Software engineering activities addressed by visualizations (TQ1.1) 46

Table 13. Reuse-related tasks addressed by visualizations (TQ1.2) ... 47

Table 14 . Mapping between the steps in [Kim & Stohr 1998] and the identified tasks 49

Table 15. Approaches and supported stakeholders (SQ2) .. 52

Table 16. Visualized items/data by approach (SQ3) ... 54

Table 17. Visualization metaphors employed by the approaches (SQ4) 58

Table 18. Data-to-visualization mapping (TQ4.1) .. 61

Table 19. Visualization strategies and techniques employed (TQ4.2).. 62

Table 20. Publications accepted by both researchers .. 77

Table 21. Publications accepted only by the first researcher .. 78

Table 22. Publications accepted only by the second researcher ... 80

Table 23. Publications manually included (agreed by both researchers) 80

Table 24. Software Landscape [Mancoridis199374] .. 81

Table 25. Software Information Base (SIB) [Constantopoulos19951] ... 84

Table 26. Program Explorer [Lange1995342] .. 87

Table 27. Dotplot Patterns [Helfman199631] ... 90

Table 28. Alonso & Frakes’s approach [Alonso1998483] ... 93

Table 29. Dy-re (Dynamic reuse) [Biddle199992] ... 96

Table 30. Dyno [Biddle199992 / Marshall2001 / Marshall2001103]... 101

Table 31. Nested Software Self-Organising Map (NSSOM) [Ye2000266] 107

7

Table 32. Framework Interaction for REuse (Fire) [Marshall2001103] 112

Table 33. Visualization Architecture for REuse (VARE) [Marshall2001103 / Anslow2004] ... 115

Table 34. Mittermeir et al.’s approach [Mittermeir200195] ... 120

Table 35. Charters et al.’s approach [Charters2002765] .. 124

Table 36. Test Driver + SpyApp + Transformer [Marshall200381] ... 127

Table 37. Spider [Anslow2004 / Marshall200435]... 131

Table 38. Claims Exploration of Relationships Visualization (CERVi) [Wahid2004414] 135

Table 39. TRAceability Pattern Environment (TRAPEd) [Kelleher200550] 138

Table 40. Visualisation of Execution Traces (VET) [McGavin2006153] 140

Table 41. Growing Hierarchical Self-Organizing Map (GHSOM) [Tangsripairoj2006283] 145

Table 42. Washizaki et al.’s approach [Washizaki20061222] .. 148

Table 43. DigitalAssets Discoverer [Gonçalves2007872 / Oliveira2007461]............................ 153

Table 44. Gilligan [Holmes2007100] ... 157

Table 45. Stollberg & Kerrigan’s approach [Stollberg2007236].. 161

Table 46. BARRIO [Dietrich200891]... 165

Table 47. MUDRIK [Ali200950] ... 168

Table 48. Damaševičius’s approach [Damaeviius2009507] ... 173

Table 49. Ontology-Driven Visualization (ODV) [DeBoer200951] .. 178

Table 50. NFRs and Design Rationale (NDR) Ontology / Toeska/Review tool [López20091198]

... 181

Table 51. AMPLE Traceability Framework (ATF) [Anquetil2010427] 184

Table 52. Interface Descriptions Management System (IDMS) [Areeprayolkij2010208] 187

Table 53. FEATUREVISU [Apel2011421] .. 189

Table 54. Variant Analysis [Duszynski2011303 / Duszynski201237] 193

Table 55. API-Dependence Visualization [Bauer2012435] ... 197

Table 56. FeatureCommander [Feigenspan20121] ... 200

Table 57. FlowTracker [Yazdanshenas2012143] ... 204

Table 58. Visualization strategies and techniques by publication/approach (TQ4.2)................. 210

8

1. Introduction

1.1. Context and Problem Definition

Software reuse is present in day-to-day software development and has been a promising

paradigm in software engineering [Benedicenti et al. 1996], since it can be fully integrated and

supported in software development processes, improving the life cycle by reducing time and

effort needed to develop software systems. By reusing assets from past projects (i.e., that have

been already tested and deployed) it is possible to provide more reliable applications and

decrease maintenance efforts, since their quality is expected to reflect their previous experiences

of use [Benedicenti et al. 1996] [Morisio et al. 2002].

[Kim & Stohr 1998] represent the software reuse process by dividing reuse activities into

two groups: (i) producing activities, which involve the identification, classification and

cataloging of software resources, and (ii) consuming activities, which involve the retrieval,

understanding, modification, and integration of those resources into the software product. These

groups of activities can also be classified as development for reuse (i.e., build generic assets,

such as components, templates etc., in such a way that they can be reused in similar contexts)

and development with reuse (i.e., the use existing assets to build [parts of the] software),

respectively [Moore & Bailin 1991]. Figure 1 illustrates these activities in terms of a model of

reuse-based development [Kim & Stohr 1998].

Figure 1. Reuse-based development [Kim & Stohr 1998]

According to this figure, the first step (step 1) involves analyzing existing software

resources (that are developed internally or externally) in order to identify potentially reusable

9

artifacts (that may require some adjustments to this end), which must be then classified and

cataloged (step 2) in a software library. These two steps have to be performed at the beginning of

a reuse program and whenever a new software resource is acquired/developed [Kim & Stohr

1998]. Specifying requirements for the new system (step 3) has to be performed regardless of

whether the software resource is to be developed from scratch or not.

Retrieving appropriate reusable software resources from the software library (step 4) is

only necessary in a software reuse scenario [Kim & Stohr 1998]. After that, the next step (step 5)

is to understand and assess the functionality of the selected resources in order to use or modify

them. Modifying software resources (step 6) is necessary when the retrieved software resources

do not exactly match the requirements specification, while building new software resources (step

7) is necessary when there are no similar software resources in the software library for some of

the requirements. Finally, the last step (step 8) is the integration of both new and reusable

software resources into the target software system [Kim & Stohr 1998].

Achieving effective software reuse is a difficult problem in itself, one that requires proper

support in a number of facets, such as managerial aspects [Griss et al. 1994], the aid of tools

[Marshall et al. 2003], and adequate mechanisms for retrieval of reusable assets
1
 [Braga et al.

2006], among others. For instance, the lack of tools and techniques for effectively supporting

software reuse was pointed out by Kim & Stohr (1998) and recently reaffirmed in a study with

Brazilian software organizations implementing reuse practices [Schots & Werner 2013].

A crucial concern for introducing a software reuse program in an organization is the

envisioning of non-technical aspects. Attempts to introduce a software reuse program may fail

because of human issues, such as: (i) lack of management commitment, (ii) lack of

understanding, (iii) lack of engagement of team members, (iv) absence of incentives, and (v)

cognitive overload [Kim & Stohr 1998]. In order to achieve the acceptance/consciousness and

successful adoption of software reuse, it is important to take into account how to better provide

appropriate reuse awareness. Awareness mechanisms allow stakeholders to be percipient of what

goes on in the development scenario [Hattori 2010] [Schots et al. 2012], and can provide them

with the necessary information and support for performing their reuse-related tasks.

To reuse a software asset, stakeholders need to understand what it does, how it works,

and how it can be reused; however, this is difficult in practice [Marshall 2001; Marshall et al.

2003]. If software engineers cannot understand assets, they will not be able to reuse them [Frakes

& Fox 1996; Alonso & Frakes 2000]. In contrast, a proper understanding can help developers to

decide whether and how the asset can be reused [Marshall 2001; Marshall et al. 2003]. An

adequate awareness support for implementing reuse can also facilitate the

acceptance/consciousness, adoption and institutionalization of a software reuse program.

One of the ways to increase awareness is by employing visualization resources and

techniques. Software visualization has been exploited as a way to assist software development

activities that involve human reasoning, helping people to deal with the large amount and variety

of information by providing appropriate abstractions [Lanza & Marinescu 2006] [Diehl 2007].

The understanding of software is a complex activity that requires specific resources that facilitate

1
 Any item that is built for use in multiple contexts (such as software design, specification, source code,

documentation, test cases, manuals, procedures etc.) can be considered as a reusable asset.

10

their development process [Diehl 2007]. In the software reuse scenario, visualization resources

can be used for increasing awareness and comprehension of reuse elements and their

surroundings.

It is known that, in general, every visualization system supports understanding of one or

more aspects of a software system, and this understanding process will in turn support a

particular engineering activity or task [Maletic et al. 2002], such as requirements engineering,

software design, or coding. It is believed that most of these software engineering tasks can also

be visually supported by software reuse. Mukherjea & Foley (1996) state that visualization is

particularly important for allowing people to use perceptual reasoning (rather than cognitive

reasoning) in task-solving. However, it is desirable to have an explicit description of the tasks

being supported, in addition to the usual understanding goal, so that these visualizations can be

more easily identified by potential users with corresponding information needs.

Although there are several works that aim to assist software engineering stakeholders in

their day-to-day activities, little is known on the role of visualizations in supporting software

reuse tasks. This is the object of investigation of the study described in this work. There are some

software visualization approaches in the literature that are intended to support software reuse, but

literature lacks of a solid body of knowledge or a reference model of software visualizations

targeted to reuse. Consequently, stakeholders may not be able to properly choose reuse-oriented

visualizations (i.e., based on their quality and concrete evidence on their actual effectiveness) for

a given scenario.

1.2. Organization

This text is organized as follows: Section 2 and 3 describe the study planning and

execution, respectively, Section 4 presents an analysis of the findings along with a brief

discussion, and Section 5 contains the final remarks.

2. Planning

2.1. Goal

This study aims at characterizing and identifying visualization approaches that can be

used for supporting software reuse, regardless of the focus of support. The study goals are

described in the Goal-Question-Metric (GQM) format [Basili et al. 1994] as follows:

Analyze tools and approaches described in publications

For the purpose of characterizing

With respect to visualizations for supporting software reuse

Under the point of view of the researchers

In the context of software development tasks and organizational tasks

2.2. Object of Study

The objects of this study are the publications that present visualizations supporting

software reuse.

11

2.3. Expected Results

The expected results are (i) the identification of visualizations that can be used for

supporting software reuse, as well as their features and limitations, and (ii) the establishment of a

solid body of knowledge on visualizations for software reuse.

2.4. Methodology

Since this study aims mainly at characterizing the state-of-the-art, it is performed by

means of a Quasi-Systematic Review [Travassos et al. 2008]. This kind of study is also known as

Systematic Mapping Study, i.e., a study that aims to identify and categorize the research in a

fairly broad topic area [Kitchenham et al. 2009]. However, since this study must explore the

same rigor and formalism for the methodological phases of protocol preparation and running

(except for the fact that no meta-analysis in principle can be applied), the quasi-systematic

review denomination seems to be more appropriate [Travassos et al. 2008].

2.5. Research Questions

The research questions are decomposed into primary (PQ), secondary (SQ) and tertiary

(TQ) questions. They map to the data extraction information, shown in Section 2.8, and are

partially inspired in the work by Maletic et al. (2002).

 PQ: Which visualization approaches have been proposed to support software reuse?

○ SQ1: How do visualizations support software reuse?

■ TQ1.1: Which software engineering activities are addressed by the

visualizations?

■ TQ1.2: Which reuse-related tasks are supported by these visualizations?

○ SQ2: To which stakeholders are these visualizations intended/targeted?

○ SQ3: Which items/data are visually represented?

■ TQ3.1: Where do these items/data come from?

■ TQ3.2: How are these items/data collected?

○ SQ4: Which visualization metaphors are used?

■ TQ4.1: How are data mapped to the visualizations?

■ TQ4.2: Which visualization strategies and techniques are employed?

○ SQ5: Where are the visualizations displayed?

■ TQ5.1: Which resources can be used for interacting with the

visualizations?

○ SQ6: Which hardware/software resources are needed to deploy and execute the

visualization tools?

■ TQ6.1: Which programming languages, APIs and frameworks are used?

12

○ SQ7: Which methods are used for assessing the quality
2
 of the visualizations (if

any)?

■ TQ7.1: In which scenarios are the visualizations employed (if any)?

■ TQ7.2: Which aspects of the visualizations are evaluated (if any)?

■ TQ7.3: What are the results/outcomes of the conducted evaluations (if

any)?

2.6. Search String Definition and Source Selection

2.6.1. Research Question Structuring

The search string structure is based on the PICO approach [Pai et al. 2004], which

separates the question into Population of interest, Intervention or exposure being evaluated,

Comparison intervention (if applicable) and Outcome. As this study aims mainly at

characterizing the state-of-the-art, no comparison is carried out, i.e., it can be classified as a

quasi-systematic review [Travassos et al. 2008].

Population (P)

Publications and works related to software reuse.

Keywords:

 software, system, program, asset, application, artifact

 reuse, reusability, reusable

Intervention (I)

Visualizations related to software reuse.

Keywords:

 visualization, visual, visualisation

Comparison (C)

Not applicable (N/A).

Outcome (O)

The outcome corresponds to the information to be extracted from the publications (as

listed in the Data Extraction section). However, it was observed that the publications’ titles and

abstracts do not contain these key terms; due to this, such information cannot be identified on

them. Thus, as well as Santa Isabel’s [Santa Isabel 2011] and França’s [França & Travassos

2011] works, the outcome is not included in the definition of the keywords and will be taken into

account only during the information extraction stage. The main reason for this decision is

because the outcome terms would constrain the comprehensiveness of publications if they were

included in the search string – they only represent information that shall be extracted from the

publications.

2
 Quality evaluation/assessment encompasses any quality attributes, such as effectiveness, efficacy, amongst others.

13

2.6.2. Definition of Control Publications

Some publications identified by means of informal reviews were used as a preliminary

input for the search string definition, i.e., compounded an initial data set (i.e., a baseline) of

control
3
 for the definition of the search string. Such publications are:

 Biddle, R., Marshall, S., Miller-Williams, J., Tempero, E. (1999). “Reuse of debuggers
for visualization of reuse”. In: Proceedings of the 5th Symposium on Software Reusability

(SSR 1999), Los Angeles, USA, pp. 92-100, May.

 Alonso, O., Frakes, W. B. (2000). “Visualization of Reusable Software Assets”. In:
Proceedings of the 6th International Conference on Software Reuse (ICSR 2000), pp.

251-265, Vienna, Austria, June.

 Marshall, S. (2001). “Using and Visualizing Reusable Code: Position Paper
4
 for Software

Visualization Workshop”. In: Workshop on Software Visualization, 2001 ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA 2001), Tampa, USA, October.

 Marshall, S. Jackson, K., Anslow, C., Biddle, R. (2003). “Aspects to visualising reusable
components”. In: Proceedings of the Australasian Symposium on Information

Visualisation (InVis.au 2003), Adelaide, Australia, pp. 81-88, February.

 Duszynski, S., Knodel, J. and Becker, M (2011). “Analyzing the source code of multiple
software variants for reuse potential”. In: Proceedings of the 18th Working Conference

on Reverse Engineering (WCRE 2011), Limerick, Ireland, pp. 303-307, October.

These works allowed the extraction of some keywords that can be used in the search

string of this work.

2.6.3. Source Selection

The sources must meet the following initial requirements:

 In case of search engines, the indexed publications must be available on the web and
written in English or in Portuguese.

 In case of conference proceedings and journals not indexed by the search engines, they
must be representative of the software reuse domain. Publications must be in English or

in Portuguese.

The chosen search engine for carrying out the review is Scopus
5
, due to its well-known

stability, reliability, interoperability with different referencing systems, and high coverage – its

database indexes most of the publications that are available in different digital libraries or other

search engines (e.g., Compendex, IEEE, ACM Digital Library, Springer, Web of Science etc.)

[Santa Isabel 2011]. Besides, it indexes relevant journals and proceedings from the main

3
 Control is the baseline or the initial data set which the researcher already possesses [Biolchini et al. 2005].

4
 Although this publication is a position paper, it was decided to include it as control because it was considered as

one of the pioneers on the topic.
5
 http://www.scopus.com/

14

software engineering conferences that comprise software reuse as a topic of interest. Examples of

such conferences include:

 International Conference on Software Reuse (ICSR);

 International Conference on Software Maintenance (ICSM);

 European Conference on Software Maintenance and Reengineering (CSMR);

 International Conference on Information Reuse and Integration (IRI);

 International Conference on Software Engineering (ICSE);

 etc.

Thus, it was considered that the coverage/comprehensiveness provided by Scopus would

be sufficient for the scope of this research.

Because Portuguese is the native language of the researchers involved in this study, it

was decided that publications in Portuguese should be analyzed as well. The following

conferences were identified as relevant for the purpose of this research:

 Brazilian Symposium on Software Engineering (SBES);

 Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS) and
its predecessor Workshop on Component-Based Development (WDBC);

 Brazilian Symposium on Software Quality (SBQS).

Given that the Brazilian digital library (BDBComp
6
) does not index all the proceedings

from any of these conferences (until the date of creation of this protocol), a manual search is

required, following the same selection procedure (described in Section 2.7).

Before defining the search string, the title, abstract and keywords of each publication

selected for control should be analyzed, aiming at identifying whether the most possibly common

terms (“software”, “reuse” and “visualization”) would provide a good level of sensibility without

the corresponding synonym terms. This is also used for verifying the adequacy of the search

terms. The analysis is presented in Table 1.

6
 http://www.lbd.dcc.ufmg.br/bdbcomp/

15

Table 1. Analysis of title, abstract and keywords of control publications (occurrences of terms)

#1 – Title: Reuse of debuggers for visualization of reuse

[Biddle et al. 1999]

Abstract: We have been investigating tool support for managing reuse of source code. One

approach we have been exploring is the use of visualization in programming tools. A difficulty

with this approach is that effective program visualization of ordinary programs requires

substantial sophisticated low-level software. Our solution to this problem is to reuse debugging

systems in an innovative way. We present our experience with this approach, both to evaluate

the reusability of the debugging systems we used, and to provide a case study in reuse.

Keywords: N/A

#2 – Title: Visualization of Reusable Software Assets

[Alonso & Frakes 2000]

Abstract: This paper presents methods for helping users understand reusable software assets.

We present a model and software architecture for visualizing reusable software assets. We

described visualizations techniques based on design principles for helping the user understand

and compare reusable components.

Keywords: Representation methods, Software assets, Information visualization, 3Cs, XML.

#3 – Title: Using and Visualizing Reusable Code

[Marshall 2001]

Abstract: This paper describes a software visualization tool for helping a developer reuse

existing Java code. The tool supports the creation and viewing of visual documentation of

reusable code based on a developer’s experience of using that code. The visual documentation,

in essence software visualisations, can be used by the developer to understand what the code

does, and how it does it. We have sought to create a tool that can create customizable software

visualizations of Java code with minimal modifications to the code itself. This paper looks at

both our first prototype, a stand alone Java application called Dyno, as well as at our second

prototype called Vare. Vare expands on Dyno by working over a network and also acting as a

code repository. We discuss the issues that have arisen so far in our development of these

prototypes.

Keywords: Software Visualization, Test Driving, Code Repositories, Java

#4 – Title: Aspects to visualising reusable components

[Marshall et al. 2003]

Abstract: We are interested in helping developers reuse software by providing visualisations of

reusable code components. These visualisations will help determine if and how a given code

component can be reused in the developer’s new context. To provide these visualisations, we

need both formatted information and tools. We need a format to describe the visualisations in.

We need tools to create the visualisations. We need a format to describe information about the

component and its runtime usage, and we need a tool to gather this information in the first place.

In this paper, we discuss our two wish-lists for the required information formats. We set this

against the background of software visualisation and code reuse research. Currently we are

working with components from object oriented languages, specifically Java.

Keywords: Software Visualisation, Test Driving, Code Reuse

16

#5 – Title: Analyzing the Source Code of Multiple Software Variants for Reuse Potential

[Duszynski et al. 2011]

Abstract: Software reuse approaches, such as software product lines, can help to achieve

considerable effort and cost savings when developing families of software systems with a

significant overlap in functionality. In practice, however, the need for strategic reuse often

becomes apparent only after a number of product variants have already been delivered. Hence, a

reuse approach has to be introduced afterwards. To plan for such a reuse introduction, it is

crucial to have precise information about the distribution of commonality and variability in the

source code of each system variant. However, this information is often not available because

each variant has evolved independently over time and the source code does not exhibit explicit

variation points. In this paper, we present Variant Analysis, a scalable reverse engineering

technique that aims at delivering exactly this information. It supports simultaneous analysis of

multiple source code variants and enables easy interpretation of the analysis results. We

demonstrate the technique by applying it to a large industrial software system with four variants.

Keywords: Software reuse, product lines, reverse engineering, variant, visualization

The distribution of the search terms (in terms of titles, abstracts, and keywords) is

summarized in Table 2.

Table 2. Distribution of the search terms

Search term
of occurrences of the

search term

of publications which contain the

search term

application 01 | 1 (#3)

assets 04 |||| 1 (#2)

program 01 | 1 (#1)

programs 01 | 1 (#1)

software 19 ||||||||||||||||||| 5 (#1, #2, #3, #4, #5)

system 02 || 1 (#5)

systems 03 ||| 2 (#1, #5)

reusable 08 |||||||| 3 (#2, #3, #4)

reusability 01 | 1 (#1)

reuse 15 ||||||||||||||| 4 (#1, #3, #4, #5)

reused 01 | 1 (#4)

visual 02 || 1 (#3)

visualisation 02 || 1 (#4)

visualisations 06 |||||| 2 (#3, #4)

visualising 01 | 1 (#4)

visualization 08 |||||||| 4 (#1, #2, #3, #5)

visualizations 02 || 2 (#2, #3)

visualizing 02 || 2 (#2, #3)

The third column (which indicates how many publications contain the corresponding

search term) indicates that, in the software category, the term “software” is present in all of the

publications selected for control, while the remaining terms only appear in one or two different

publications. In the reuse category, both “reuse” and “reusable” terms are frequent, although

none of them comprehends all of the analyzed publications. Finally, in the visualization category,

17

it is important to note that the only publication which is not covered by the term “visualization”

(#4) contains the terms “visualisation” and “visualisations” – the “-ise” form is more frequently

used in British English (UK) and its variations, while the “-ize” form is more common in

American English (US) and its variations.

The number of occurrences of the search terms (depicted in the second column) suggests

that “software”, “reuse” and “visualization” are indeed the most common terms. However, two

of the controls would not be retrieved by using only these main search terms (“software AND

reuse AND visualization”), since only publications #1, #3 and #5 contain these three terms

simultaneously. This indicates that the related terms (presented in the PICO definition) should be

tested for obtaining a broader (and still relevant) range of publications. Additionally, although

the population (P) is composed by publications and works related to software reuse, these terms

do not always appear together, thus making word aggregations such as “software reuse” or

“reusable software” too restrictive and hence inappropriate.

2.6.4. Search String Calibration

After performing some tests with the terms in the search engines, it was decided to

suppress the terms “application” from the search string, as well as the term “artifact” (which was

included previously as a correlated term). The reasons are twofold: first, based on the analysis on

the occurrences of terms, they barely appeared in relevant results; moreover, the search results

became very noisy with the inclusion of these terms, since they are overloaded in meaning, often

used in situations not related to software development (e.g., archaeology artifacts, application for

employment etc.).

Additionally, in spite of the frequency of other search terms depicted in Table 2 (e.g.,

“visualizing”), it was decided to keep only a subset of them that would return the control

publications. Most of the obtained results have been already achieved by using the terms

previously defined, which indicates that their usage could bring more noise than positive

contributions to the research. Thus, it was decided to suppress them; such terms can be added

later in a new round as a complement, if needed.

By using the structure of the PICO approach and taking into account the decision of

suppressing the Outcome, the search string is the combination between the keywords presented

in P (population) and I (intervention). Thus, the search string was defined as follows (Table 3):

Table 3. Search string definition

Search string Scopus search string # of results

((software OR system OR program OR

asset) AND (reuse OR reusability OR

reusable)) AND (visual OR visualization

OR visualisation)

TITLE-ABS-KEY(((software OR system

OR program OR asset) AND (reuse OR

reusability OR reusable)) AND (visual

OR visualization OR visualisation))

1204

After that, the following Document Types were removed from the search, since they are

characterized as gray literature (i.e., technical reports, white papers, manuals and works in

progress) [Lisboa et al. 2010]
7
:

7
 There is a corresponding exclusion criterion presented in Section 2.7.2.

18

 “Conference Review” (40 entries);

 “Note” (3 entries);

 “Short Survey” (1 entry, unrelated);

 “Undefined” (1 entry, unrelated).

The subsequent version of the search string is presented in Table 4. The aforementioned

filter is presented in italic.

Table 4. Second round of the search string definition (filters in italic)

Search string Scopus search string # of results

((software OR system OR program OR

asset) AND (reuse OR reusability OR

reusable)) AND (visual OR visualization

OR visualisation)

TITLE-ABS-KEY(((software OR system

OR program OR asset) AND (reuse OR

reusability OR reusable)) AND (visual

OR visualization OR visualisation)) AND

(EXCLUDE(DOCTYPE, “cr”) OR

EXCLUDE(DOCTYPE, “no”) OR

EXCLUDE(DOCTYPE, “sh”) OR

EXCLUDE(DOCTYPE, “Undefined”))

1159

As it can be seen, a large number of publications were obtained; however, it was decided

not to constrain the search string, due to the exploratory nature of this study
8
.

In spite of that, it was noticed that only 2 out of the 5 control publications were captured

by this search string (publications #2 and #5). After investigating this issue, it was noticed that

the 3 missing publications (#1, #3, #4) were not indexed by Scopus. Publication #3 was not

found (by the time of this search) because it was neither indexed by Scopus nor any other

academic search engine (it was found only by a Google Search). On the other hand, publications

#1 and #4 are retrievable only from ACM Digital Library (DL) and Google Scholar. This led to

reviewing the sources selection for the search.

Google Scholar has little support for advanced searching, and does not allow searching

simultaneously on titles, abstracts and keywords, separately from the whole publication (only

title filters are allowed). Because titles are not good representatives of the publication content

and searching the full publication would bring more noise than relevant results, it was decided to

keep Google Scholar out of the sources. ACM DL, in its turn, does not have any direct export

functions, hampering to export the search results
9
 and hence the identification of duplicates.

Also, search results do not present the full abstract, so that publications should be exported one

by one, which would require much effort for little benefit
10

. Other researchers have also pointed

out problems with this search engine, e.g., the difficulties related to obtaining the same results

when the search was repeated [Barcelos & Travassos 2006] and the lack of support for complex

8
 A similar situation was later identified in [Novais et al. 2013].

9
 See http://dl.acm.org/faq_dl.cfm for details (checked in November 30, 2013).

10
 The following search on ACM returns about 9117 results: ((software or system or program or asset) AND (reuse

OR reusability OR reusable) AND (visual OR visualization OR visualisation)).

19

logical combinations [Brereton et al. 2007]. Due to these issues, ACM DL is not included in the

search sources set.

Since ACM is the only digital library that contains the publications #1 and #4, it was

decided to overcome this limitation by visiting the ACM Author Profile Page
11

 of the respective

authors and searching for the search string terms in the titles, abstracts and keywords of each

listed publication. This decision was taken because the research described in these publications

belongs to a specific research group, and contains a set of related works (in terms of goals and

features).

Thus, the calibrated string presented in Table 4 was chosen as the final search string for

the first round of this review. The search results are disposed in the Subject Areas in Table 5 and

Figure 2 (it is important to note that there are entries located in more than one subject area):

Table 5. Results from second attempt

Subject Area # of results

Computer Science

Engineering

Mathematics

Physics and Astronomy

Biochemistry, Genetics and Molecular Biology

Medicine

Social Sciences

Earth and Planetary Sciences

Environmental Science

Materials Science

Chemical Engineering

Decision Sciences

Agricultural and Biological Sciences

Business, Management and Accounting

Energy

Arts and Humanities

Health Professions

Psychology

Chemistry

Immunology and Microbiology

Neuroscience

Nursing

Pharmacology, Toxicology and Pharmaceutics

Dentistry

Veterinary

Undefined

695

491

173

77

69

56

40

34

32

29

27

22

19

13

13

10

10

6

5

5

5

3

2

1

1

3

Total 1841

11

 See http://www.acm.org/publications/acm-author-profile-page for details (checked in November 30, 2013).

20

Figure 2. Distribution of search results by subject area

A Portuguese version of the search string (presented in Table 6) did not find any results

in the search engine. Thus, only the manual search on the identified sources should be performed

for this language.

Table 6. Search string in Portuguese

Search string Scopus search string # of results

((software OR sistema OR programa OR

ativo) AND (reuso OR reúso OR

reutilização OR reusabilidade OR

reusável OR reutilizável)) AND (visual

OR visualização)

TITLE-ABS-KEY(((software OR sistema

OR programa OR ativo) AND (reuso OR

reúso OR reutilização OR reusabilidade

OR reusável OR reutilizável)) AND

(visual OR visualização)) AND

(EXCLUDE(DOCTYPE, “cr”) OR

EXCLUDE(DOCTYPE, “no”) OR

EXCLUDE(DOCTYPE, “sh”) OR

EXCLUDE(DOCTYPE, “Undefined”))

0

21

2.7. Procedure for Studies Selection

Due to the diversity of subject areas and for not constraining the systematic review search

string, it was decided to make title reading as the first selection stage, before the usual abstract

reading. Since the chosen search string is too broad, such stage can be useful for eliminating

publications that are clearly targeted to other fields of study (e.g., publications in medicine or

chemistry), thus reducing the amount of unnecessary abstract readings. It must be ensured,

though, that a publication must be selected whenever there is not enough confidence for

excluding it, so that it can be more carefully analyzed during the next stage. The process is

depicted in Figure 3.

Figure 3. Systematic review selection process

The title (in the title reading stage) and the abstract (in the abstract reading stage) of

each found publication is read and evaluated against the inclusion and exclusion criteria.

Selected publications are then read entirely and once more evaluated against the inclusion and

exclusion criteria (full reading stage), in order to remove false positives. In this stage, data

extraction is performed (data extraction stage) on the remaining selected publications. By

performing the data extraction at the same time of the full reading, it is expected to achieve a

greater level of certainty regarding the pertinence of the publication to the scope of the study.

The process is executed by two researchers. Publications that are included in a given

selection stage (i.e., by the publications’ title and/or abstract reading) can be excluded in the full

reading/data extraction stage. Since the publication is read entirely, leading to a better

understanding of it, these stages allow for a more confident inclusion/exclusion decision in terms

of the established criteria [França & Travassos 2011]. In case of conflict of opinions (between

the two researchers) regarding a publication, a third researcher must execute the evaluation

procedure for resolving it.

2.7.1. Inclusion Criteria (IC)

 IC1: The publication is fully available (on the web, for results from search engines) or
has been provided by the authors.

 IC2: The publication is related to software reuse.

 IC3: The publication presents a visualization-based approach or tool for supporting

software reuse.

22

2.7.2. Exclusion Criteria (EC)

 EC1: The publication is not available (on the web, for results from search engines),
neither was provided by the authors.

 EC2: The publication is characterized as gray literature (i.e., technical reports, white
papers, manuals and works in progress)

12
 [Lisboa et al. 2010].

 EC3: Duplicate publication or self-plagiarism (when several reports of a study exist in

different journals, the most complete version of the study must be included in the review

[Kitchenham et al. 2009]).

 EC4: The publication is not about reuse, or tackles reuse in other areas not related to
software development.

 EC5: The publication does not mention the use of visualization for supporting software
reuse.

Regarding EC5, it was concluded (during some search tests) that visual programming

approaches and languages do not belong to the scope of this study whenever the visualization

resources are used only for representing language elements. A visual programming language lets

users create programs by manipulating program elements graphically rather than by specifying

them textually. All the visual elements implicitly improve reuse somehow, since they usually

represent a certain piece of text/code in a higher abstraction level. The goal of this study is to

identify approaches that are specifically targeted to support software reuse.

2.8. Data Extraction

The data extraction fields are identified with their corresponding research questions.

In addition to the usual publication metadata (which are listed in the end of this section),

it is necessary to define a metadata field for identifying each visualization approach:

 Approach/tool name (PQ)

In order to identify an initial set of data to be extracted from the findings, this work uses

the five dimensions of software visualization proposed by Maletic et al. (2002). The task-

oriented framework proposed by these authors takes into account previous work on taxonomic

descriptions for emphasizing general tasks of understanding and analysis during the development

and maintenance of large-scale software systems [Maletic et al. 2002]. The framework

dimensions reflect the why, who, where, what, and how of the software visualization.

Additionally, in order to complement the framework with information that is relevant to

the visualization users and encompass other aspects related to the findings of this study, two

additional, complementary dimensions that are not (or at least not directly) addressed in the

original framework are proposed and used in this work: one related to the requirements of the

visualization approaches (which) and other related to evidence on their use (worthwhile). These

dimensions are depicted in Figure 4.

12

 This criterion is employed for ensuring the quality of the findings; however, when the number of search results is

too low, it may not be taken into consideration.

23

Figure 4. Dimensions of software visualizations (extended from [Maletic et al. 2002])

Each dimension maps to a secondary question (SQ) shown in Section 2.5. Details on the

dimensions and their corresponding information fields are described in the next subsections.

2.8.1. Task – why is the visualization needed?

A visualization system aims at supporting the understanding of one or more aspects of a

software system, and this understanding process will in turn support a particular task [Maletic et

al. 2002]. Thus, this dimension indicates what particular software engineering tasks are

supported by the visualization [Maletic et al. 2002].

In order to understand why each of the visualizations is needed in the reuse scenario, it is

important to identify which problems, motivations or issues leaded to the development of such

approach. In this sense, the following fields are used in this work:

 Approach motivation/Assumptions (SQ1)

 Approach goals (SQ1)

 Visualizations’ reuse-specific goals (SQ1)

Besides identifying which are the supported tasks, one important aspect that can be

relevant is when – i.e., in which software engineering activities and stages of the development

process – the visualization can be used. Particularly in this work, the purpose is to identify the

software engineering activities (in which there are reuse opportunities) that are supported

24

somehow by the software visualizations. This can provide an overview of current tools’

coverage, as well as identify opportunities for research and improvements.

Although this could be considered as an additional dimension (when it is visualized?), it

was decided to keep it along with the task dimension (in which the supported tasks are

identified), so that both can provide complementary information. Thus, this work resorts to the

following fields:

 Software engineering activities addressed by the visualizations (TQ1.1)

 Reuse-related tasks supported by the visualizations (TQ1.2)

2.8.2. Audience – who will use the visualization?

The audience dimension defines the attributes of the users of the visualization system

[Maletic et al. 2002]. Besides being oriented to distinct roles, different tools can also be tailored

towards users with different skills (e.g., experienced versus beginner, developer versus manager

etc.). An experienced developer may have different information needs other than a novice team

member [Maletic et al. 2002].

In order to make visualizations effective in their goal, it is noteworthy to keep in mind

that the representations and visual metaphors must be adapted to the stakeholders’ perception

abilities [Diehl 2007] [Schots et al. 2012], not the opposite (as it usually occurs [Diehl 2007]).

The audience is represented in this work by the following field:

 Visualizations’ audience (stakeholders who can benefit from the visualizations) (SQ2)

2.8.3. Target – what is the data source to represent?

The target of a software visualization system defines which (low level) aspects of the

software are visualized, i.e., the work product, artifact, or part of the environment of the software

system [Maletic et al. 2002]. Some examples include architecture, design, algorithm, source

code, data, execution/trace information etc. Other types of target source data are measurements

and metrics obtained from software, process information, and documentation; this type of

information can support the software process and team management activities [Maletic et al.

2002]. Software development surroundings also provide several aspects that can be visualized

[Schots & Werner 2012]. The aspects related to this dimension are described in this work by the

following fields:

 Visualized items/data (what is visualized) (SQ3)

 Source of visualized items/data (TQ3.1)

 Collection procedure/method of visualized items/data (TQ3.2)

2.8.4. Representation – how to represent the data?

This dimension defines how the visualization is constructed based on the available

information [Maletic et al. 2002]. According to [Few 2009], an aspect on which the effectiveness

of information visualization hinges is the visualizations’ ability to clearly and accurately

represent information. The relationship between data values and visual parameters must be

25

univocal; otherwise, it may not be possible to distinguish one value’s influence from another

[Maletic et al. 2002]. In this work, the fields used for depicting this dimension are:

 Visualization metaphors used (how it is visualized) (SQ4)

 Data-to-visualization mapping (input/output) (TQ4.1)

 Visualization strategies and techniques (TQ4.2)

2.8.5. Medium – where to present the visualization?

The effectiveness of visualizations also relies on humans’ ability to interact with them to

figure out what the information means [Few 2009]. The medium is where the visualization is

rendered, i.e., some display technology from which the user interacts and perceives the

visualization [Maletic et al. 2002]. The medium dictates how interactions may occur; each one

has different characteristics and in consequence is suited for different tasks [Maletic et al. 2002].

Some software visualization tools do not even exploit the graphics power of an average PC or

laptop [Diehl 2007].

In this work, such dimension is comprised by the following fields:

 Device and/or environment used for displaying the visualizations (where it is visualized)
(SQ5)

 Resources used for interacting with the visualizations (TQ5.1)

2.8.6. Requirements – which resources are required by or used in the visualization?

Although the original dimensions from Maletic et al.’s framework provide an

organization of the goals and concepts implemented in the visualizations, it is not possible to

distinguish what is needed to deploy and execute the tools. For instance, an important concern in

any interactive visualization system is performance, in particular responsiveness to changes

triggered by direct manipulation of images [Bavoil et al. 2005]. Certain visualizations may

become costly, not only in terms of processing but also due to specific hardware and software

solutions on which they depend. This cost can be expressed (to some extent) in terms of the

visualizations’ hardware and software requirements/dependencies, besides the programming

languages, application programming interfaces (APIs) and frameworks reused for building it.

Visualization requirements can also provide indication on potentially conflicting

configurations, e.g., if a given version of a framework used for building the visualization is not

compatible (or has known behavior issues) with a certain hardware or software used by the

organization. The prevention of conflicts can avoid unnecessary waste of time.

For capturing information of this new dimension, the following fields are used:

 Hardware and software requirements/dependencies (SQ6)

 Programming languages, APIs and frameworks used for building the visualization
(TQ6.1)

2.8.7. Evidence – are the proposed visualizations worthwhile?

Many software visualization tools are continuously being developed by researchers and

software development companies [Sensalire et al. 2009]. However, according to these authors,

26

many developers perform very limited or no evaluation at all of their tools. The lack of empirical

studies is a shortcoming not only of software visualization research, but also of software

engineering and computer science in general (in accordance with [Tichy 1998]). As a result, as

stated by [Mulholland 1997], it may become unclear how effective such visualization tools are,

either for students or professional programmers.

According to Diehl (2007), typical problems with evaluations of visualization techniques

are the use of toy data sets and the generation of visual artifacts that suggest nonexistent

relations; but, above all, many evaluations are biased because they have been done by the

developers of the visualization. Moreover, there are some concerns on whether lessons in

successive designs of software visualization tools, or whether the application of new

technologies (e.g., 3D animation and the internet) has become the primary goal, rather than the

true goal of making computer programs easier to understand [Mulholland 1997].

In order to determine if visualizations are worthwhile, i.e., effective in helping their target

users, it is desirable to expose them to a proper evaluation [Sensalire et al. 2009]. This aspect is

not emphasized in the original framework; quality attributes that illustrate the usefulness of the

approaches (e.g., effectiveness) are put into the Representation dimension. This may “obfuscate”

their importance and decrease their visibility. Thus, this dimension aims at characterizing what

kinds of evaluation and assessment were carried out with the visualization (if any), as well as any

indications (or identified limitations) for its use, providing insights of the visualizations’

worthiness beforehand. This can be a valuable indication for people interested in making use of

the visualization.

Thus, for describing this new dimension, the following fields are included in this work:

 Visualization evaluation methods (SQ7)

 Application scenarios of the visualizations (TQ7.1)

 Evaluated aspects (TQ7.2)

 Visualization evaluation results/outcomes (TQ7.3)

2.8.8. Data Extraction Form

The following information (presented in Table 7) shall be extracted and managed from

each selected publication. The Google Spreadsheets tool
13

 is used for supporting the data

extraction process. Visualization dimensions are represented along with their corresponding

questions (as depicted in Figure 4).

13

 http://spreadsheets.google.com/

27

Table 7. Data extraction form

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title [Publication title]

Authors
[List of authors separated by comma, e.g., “Singh, S., Cheung, L. K.

Y.” – “et al.” must be avoided]

Publication date (year/month) [Year and month of publication, e.g., “September 2000”]

Publication type [Conference or Article (Journal)]

Source

[Source of the publication, e.g., “Communications of the ACM” or

“Proceedings of the International Conference on Software

Engineering (ICSE 2007)”]

Volume and Edition (for journals) [Volume and edition, e.g., “v. 49, n. 10”]

Place (for conferences) [City and Country of event, e.g., “Washington, USA”]

Pages [Initial and final pages separated by hyphen, e.g., “pp. 184-191”]

Link (if applicable)
[Link to the publication, preferably the Digital Object Identifier

(DOI), e.g., “http://dx.doi.org/10.1109/ICSECOMPANION.2007.8”]

Abstract [Full abstract text]

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) [Name of the approach/tool]

Screenshot [Screenshot of the approach/tool, if available]

T
a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

[Problems, motivations or issues that leaded to the development of the

approach]

Approach goals (SQ1) [Goals for which the approach was developed]

Visualizations’ reuse-specific goals
(SQ1)

[Description of how the approach goals relate to software reuse, i.e.,

which goals support or are somehow related to reuse]

Software engineering activities

addressed by the visualizations
(TQ1.1)

[Software engineering activities or development process stages that

can be somehow supported by the visualizations (e.g., “requirements

engineering”, “software design”, “software testing”, “software

maintenance” etc.), including the construction of reusable assets

(development for reuse) or the reuse of these assets in a scenario

(development with reuse)]

Reuse-related tasks supported by

the visualizations (TQ1.2)

[Tasks supported by the visualizations, in a fine-grain level, e.g.,

“integrating reusable assets”, “Searching and retrieving reusable

assets” etc.]

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

[Software development stakeholders who can benefit from the

visualizations, e.g., “programmers”, “software designers”, “end

users” etc.]

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

[Items/data from the software development process that have a visual

presentation; examples include source code entities (e.g., “classes

and interfaces with their attributes and methods”), high-level artifacts

(e.g., “UML diagrams”), metrics (e.g., “coupling”, “number of

commits” etc.), among others]

Source of visualized items/data

(TQ3.1)

[Sources from which the items/data are extracted, e.g., “version

control system repository”, “metrics base”, “software tracing log

file”, “source folder” etc.]

Collection procedure/method of

visualized items/data (TQ3.2)

[Description on how the items/data are collected and/or aggregated

by the approach, e.g., “parsing”, “clustering algorithm” etc.]

28

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)

[Visual metaphors used for describing the items/data, e.g., “squares

and circles”, “treemap”, “graph” etc.]

Data-to-visualization mapping

(input/output) (TQ4.1)

[Description on how data are mapped to the visualizations, e.g.,

“classes are represented as circles and interfaces as triangles”, “the

color represents the complexity (the darker, the more complex)” etc.]

Visualization strategies and

techniques (TQ4.2)

[Strategies (e.g., “provide a global view while navigating into specific

views”) and techniques (e.g., “drill-down”, “zoom”, “clustering”

etc.) used for displaying and interacting with the visualizations;

strategies may use a given technique without mentioning it]

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

[Device used for displaying the visualizations, e.g., “Computer”,

“Smartphone”, “Tablet”, “Display wall” etc.]

Resources used for interacting with

the visualizations (TQ5.1)

[Resources that allow interacting with the visualizations, e.g.,

“mouse”, “keyboard”, “pen”, “finger touch”, “gestures” etc.]

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

[Hardware (e.g., “Quad-core processor”, “Graphic card” etc.) and

software (e.g., “Eclipse IDE”, etc.) required for the approach]

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

[Programming languages, Application Programming Interfaces

(APIs) and frameworks used for building the approach, e.g., “Java

Reflection API”, “Prefuse” etc.]

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)

[Method applied for evaluating the approach, e.g., controlled

experiment, observational study, case study etc.]

Application scenarios of the

visualizations (TQ7.1)

[Scenarios in which the approach was employed, e.g., “in an

industrial setting”, “in the context of an academic course” etc.]

Evaluated aspects (TQ7.2)
[Evaluated approach aspects, e.g, performance, response time,

usefulness, scalability etc.]

Visualization evaluation

results/outcomes (TQ 7.3)
[Evaluation findings and results]

According to Kitchenham (2004), if the data require manipulation or assumptions and

inferences to be made, an appropriate validation process should be specified. In this study, the

following procedures take place:

 Data extracted by one researcher are reviewed by the other researcher;

 For publications retrieved from the search engine, an automatic search is performed in

non-encrypted PDF files for cross-checking their content;

 Additionally, an external evaluator is responsible for supporting the validation process
(i.e., checking whether the extracted data corresponds to the publication).

3. Execution

3.1. Execution Data from the Manual Search

The manual search (as mentioned in Section 2.6.3) was performed in the following

Brazilian proceedings:

 Brazilian Symposium on Software Engineering (SBES): proceedings from 1987 (1st
edition) to 2012 (26th edition) (including);

 Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS):

proceedings from 2007 (1st edition) to 2012 (6th edition) (including);

29

 Workshop on Component-Based Development (WDBC): proceedings from 2002 (2nd
edition)

14
 to 2006 (6th edition) (including);

 Brazilian Symposium on Software Quality (SBQS): proceedings from 2002 (1st edition)

to 2012 (11th edition) (including).

According to the selection procedures described in Section 2.7, the abstract reading stage

should be executed after the title reading stage. However, due to the effort involved in handling

and reading the printed proceedings, it was decided to perform the title reading stage and the

abstract reading stage simultaneously in the manual search.

The search results are listed in Table 8.

Table 8. Study selection data (manual search)

 SBES
WDBC /

SBCARS
SBQS

Title and abstract reading 556 158 315

Number of accepted publications 30 42 26

Number of rejected publications 526 116 289

Number of duplicated publications 0 0 0

Full reading 30 42 26

Number of accepted publications 0 0 0

Number of rejected publications 30 42 26

Number of duplicated publications 0 0 0

As it can be seen, from the 1030 analyzed publications, no one was selected. Most of the

publications selected during the title/abstract reading (98) are related to software reuse; however,

no publication mentions the use of visualization resources with the goal of supporting software

reuse.

3.2. Execution Data from the Search Engine

The searches were performed on October 1st, 2012 at 3PM local time (UTC/GMT -3) in

both the Scopus search engine and the selected ACM Author Profile Pages (mentioned in Section

2.6.4). Although no time constraint was set, it is believed from the search results that the

publications were obtained in the range between 1980 and September 2012. However,

publications that had not been indexed until the date of search may have been added to the digital

libraries afterwards.

As described in Section 2.6.4, 1159 results were obtained from Scopus by performing the

search with the chosen search string. The publications were exported from this search engine and

formatted in tables. After that, the procedure for studies selection described in Section 2.7 took

place.

The search performed on the ACM Author Profile Pages was conducted in a different

way: all the publications listed in the pages of each key author identified from the control

14

 The first edition of WDBC has no proceedings; selected works evaluated by the program committee were invited

for publication in a book: Gimenes, I. M. S., Huzita, E. H. M. (2005). Component-Based Development: Concepts

and Techniques (in Portuguese), 1st ed., 304p., Editora Ciência Moderna.

30

publications (as discussed in Section 2.6.4) were manually exported and their title, authors and

keywords were extracted with the support of regular expressions in a text editing tool

(Notepad++
15

). After that, duplicates were semi-automatically identified and removed, resulting

in 304 results. Then, a semi-automatic searched was performed using the search string terms, and

6 publications were returned.

Table 9 and Figure 5 summarize the study selection stages in terms of accepted, rejected

and duplicated publications.

Table 9. Study selection data (search engines)

 Scopus ACM

1st

researcher

2nd

researcher

Both

researchers

Title reading 1159 1159 6

Number of accepted publications 411 320 6

Number of rejected publications 740 831 0

Number of duplicated publications 8 8 0

Abstract reading 411 320 6

Number of accepted publications 77 45 6

Number of rejected publications 326 275 0

Number of duplicated publications 8 0 0

Full reading 77 45 6

Number of accepted publications 29 19 5

Number of rejected publications 47 26 0

Number of duplicated publications 1 0 1

Figure 5. Scopus data from study selection stages, by researcher

Details on the execution of each stage are given in the next sections. For summarizing,

whenever “X + Y” appears in the text, X refers to Scopus and Y to ACM results.

15

 http://notepad-plus-plus.org/

31

3.3. Study Selection

From the total number of results (1159 + 6), ten entries were first identified as duplicates

(i.e., there was another corresponding entry among the results). After analyzing their abstracts,

two of these entries were false positives (i.e., they were not characterized as duplicates). Thus,

the 8 duplicate entries were removed. The duplicates removal leads to 1151 + 6 entries, which

were effectively used as input for the title reading stage.

From this stage, a master student (hereinafter called second researcher) supported the

study selection process, aiming to avoid selection bias and give more confidence in the results.

He performed the selection steps in a different time from the main researcher’s, due to

availability issues; however, during the process, he did not know any of the results obtained by

the main researcher (hereinafter called first researcher), i.e., he executed it in a “blind” fashion.

In order to provide an overview of the pre-execution stage, Figure 6 shows a word

cloud
16

 (or tag cloud) for the 600 most frequent terms in the publications’ abstracts before the

title reading stage. In the context of this work, the larger the term in the word cloud, the most

frequently it is present in the abstracts. It can be noted that the main key terms used in the search

string are displayed larger (as expected), but there are other (initially non-related) terms with

similar frequency, e.g., “simulation” and “edu”.

Figure 6. Word cloud indicating the 600 most frequent terms before the title reading stage

After the title reading stage, 411 + 6 publications were selected by the first researcher,

based on the inclusion/exclusion criteria, and the remaining 740 + 0 were rejected. The second

16

 Generated by the Tagxedo tool – http://www.tagxedo.com/

32

researcher, in his turn, selected 320 + 6 publications and rejected 831 + 0. The large number of

selected publications can be explained by the established procedure described in Section 2.7:

publications were selected for the next stage whenever there was not enough confidence for

excluding them. Figure 7 shows the word cloud after the title reading stage, i.e., before the

abstract reading (next stage). A little decreasing of unrelated words can be noticed, although it is

still not expressive.

Figure 7. Word cloud indicating the 600 most frequent terms after the title reading stage (before

the abstract reading)

The abstract of the 411 + 6 selected publications was read and evaluated by the first

researcher against the established criteria. This resulted in the rejection of 326 + 0 publications.

From those, 6 were rejected due to the exclusion criterion EC2 (gray literature), 276 due to EC4

(i.e., they were not about reuse, or tackled reuse in other areas not related to software

development), and 44 due to EC5 (i.e., although they were about software reuse, they did not

mention the use of visualization for supporting software reuse). In addition to these 326 + 0

rejected publications, 8 + 0 publications were identified as duplicates (EC2) in this stage. 77 + 6

publications were then selected for the full reading stage.

The second researcher performed the same process stage for the 320 + 6 selected

publications, and rejected 275 + 0 publications. The remaining 45 + 6 publications were likewise

selected for the full reading stage.

Figure 8 shows the word cloud after the abstract reading stage, i.e., before the full reading

stage. Words like “repository” and “understanding” start to become more frequent, since results

became more related to the topic of this work.

33

Figure 8. Word cloud indicating the 600 most frequent terms after the abstract reading stage

(before the full reading)

The full reading stage was executed along with the data extraction stage, i.e., as

publications were selected, the corresponding data for answering the research questions (as

specified in Section 2.8) were extracted.

Concerning the availability of the publications, 10 + 0 publications selected by the first

researcher and 9 + 0 publications selected by the second researcher were not available on the

web. The authors of such publications were then contacted by e-mail. Some of the e-mails

returned because the addresses were no longer active or available; in these cases, a search for an

alternative e-mail address was performed in Google. By using this strategy, 4 out of the 10

missing publications could be retrieved for the first researcher, and 0 out of 9 could be retrieved

for the second researcher.

For the first researcher, the extraction was carried out with the 29 + 5 (out of the 77 + 6)

publications selected in this stage. From the remaining publications, 6 + 0 were rejected because

they were not available on the web, neither were provided by the authors (EC1), 24 + 0 because

they were not about reuse or tackled reuse in other areas not related to software development

(EC4), and 17 + 0 because even though they were about software reuse, they did not mention the

use of visualization for supporting software reuse (EC5), amounting to 47 + 0 rejected

publications. Additionally, 1 + 1 publications were identified as duplicates (EC3).

The second researcher, in his turn, selected 19 + 5 (out of the 45 + 6) publications in this

stage and performed the data extraction. From the remaining publications, 9 + 0 were rejected

because they were not available on the web, neither were provided by the authors (EC1), 10 + 0

because they were not about reuse or tackled reuse in other areas not related to software

34

development (EC4), and 7 + 0 because even though they were about software reuse, they did not

mention the use of visualization for supporting software reuse (EC5), amounting to 26 + 0

rejected publications. Additionally, 1 + 1 publications were identified as duplicates (EC3).

Figure 9 shows the final word cloud after the full reading stage (i.e., extracted from the

abstracts of the 29 + 5 selected publications). In this figure, key terms (such as “visualization”)

reasonably differ from other peripheral terms (e.g., “domain” or “directives”). It is noteworthy

that some words (like “views”) did not play a major role compared to their similar words (e.g.,

“visualization”). The sequence of pictures (from Figure 6 to Figure 9) shows how some key

terms increased their proportional frequency and gained more relevance as unrelated publications

were filtered out – which is an expected situation, as previously mentioned.

Figure 9. Word cloud indicating the 600 most frequent terms after the full reading stage (selected

publications)

After the second researcher has finished the selection process, the consensus (for conflict

resolution) took place. 14 + 5 publications were selected by both researchers, so they did not

need to be reanalyzed. From the 15 publications selected only by the first researcher, 13 were

included after discussion, and 2 were rejected. From the 5 publications selected only by the

second researcher, 2 were included after discussion, and 3 were rejected (being 1 by a third

researcher, since consensus had not been achieved). Details on the consensus stage can be found

in Appendix A.

Beyond the control publication #3, another related publication [Anslow et al. 2004] was

manually added. It was found based on the citations of the ACM key authors. It was agreed to

include it in the consensus stage, along with the control publication already included.

The 36 selected publications are listed in Table 10.

35

Table 10. Selected publications (sorted alphabetically)

BibTeX ID Publication

Ali200950
Ali, J. (2009). “Cognitive support through visualization and focus specification

for understanding large class libraries”. Journal of Visual Languages and

Computing, v. 20, n. 1, pp. 50-59.

Alonso1998483
Alonso, O., Frakes, W. B. (2000). “Visualization of Reusable Software Assets”.

In: Proceedings of the 6th International Conference on Software Reuse (ICSR

2000), pp. 251-265, Vienna, Austria, June.

Anquetil2010427
Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.-C., Rummler, A.,

Sousa, A. (2010). “A model-driven traceability framework for software product

lines”. Software and Systems Modeling, v. 9, n. 4, pp. 427-451.

Anslow2004

Anslow, C., Marshall, S., Noble, J., Biddle, R. (2004). “Software visualization

tools for component reuse”. In: 2nd Workshop on Method Engineering for

Object-Oriented and Component-Based Development, 19th Annual ACM

Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA 2004), Vancouver, Canada, October.

Apel2011421
Apel, S., Beyer, D. (2011). “Feature cohesion in software product lines: An

exploratory study”. In: Proceedings of the 33rd International Conference on

Software Engineering (ICSE 2011), Honolulu, Hawaii, pp. 421-430, May.

Areeprayolkij2010208

Areeprayolkij, W., Limpiyakorn, Y., Gansawat, D. (2010). “IDMS: A system to

verify component interface completeness and compatibility for product

integration”. Communications in Computer and Information Science, v. 117

CCIS, pp. 208-217.

Bauer2012435

Bauer, V., Heinemann, L. (2012). “Understanding API usage to support informed

decision making in software maintenance”. In: Proceedings of the 16th European

Conference on Software Maintenance and Reengineering (CSMR 2012), Szeged,

Hungary, pp. 435-440, March.

Biddle199992

Biddle, R., Marshall, S., Miller-Williams, J., Tempero, E. (1999). “Reuse of

debuggers for visualization of reuse”. In: Proceedings of the 5th Symposium on

Software Reusability (SSR 1999), Los Angeles, USA, pp. 92-100, May.

Charters2002765

Charters, S. M., Knight, C., Thomas, N., Munro, M. (2002). “Visualisation for

informed decision making; from code to components”. In: Proceedings of the

14th International Conference on Software Engineering and Knowledge

Engineering (SEKE 2002), Ischia, Italy, pp. 765-772, July.

Constantopoulos19951
Constantopoulos, P., Jarke, M., Mylopoulos, J., Vassiliou, Y. (1995). “The

software information base: A server for reuse”. The VLDB Journal, v. 4, n. 1, pp.

1-43.

Damaeviius2009507
Damaševičius, R. (2009). “Analysis of components for generalization using

multidimensional scaling”. Fundamenta Informaticae, v. 91, n. 3-4, pp. 507-522.

DeBoer200951

De Boer, R. C., Lago, P., Telea, A., Van Vliet, H. (2009). “Ontology-driven

visualization of architectural design decisions”. In: Proceedings of the 2009 Joint

Working IEEE/IFIP Conference on Software Architecture and European

Conference on Software Architecture (WICSA/ECSA 2009), Cambridge, UK, pp.

51-60, September.

Dietrich200891

Dietrich, J., Yakovlev, V., McCartin, C., Jenson, G., Duchrow, M. (2008).

“Cluster analysis of Java dependency graphs”. In: Proceedings of the 4th ACM

Symposium on Software Visualization (SOFTVIS 2008), Ammersee, Germany,

pp. 91-94, September.

36

BibTeX ID Publication

Duszynski2011303

Duszynski, S., Knodel, J., Becker, M. (2011). “Analyzing the source code of

multiple software variants for reuse potential”. In: Proceedings of the 18th

Working Conference on Reverse Engineering (WCRE 2011), Limerick, Ireland,

pp. 303-307, October.

Duszynski201237

Duszynski, S., Becker, M. (2012). “Recovering variability information from the

source code of similar software products”. In: Proceedings of the 3rd

International Workshop on Product LinE Approaches in Software Engineering

(PLEASE 2012), Zürich, Switzerland, pp. 37-40, June.

Feigenspan20121

Feigenspan, J., Kästner, C., Apel, S., Liebig, J., Schulze, M., Dachselt, R.,

Papendieck, M., Leich, T., Saake, G. (2013). “Do background colors improve

program comprehension in the #ifdef hell?”. Empirical Software Engineering, v.

18, n. 4, pp. 699-745.
17

Gonçalves2007872

Gonçalves, E. M., Oliveira, M. D. S., Bacili, K. R. (2007). “DigitalAssets

discoverer: Automatic identification of reusable software components”. In:

Proceedings of the 22nd Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA 2007), Montreal, Canada, pp. 872-873,

October.

Helfman199631
Helfman, J. (1996). “Dotplot patterns: a literal look at pattern languages”. Theory

and Practice of Object Systems, v. 2, n. 1, pp. 31-41.

Holmes2007100

Holmes, R., Walker, R. J. (2007). “Task-specific source code dependency

investigation”. In: Proceedings of the 4th IEEE International Workshop on

Visualizing Software for Understanding and Analysis (VISSOFT 2007), Banff,

Canada, pp. 100-107, June.

Kelleher200550

Kelleher, J. (2005). “A reusable traceability framework using patterns”. In:

Proceedings of the 3rd International Workshop on Traceability in Emerging

Forms of Software Engineering (TEFSE 2005), Long Beach, USA, pp. 50-55,

November.

Lange1995342

Lange, D. B., Nakamura, Y. (1995). “Interactive visualization of design patterns

can help in framework understanding”. In: Proceedings of the 10th Conference

on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA 1995), Austin, USA, pp. 342-357, October.

López20091198
López, C., Inostroza, P., Cysneiros, L. M., Astudillo, H. (2009). “Visualization

and comparison of architecture rationale with semantic web technologies”.

Journal of Systems and Software, v. 82, n. 8, pp. 1198-1210.

Mancoridis199374
Mancoridis, S., Holt, R. C., Penny, D. A. (1993). “Conceptual framework for

software development”. In: Proceedings of the 1993 ACM Computer Science

Conference, Indianapolis, USA, pp. 74-80, February.

Marshall2001

Marshall, S. (2001). “Using and Visualizing Reusable Code: Position Paper for

Software Visualization Workshop”. In: Workshop on Software Visualization,

2001 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA 2001), Tampa, USA, October.

Marshall2001103

Marshall, S., Jackson, K., McGavin, M., Duignan, M., Biddle, R., Tempero, E.

(2001). “Visualising reusable software over the web”. In: Proceedings of the

Australasian Symposium on Information Visualisation (InVis.au 2001), Sydney,

Australia, pp. 103-111, December.

17

 Although it is cited as 2013, it was retrieved from the search engine in 2012 when it was accepted for publication.

37

BibTeX ID Publication

Marshall200381

Marshall, S., Jackson, K., Anslow, C., Biddle, R. (2003). “Aspects to visualising

reusable components”. In: Proceedings of the Australasian Symposium on

Information Visualisation (InVis.au 2003), Adelaide, Australia, pp. 81-88,

February.

Marshall200435

Marshall, S., Biddle, R., Noble, J. (2004). “Using software visualisation to

enhance online component markets”. In: Proceedings of the Australasian

Symposium on Information Visualisation (InVis.au 2004), Christchurch, New

Zealand, pp. 35-41, January.

McGavin2006153

McGavin, M., Wright, T., Marshall, S. (2006). “Visualisations of execution

traces (VET): an interactive plugin-based visualisation tool”. In: Proceedings of

the 7th Australasian User Interface Conference (AUIC 2006), Hobart, Australia,

pp. 153-160, January.

Mittermeir200195

Mittermeir, R. T., Bollin, A., Pozewaunig, H., Rauner-Reithmayer, D. (2001).

“Goal-driven combination of software comprehension approaches for component

based development”. In: Proceedings of the 2001 Symposium on Software

Reusability (SSR 2001), Toronto, Canada, pp. 95-102, May.

Oliveira2007461

Oliveira, M., Gonçalves, E. M., Bacili, K. R. (2007)., “Automatic Identification

of reusable Software development assets: Methodology and tool”. In:

Proceedings of the 2007 IEEE International Conference on Information Reuse

and Integration (IRI 2007), Las Vegas, USA, pp. 461-466, August.

Stollberg2007236
Stollberg, M., Kerrigan, M. (2007). “Goal-based visualization and browsing for

semantic Web services”. Lecture Notes in Computer Science, v. 4832 LNCS, pp.

236-247.

Tangsripairoj2006283
Tangsripairoj, S., Samadzadeh, M. H. (2006). “Organizing and visualizing

software repositories using the growing hierarchical self-organizing map”.

Journal of Information Science and Engineering, v. 22, n. 2, pp. 283-295.

Wahid2004414

Wahid, S., Smith, J. L., Berry, B., Chewar, C. M., McCrickard, D. S. (2004).

“Visualization of design knowledge component relationships to facilitate reuse”.

In: Proceedings of the 2004 IEEE International Conference on Information

Reuse and Integration (IRI 2004), Las Vegas, USA, pp. 414-419, November.

Washizaki20061222
Washizaki, H., Takano, S., Fukazawa Y. (2006). “A system for visualizing binary

component-based program structure with component functional size”. WSEAS

Transactions on Information Science and Applications, v. 3, n. 7, pp. 1222-1230.

Yazdanshenas2012143

Yazdanshenas, A. R., Moonen, L. (2012). “Tracking and visualizing information

flow in component-based systems”. In: Proceedings of the 20th IEEE

International Conference on Program Comprehension (ICPC 2012), Passau,

Germany, pp. 143-152, June.

Ye2000266
Ye, H., Lo, B. W. N. (2000). “A visualised software library: Nested self-

organising maps for retrieving and browsing reusable software assets”. Neural

Computing and Applications, v. 9, n. 4, pp. 266-279.

4. Analysis

The analysis is described in terms of the dimensions presented in Section 2.8 and driven

by the corresponding research questions. Each item result is complemented by a brief discussion

on the findings. It is important to mention that, in most of the dimensions, a single approach may

fit into more than one category, depending on the broadness of its support/features. The detailed
description of each approach individually is presented in Appendix B.

38

The results were also organized in a website

(http://www.cos.ufrj.br/~schots/survis_reuse/), in order to allow a better exploration of the

findings, as well as establish correlations between the visualization dimensions.

4.1. Visualization approaches supporting software reuse

Regarding the primary question (PQ: Which visualization approaches have been

proposed to support software reuse?), the identified approaches and tools are listed in Table 11.

Table 11. Visualization approaches (sorted by year) (PQ)

Approach/tool name Publications Year

Software Landscape Mancoridis199374 1993

Software Information Base (SIB) Constantopoulos19951 1995

Program Explorer Lange1995342 1995

Dotplot Patterns Helfman199631 1996

N/A Alonso1998483 1998

Dy-re (Dynamic reuse) Biddle199992 1999

Dyno

Biddle199992 /

Marshall2001 /

Marshall2001103

1999/

2001

Nested Software Self-Organising Map (NSSOM) Ye2000266 2000

Framework Interaction for REuse (Fire) Marshall2001103 2001

Visualization Architecture for REuse (VARE), which includes Abstraction

Tool (AT), XML Data Storage Environment (XDSE) and Blur

Marshall2001103 /

Anslow2004
2004

N/A Mittermeir200195 2001

N/A Charters2002765 2002

Test Driver + SpyApp + Transformer
18

 Marshall200381 2003

Spider
Anslow2004 /

Marshall200435

2004/

2004

Claims Exploration of Relationships Visualization (CERVi) Wahid2004414 2004

TRAceability Pattern Environment (TRAPEd) Kelleher200550 2005

Visualisation of Execution Traces (VET) McGavin2006153 2006

Growing Hierarchical Self-Organizing Map (GHSOM) Tangsripairoj2006283 2006

N/A Washizaki20061222 2006

DigitalAssets Discoverer
Gonçalves2007872 /

Oliveira2007461

2007/

2007

Gilligan Holmes2007100 2007

N/A Stollberg2007236 2007

BARRIO Dietrich200891 2008

MUDRIK Ali200950 2009

N/A Damaeviius2009507 2009

Ontology-Driven Visualization (ODV) DeBoer200951 2009

NFRs and Design Rationale (NDR) Ontology /

Toeska/Review tool
López20091198 2009

AMPLE Traceability Framework (ATF) Anquetil2010427 2010

Interface Descriptions Management System (IDMS) Areeprayolkij2010208 2010

18

 Test Driver and Transformer are also mentioned in VARE and Spider as modules of these approaches. According

to [Marshall2001103], as opposed to Dyno and Fire, they are not described as a standalone application.

39

Approach/tool name Publications Year
FEATUREVISU Apel2011421 2011

Variant Analysis
Duszynski2011303 /

Duszynski201237

2011/

2012

API-Dependence Visualization
19

 Bauer2012435 2012

FeatureCommander Feigenspan20121 2012

FlowTracker Yazdanshenas2012143 2012

It can be noticed that, in some cases, the same approach is described in more than one

publication. Additionally, a single publication may also describe more than one approach. Thus,

for associating publications to the approaches, the following criteria are used:

 If a single publication contains all the information of a given approach that is present in
other publication(s), the approach is associated (in the analysis) only to that single

publication, and, in this case, the other publications are only listed in the results if they

present some other approach (otherwise they would be considered as duplicates);

 If a publication contemplates most (but not all) of the information about an approach and

there is another publication that presents complementary information (i.e., that is not

present in the former), both are included (this is the case of [Anslow2004] and

[Marshall200435] regarding Spider, as well as [Duszynski2011303] and

[Duszynski201237] regarding Variant Analysis, among others).

Figure 10 shows the distribution of publications per year. It is interesting to note that the
use of visualization resources for supporting reuse has been receiving frequent (yet not

increasing) attention from the research community over the years, which can be an indicator of

its relevance. On the other hand, the topic has not yet been thoroughly explored, since there are

at most 4 publications per year (from the ones identified in this study).

Figure 10. Distribution of selected publications per year

By analyzing the number of publications per author (Figure 11), it can be noticed that

several researchers gave some contribution to this research field. Moreover, a research group

from the Victoria University of Wellington (New Zealand) is responsible for the largest amount

of publications (7), given that, from the 13 authors that published two or more publications in the

field, 7 were (or are) from this University. However, according to the findings, the last

publication from this research group in the field of this study was in 2006 (see Table 10).

19

 This is not an official name, but one of the screenshots refers to the tool by using this name.

40

Figure 11. Distribution of selected publications per author

41

The analysis of the identified approaches is described in the next sections, and the

extracted data is presented in Appendix B.

4.2. Task – why is the visualization needed?

The first analyzed dimension relates to the reuse goals that led to the proposal of each

visualization-based approach. Thus, the findings presented hereafter in this section describe how

visualizations aim to support software reuse (SQ1). The motivation and assumptions related to

each work are presented in Appendix B.

4.2.1. Pioneer works

The earliest work identified aims to (1) make software development information more

accessible (by collecting as much of it as possible in one place and by providing uniform visual

access to it at the appropriate level of granularity), and (2) provide an intuitive “big picture”

understanding for navigating through the software space, thus managing the complexities of

large-scale software development for developing and organizing software [Mancoridis199374].

It supports reuse by allowing “to explore, understand, and use the products of software

development, including analyses, designs, specifications, and implementations”

[Mancoridis199374].

A similar goal is defined in [Constantopoulos19951]: store and manage information

about requirements, designs, and implementations of software, also offering facilities for locating

and selecting software components, thus broadening and supporting the communication channel

between developer and reuser. This work explicitly mentions the reuser role. Through the

employed visualization, the work aims to offer valuable assistance to software artifact

understanding efforts through the representation and organization of software descriptions, in

order to find the software artifacts faster than the time it takes to develop them

[Constantopoulos19951].

[Lange1995342] presents a more “programming-oriented” approach: it aims to “make the

process of O-O understanding more empirical and realistic by connecting program execution to

the understanding of objects and interactions, and the static program information source code to

the understanding of classes and their relationships”, aiming to demonstrate how patterns can

serve as guides in program exploration and thus make the process of understanding more

efficient. The work provides class- and object-centered views of the structure and behavior of

large C++ systems with information accurate enough to enable programmers to reuse and

maintain undocumented parts of these systems [Lange1995342]. It can be seen that both static

and dynamic information is taken into account by the approach.

[Biddle199992] also uses static and dynamic information for helping programmers in

both programming for and with reuse. In programming for reuse, one of the proposed approaches

relates to understanding the structure of the software being developed by the programmers

themselves, by the dynamic displaying of the internal structure of the software under

development. It aims to make it easy to detect patterns of usage and patterns of dependence

within a program – these patterns may help the programmer to determine how best to articulate

the structure of a program using components that will be useful and independent for later reuse in

other contexts [Biddle199992].

42

The other proposed approach (related to programming with reuse) is also described in

other two publications [Marshall2001] [Marshall2001103], and aims at understanding some

dynamic aspects involved in code reuse (e.g., the correct usage and functionality of a component

they are considering reusing), in order to better identify potentially reusable components within

the structure. Software visualizations (dynamic documentation) are created from executing code

(getting all the necessary runtime information) with minimal modifications to the code itself (i.e.,

“test-drive” by exploring the behavior of a reusable Java component interactively), for providing

the developer with a deeper understanding of what the component does, and how it does it, thus

helping to decide if and how the component can be reused, making code reuse more appealing

[Biddle199992 / Marshall2001 / Marshall2001103].

4.2.2. Other works

Although there are many works in which visualization is the core element (e.g.,

[Ali200950] and [McGavin2006153]), some of them use it as a final stage of a more complex

process for presenting results of an analysis (e.g., [Gonçalves2007872 / Oliveira2007461] and

[DeBoer200951]). The next subsections categorize approaches according to their most relevant

goals.

 Identifying reusable assets

Starting from the premise that pattern languages promote reuse, [Helfman199631]

proposes the identification of patterns in software at many different levels of abstraction, ranging

in abstraction from the syntax of programming languages to the organizational uniformity of

large, multi-component systems [Helfman199631]. [Gonçalves2007872 / Oliveira2007461] aims

to provide automatic identification of software components in order to help companies in their

reuse and SOA initiatives, bringing to light what companies have already developed by applying

reuse indicators with mechanisms to identify artifacts that can be considered as reusable assets.

Visualizations are used to evaluate the candidates to become components, helping to inspect a

group of applications, configure and trigger the identification mechanisms, tune and reapply

them in the analysis process [Gonçalves2007872 / Oliveira2007461].

[Dietrich200891] detects and visualizes clusters in dependency graphs, producing a list of

refactorings that can be used to transform programs into a more modular structure, one that is

easier to customize and maintain. The work aims to assist software engineers to redraw

component boundaries in software, in order to improve the level of reuse and maintainability

[Dietrich200891]. [Damaeviius2009507] analyzes software components in a multidimensional

feature space, partitioning an initial set of components into groups of similar source code

components that can be further used as candidates for generalization (generalization is mainly

used for developing reusable software components and reuse libraries). The multidimensional

software component feature space is visualized for identifying clusters of similar components as

candidates for generalization: the more there are similarities between the generalized

components, the better generalization can be achieved, which ultimately allows for better

component reuse, library scaling and maintenance [Damaeviius2009507].

[Duszynski2011303 / Duszynski201237] recovers and visualizes information about

commonalities and differences that exist in the source code of multiple similar software systems

(delivering quantitative information about similarity across system variants) for identifying

system parts suitable for transformation into reusable assets and planning necessary

43

implementation steps (i.e., supporting the reuse potential assessment and the migration to

systematic software reuse), besides providing an overview of commonality distribution in the

whole analyzed system family, allowing for detailed goal-driven refinement of the analysis

results. Visualization is employed to deliver precise quantitative information about the similarity

across the analyzed system variants through an abstracted result presentation, in order to assess

reuse potential [Duszynski2011303 / Duszynski201237].

 Organizing software repositories

Other works aim to support the structuring of software repositories and the retrieval of

reusable assets from them. [Ye2000266] aims at making software libraries self-structuring,

helping users to predict desired components by providing an intelligible search space for

retrieving software assets, giving a whole picture of the library at a relatively general level for

finding some interests in certain subareas. [Wahid2004414] aims to browse a repository through

visualization by exploiting relationships between units of knowledge (claims), allowing to find

the most appropriate reusable knowledge based on design conditions [Wahid2004414].

[Tangsripairoj2006283] organizes and visualizes a collection of reusable software components

stored in a software repository aiming to obtain a better insight into the structure of the

repository and increase understanding of the relationships among components.

 Searching and retrieving reusable assets

[Charters2002765] aims at increasing the understanding of a given code and aid any

future development and maintenance, by providing a mechanism in which informed decisions
can be made. The work provides an easily navigable environment with a shallow learning curve

for non-expert users, allowing them to select components based on multiple attributes and find

the ones that could possibly be used in the development of their system [Charters2002765].

[Stollberg2007236] allows to browse and understand available Web services on the level of the

problems that can be solved by them, in terms of the structure and the available resources in a

domain. Its goal is to aid clients in the goal instance formulation process and allow them to better

understand the available resources [Stollberg2007236].

[DeBoer200951] supports the auditors in effectively reusing their know-how and assist

the core aspects of their decision making process, namely trade-off analysis, impact analysis, and

if-then scenarios. The approach allows to perform a trade-off analysis for determining which

quality criteria to include in an audit, select and prioritize the quality attributes to be used in such

audit and support the auditor in deciding which quality criteria to use [DeBoer200951].

 Understanding components and libraries

[Marshall2001103] aims to support the visualization of framework interactions, which

helps to understand how the frameworks are used and aids the identification of the critical

interactions between framework and user objects [Marshall2001103]. By storing and retrieving

program traces, [Marshall2001103 / Anslow2004] aims to help to understand what a component

does, how it works, and whether or not it can be reused in a new program [Marshall2001103 /

Anslow2004].

[Anslow2004 / Marshall200435] also provides software visualizations of a component’s

behavior, complementing other existing documentation. It aims at browsing web-based software

repositories to explore existing reusable code components and frameworks by creating visual

documentation, thus helping consumers in evaluating a candidate component (by giving them an

44

insight into the existing behavior as well as possible means of extending that behavior) and

producers in advertising their components [Anslow2004 / Marshall200435].

With a broader, general goal, [Marshall200381] aims to help determining if and how a

given code component can be reused in the developer’s new context, guide a developer’s

decision as to whether a component is reusable in the developer’s current context, and help foster

understanding in the developers as to how they could save time and effort through the process of

reusing old code in new contexts [Marshall200381].

[Washizaki20061222] aims to help programmers in gaining understanding of a binary

component-based program and the overall functional size, as well as whether the break-down

and allocation of functionality within the program is appropriate. The long-term goal is to

support maintenance activities, i.e., the execution of maintenance tasks (such as fixing bugs or

adding extensions) efficiently [Washizaki20061222].

[Ali200950] aims to support the understanding of a potentially large class library (i.e.,

existing object-oriented systems/class libraries) in a relatively short span of time, allowing

programmers to find useful information in the library by helping them understand what is

important and relevant, easing to locate and understand appropriate objects [Ali200950].

[McGavin2006153] helps programmers in managing the complexity of execution traces

in order to understand code behavior, resulting in more effective software reuse. Dynamic

execution of software is visualized, allowing users to interact with and understand the execution

traces [McGavin2006153]. [Yazdanshenas2012143] tracks and visualizes information flow in a

component-based system at various levels of abstraction, providing source-based evidence that

signals from the system’s sensors (inputs) trigger the appropriate actuators (outputs). It also aims

to support software certification, improving the comprehensibility of such information flow

[Yazdanshenas2012143].

Some works focus on understanding software dependencies. [Holmes2007100] aims to

help developers to view and navigate through structural dependency information, aimed

specifically at pragmatic reuse tasks, and allow developers to record their decisions as they

investigate individual dependencies. [Bauer2012435], in turn, analyzes the dependencies of

software projects on external APIs, enabling quick insight into how external libraries are used by

a project and how complex the dependencies are, besides aiding in decision making regarding

library migration scenarios and determining the degree of dependence to its included libraries.

Visualizations are used in these works, respectively, to reduce the cognitive effort required while

investigating the structural dependencies for a source code fragment (allowing to quickly identify

and triage both direct and indirect structural dependencies) [Holmes2007100] and to gain a quick

overview of the library dependencies, understanding to which extent a package is dependent on

APIs and also how the dependencies of a certain API span over the system architecture

[Bauer2012435].

 Selecting/Integrating components

[Alonso1998483] presents an architecture and an example application for helping users to

understand and compare reusable components and integrate them into applications

[Alonso1998483]. [Mittermeir200195] aims at establishing confidence whether a given reusable

component satisfies the needs of the intended reuse situation by identifying whether the hidden

state of an object (class) satisfies the properties a reuser is expecting from the piece of code at

45

hand. For supporting the comprehension task, it proposes the combination of software

comprehension techniques and technologies [Mittermeir200195].

[López20091198] describes SIGs through an ontology, and represent them as named

graphs, enabling their view-based exploration and comparison of decisions and rationales. It

facilitates reuse of rationale by allowing architects to understand rationale of previous decisions

and/or projects, supporting, for example, the selection between reuse candidates by identifying

domain constraints or contexts that are more similar to the problem at hand [López20091198].

[Areeprayolkij2010208] aims to facilitate verifying and reviewing component interfaces for

completeness and compatibility and help clustering the components for ordering the sequences of

integration plan [Areeprayolkij2010208].

 Managing traceability

[Kelleher200550] provides a standardized mechanism for the visualization and

communication of reusable traceability practices, while [Anquetil2010427] helps to solve

complex traceability problems in feature-oriented software development, by allowing the

definition of hierarchical artifact and link types (as well as constraints between these types) in

order to observe both the structure of the feature model and the evolution of the realization of the

features, also allowing to compare refinement sets of different versions.

 Developing feature-oriented software and software product lines

[Apel2011421] visually relates the structural elements of a product line to its features, by

visually exploring the structure of product lines, especially regarding feature cohesion, and
exploring the reasons for a particular clustering, for example, to get insights into why a feature is

not cohesive and how to change that [Apel2011421]. [Feigenspan20121], in turn, allows a

programmer to identify feature code at first sight and distinguish code of different features, thus

helping to distinguish feature code from base code [Feigenspan20121].

4.2.3. Software engineering activities

Table 12 presents the summarization of the software engineering activities that are

addressed by the visualizations (TQ1.1).

46

Table 12. Software engineering activities addressed by visualizations (TQ1.1)

Activity # of approaches Approaches

Software development with reuse 15

[Constantopoulos19951]

[Alonso1998483]

[Biddle199992 / Marshall2001 /

Marshall2001103]

[Ye2000266]

[Marshall2001103]

[Marshall2001103 / Anslow2004]

[Mittermeir200195]

[Charters2002765]

[Marshall200381]

[Anslow2004 / Marshall200435]

[Tangsripairoj2006283]

[Gonçalves2007872 / Oliveira2007461]

[Holmes2007100]

[Areeprayolkij2010208]

[Yazdanshenas2012143]

Software development for reuse 2
[Biddle199992]

[Damaeviius2009507]

Software maintenance 9

[Helfman199631]

[Marshall2001103 / Anslow2004]

 [Marshall200381]

[Washizaki20061222]

[Dietrich200891]

[Damaeviius2009507]

[Duszynski2011303 /

Duszynski201237]

[Bauer2012435]

[Feigenspan20121]

Software product line engineering 4

[Anquetil2010427]

[Apel2011421]

[Duszynski2011303 /

Duszynski201237]

[Feigenspan20121]

Software design 4

[Lange1995342]

[Helfman199631]

[Wahid2004414]

[López20091198]

Programming / Coding 3

[Lange1995342]

[McGavin2006153]

[Ali200950]

Analysis / Specification /
Requirements engineering

3

[Wahid2004414]

[Kelleher200550]

[Stollberg2007236]

47

Activity # of approaches Approaches

Quality assurance / Testing /

Debugging / Profiling
20

2

[McGavin2006153]

[DeBoer200951]

Software development in general 1 [Mancoridis199374]

Results show different areas of activities grouped into 9 main categories. In a general

way, a broad range of software engineering activities is somehow encompassed by the

approaches (e.g., maintenance, design etc.). However, it can be noticed that most of the

approaches aim at supporting development with reuse (i.e., developing software from reusable

assets), while only 2 relates to development for reuse.

In terms of software product line engineering (which can be seen as an advanced step

towards systematic reuse), one can note that only more recent approaches (from the ones

identified in this study) mention providing some visual support for supporting reuse somehow.

Besides the product line development itself, one approach [Duszynski2011303 /

Duszynski201237] also prepares for an extractive introduction of the product line paradigm.

A fine-grain analysis on reuse-related tasks that are supported by these visualizations

(TQ1.2) is presented in Table 13.

Table 13. Reuse-related tasks addressed by visualizations (TQ1.2)

Reuse task # of approaches Approaches

Understanding assets’ structure /

asset information / repository
16

[Mancoridis199374]

[Constantopoulos19951]

[Lange1995342]

[Alonso1998483]

[Ye2000266]

[Mittermeir200195]

[Tangsripairoj2006283]

[Washizaki20061222]

[Holmes2007100]

[Stollberg2007236]

[Ali200950]

[López20091198]

[Anquetil2010427]

[Apel2011421]

[Bauer2012435]

[Feigenspan20121]

20

 Software profiling is a method to dynamically analyze software measures in order to optimize the program

execution.

48

Reuse task # of approaches Approaches

Understanding assets’ behavior 6

[Lange1995342]

[Biddle199992 / Marshall2001 /

Marshall2001103]

[Marshall2001103]

[Marshall2001103 / Anslow2004]

[McGavin2006153]

[Yazdanshenas2012143]

Understanding assets’ evolution 1 [Anquetil2010427]

Integrating reusable assets 10

[Lange1995342]

[Alonso1998483]

[Marshall2001103 / Anslow2004]

 [Mittermeir200195]

[Marshall200381]

[Anslow2004 / Marshall200435]

[Kelleher200550]

[DeBoer200951]

[López20091198]

[Areeprayolkij2010208]

[Yazdanshenas2012143]

Searching and retrieving reusable

assets
7

[Constantopoulos19951]

[Ye2000266]

[Charters2002765]

[Wahid2004414]

[Stollberg2007236]

[Ali200950]

[DeBoer200951]

Discovering and evaluating
21

potentially reusable assets
5

[Helfman199631]

[Biddle199992]

[Gonçalves2007872 / Oliveira2007461]

[Damaeviius2009507]

[Duszynski2011303 /

Duszynski201237]

Restructuring assets for reuse 2
[Dietrich200891]

[Apel2011421]

For easing the analysis, a mapping between the steps presented in the reuse-based

software development model presented in Figure 1 (proposed by [Kim & Stohr 1998]) and the

tasks identified in this study was established. Such mapping is presented in Table 14. Some steps

do not have a correspondence (e.g., “specify requirements” and “build new software resources”)

because they are related to software development in general [Kim & Stohr 1998]. Steps in italic

21

 Evaluating a potentially reusable asset relates to assessing its adequacy to be considered as a reuse asset and to be

included in the repository of reusable assets. This can be done in terms of its measured reusability and other

applicable organizational factors.

49

are not reuse-specific (relates to conventional software development), thus they do not contain a

corresponding task in this study.

Table 14 . Mapping between the steps in [Kim & Stohr 1998] and the identified tasks

Reuse steps [Kim & Stohr 1998] Identified tasks (TQ 1.2)

1 Identify reusable software resources

Discovering and evaluating potentially

reusable assets

Restructuring assets for reuse

2 Classify reusable software resources
Discovering and evaluating potentially

reusable assets

3 Specify requirements N/A

4 Retrieve reusable software resources Searching and retrieving reusable assets

5 Understand reusable software resources

Understanding assets’ structure / asset

information / repository

Understanding assets’ behavior

Understanding assets’ evolution

6 Modify reusable software resources Integrating reusable assets

7 Build new software resources N/A

8 Integrate software resources Integrating reusable assets

Since most of the identified approaches that aim at identifying reusable resources also

provide some means to classify them, these steps are mapped to the same task. This also applies

to the steps of modifying and integrating reusable resources. Due to the focus of this study, the

step of understanding reusable assets was decomposed in understanding the structure, behavior

and evolution (in accordance with [Diehl 2007]), so that these characteristics can be analyzed

separately.

Some of the approaches aim at supporting the understanding of the structure of an asset

or a software repository in order to facilitate reuse. Examples on the structure of an asset include

(i) source code views, which may be class- and object-centered [Lange1995342] [Ali200950] or

focused on structural dependencies [Holmes2007100], and (ii) software components

[Alonso1998483] and their information (e.g., functional size [Washizaki20061222] or library

dependencies [Bauer2012435]). Feature models’ structure [Anquetil2010427] is also targeted for

a better understanding on product-line engineering, as regards to measures (such as feature

cohesion [Apel2011421]) or for distinguishing feature code from base code [Feigenspan20121].

Other kinds of structural analysis of assets include web services [Stollberg2007236], rationale of

previous decisions and/or projects [López20091198].

Repository structure comprehension approaches [Ye2000266] [Tangsripairoj2006283]

aim to provide a whole picture of the library for finding some interests in certain subareas, and

obtain a better insight into the structure of a software repository and, in some cases, increase the

understanding of the relationships among software components [Ye2000266]

[Tangsripairoj2006283].

Regarding asset’s behavior, in general, the approaches provide ways to better understand

how a chosen asset may work. With this goal, [Lange1995342], [Biddle199992 / Marshall2001 /

Marshall2001103], [Marshall2001103 / Anslow2004] and [McGavin2006153] support the

50

comprehension of code behavior. With a broader scope, [Marshall2001103] aims to help

understanding how frameworks are used.

Only one approach deals with understanding evolution [Anquetil2010427], with respect

to the realization of features, allowing to compare the refinement sets of different versions.

There are approaches oriented to supporting on determining whether and how an asset

can be reused in the developer’s current context, i.e., establishing confidence whether a given

reusable component satisfies the needs of the intended reuse situation), e.g., [Mittermeir200195]

and [Marshall200381]. Such goal is also used by [Anslow2004 / Marshall200435] in order to

evaluate candidate components to be chosen. Some of these approaches aim at identifying

domain constraints or contexts that are more similar to the problem at hand (e.g.,

[López20091198]). Particularly, in [Marshall200381], the authors deal with the cost of

understanding reusable components, but they state that other costs (such as the time to search for

potential candidate components for reuse) should also be addressed [Marshall200381].

There are approaches aiming to allow finding reusable assets faster than the time it takes

to develop them. For instance, [Ye2000266] proposes mechanisms to support the retrieval of

reusable assets in a software library, and [DeBoer200951] aims at supporting an auditor in

deciding which quality criteria to include in an audit, through selection and prioritization of

quality attributes. Other approaches are geared to discovering and evaluating assets that may be

potentially reusable. For example, [Gonçalves2007872 / Oliveira2007461] evaluates the

candidates to become components, inspecting a group of applications, while [Duszynski2011303

/ Duszynski201237] delivers quantitative information about the similarity across analyzed

system variants, in order to assess reuse potential.

Finally, 2 approaches support the identification of actions that may improve assets’

reusability (in terms of increasing their chances to be reused) by restructuring them.

[Dietrich200891] assists to redraw component boundaries in software, in order to improve the

level of reuse and maintainability. [Apel2011421] allows exploiting the reasons for a particular

clustering to get insights into why a feature is not cohesive and how to change that.

4.2.4. Discussion

Regarding the approach goals and motivations (SQ1), ever since the first identified works

were published, there was already a concern on supporting reuse of a variety of artifacts

[Mancoridis199374] [Constantopoulos19951]. None of the identified visualization approaches

aims to support the understanding of the dynamics of software reuse in terms of software

projects, assets, users, and the relationship between these core elements (i.e., not only

understanding assets in terms of their properties and metadata, but also how they are being used

and maintained, in order to increase reuse confidence). In other words, their goals are mostly

artifact-oriented.

Although approaches somehow encompass many software engineering activities (TQ1.1),

only a few of them present integration among different activities. Another concern about the

approaches is the lack of integration with development environments that can provide interfaces

to other activities.

There is support for a variety of reuse tasks (TQ1.2), and understanding assets is by far

the most supported one. This is indeed expected, since understanding is a likely benefit in

51

employing visualizations. Nevertheless, research on using visualization for restructuring assets

for reuse is still much underexplored, since the identified works are very specific, with limited

customizability. Other tasks miss evidence on their support.

In terms of the different aspects that can be the focus of comprehension, most approaches

support the understanding of an asset’s structure, and some help understanding their behavior.

Evolution information about reusable assets are a particular absence of existing works – the only

related work deals with comparing refinement sets of different versions of feature models, and it

is based on a trace repository; no other evolution aspects are taken into account by any approach.

Moreover, repository-related information is only focused on structural characteristics, i.e., usage

data related to reuse repositories are not handled by the approaches.

Finally, approaches in general do not provide a modular architecture (regarding data

sources and visualization abstractions) for supporting different stages of the data extraction and

analysis process (such as [Anslow2004]). Such modularity might offer more flexibility to them,

allowing to add new functionalities and, consequently, providing more support for software

engineering activities and tasks.

4.3. Audience – who will use the visualization?

Figure 12 and Table 15 present the stakeholders to which each visualization approach is

intended/targeted (SQ2). Among the approaches that aim to support programmers, not all of

them mention explicitly the “reuser” role. Thus, whenever a publication seems to differ between

common programmers and “reusers”, it was decided not to merge these roles into a single role

representation, as some approaches may have broader goals not related to reuse, and such goals

may be indeed targeted to different roles. Moreover, reuse possibilities go beyond the

programmer role.

Figure 12. Approaches and supported stakeholders (SQ2)

52

Table 15. Approaches and supported stakeholders (SQ2)

Visualizations’ audience # of approaches Approaches

Developer / programmer 14

[Mancoridis199374]

[Constantopoulos19951]

[Lange1995342]

[Marshall2001103]

[Marshall2001103 / Anslow2004]

[Mittermeir200195]

[McGavin2006153]

[Tangsripairoj2006283]

[Washizaki20061222]

[Ali200950]

[Damaeviius2009507]

[Anquetil2010427]

[Apel2011421]

[Yazdanshenas2012143]

Developer with reuse (consumer) 9

[Constantopoulos19951]

[Biddle199992 / Marshall2001 /

Marshall2001103]

[Mittermeir200195]

[Charters2002765]

[Marshall200381]

[Anslow2004 / Marshall200435]

[Holmes2007100]

[Stollberg2007236]

[Feigenspan20121]

Developer for reuse (producer) 2

[Biddle199992]

[Biddle199992 / Marshall2001 /

Marshall2001103]

Software architect/designer 4

[Mancoridis199374]

[Helfman199631]

[Wahid2004414]

[López20091198]

Analyst 3

[Mancoridis199374]

[Kelleher200550]

[Gonçalves2007872 / Oliveira2007461]

Maintainer 2
[Bauer2012435]

[Feigenspan20121]

Auditor 1 [DeBoer200951]

Manager 1 [Mancoridis199374]

Software engineer 2
[Mittermeir200195]

[Dietrich200891]

53

Visualizations’ audience # of approaches Approaches

User 4

[Alonso1998483]

[Ye2000266]

[Areeprayolkij2010208]

[Duszynski2011303 /

Duszynski201237]

Others / non-related to software

development
1 [Yazdanshenas2012143]

From the results, it can be noticed that programmers are the most supported stakeholders

by far. 14 approaches mention programmers in general, while other 9 support specifically

developers with reuse (also referred to as “reusers” or “system integrators”). Only 2 approaches

mention support for developers for reuse: one focuses on programmers [Biddle199992] and the

other is geared to component writers who wish to create visual documentation of their own

components [Biddle199992 / Marshall2001 / Marshall2001103]. Although in

[Damaeviius2009507] development for reuse is also supported (as can be seen in Table 13), such

role is not explicitly specified.

Other supported roles include software architects/designers [Mancoridis199374]

[Helfman199631] [Wahid2004414] [López20091198], analysts [Mancoridis199374]

[Kelleher200550] [Gonçalves2007872 / Oliveira2007461], maintainers [Bauer2012435]

[Feigenspan20121], auditors [DeBoer200951] and managers [Mancoridis199374]. The latter

states that the visualization is targeted to developers (the presented views refer to software

development technical details), but points out some actions that could eventually be performed

by managers. However, it only presents low-level technical details on a software project.

Some approaches mention a more general role, such as software engineer

[Mittermeir200195] [Dietrich200891] or user [Alonso1998483] [Ye2000266]

[Areeprayolkij2010208] [Duszynski2011303 / Duszynski201237]. One approach aims to support

a role non-related to software development ([Yazdanshenas2012143], geared to safety domain

experts).

4.3.1. Discussion

Although there is a reasonable variety of stakeholder support (SQ2), only a few works

support more than one stakeholder simultaneously. This would not be a major problem if

different approaches could communicate with each other (but this is not the case, as discussed in

Section 4.7.1). Thus, the lack of a multi-stakeholder approach hampers the evaluation of how

well organization’s goals related to reuse are being accomplished, under the perspectives of each

reuse stakeholder.

Particularly, because the one approach that mentions some support for managers only

presents technical details on a software project, it does not seem feasible for the reality of project

management. Managers need more high-level details that can be useful for decision making, so

that they can promote actions not only to stimulate reuse, but especially to mitigate potential

barriers to reuse in their organizations.

4.4. Target – what is the data source to represent?

Figure 13 and Table 16 summarize which items/data are visually represented (SQ3).

54

Figure 13. Visualized items/data by approach (SQ3)

Table 16. Visualized items/data by approach (SQ3)

Visualized items/data # of approaches Approaches

Component / Asset and related

information
17

[Mancoridis199374]

[Alonso1998483]

[Ye2000266]

[Marshall2001103]

[Marshall2001103 / Anslow2004]

[Mittermeir200195]

[Charters2002765]

 [Marshall200381]

[Anslow2004 / Marshall200435]

[Tangsripairoj2006283]

[Washizaki20061222]

[Gonçalves2007872 / Oliveira2007461]

[Ali200950]

[Damaeviius2009507]

[Areeprayolkij2010208]

[Bauer2012435]

[Yazdanshenas2012143]

55

Visualized items/data # of approaches Approaches

Source code and related information 17

[Mancoridis199374]

[Constantopoulos19951]

[Lange1995342]

[Helfman199631]

[Alonso1998483]

[Biddle199992]

 [Biddle199992 / Marshall2001 /

Marshall2001103]

[Mittermeir200195]

[Charters2002765]

[McGavin2006153]

[Gonçalves2007872 / Oliveira2007461]

[Holmes2007100]

[Dietrich200891]

[Ali200950]

[Duszynski2011303 /

Duszynski201237]

[Feigenspan20121]

[Yazdanshenas2012143]

Architecture / Design artifacts
22

 and

related information
4

[Biddle199992 / Marshall2001 /

Marshall2001103]

[Wahid2004414]

[DeBoer200951]

[López20091198]

Requirements/Analysis artifacts and

related information
3

[Mittermeir200195]

[Kelleher200550]

[Stollberg2007236]

Feature model / Product line artifacts

and related information
3

[Anquetil2010427]

[Apel2011421]

[Feigenspan20121]

Software project and related

information
2

[Mancoridis199374]

[Bauer2012435]

Software repository and related

information
2

[Ye2000266]

[Charters2002765]

Web services and related

information
1 [Stollberg2007236]

There is a variety of approaches that visually represent reusable software assets – also

referred to as components or libraries
23

, usually related to implementation artifacts (but not

always [Tangsripairoj2006283]) –, or even components suggested as reusable

[Gonçalves2007872 / Oliveira2007461]. Some approaches allow for binary components

22

 Includes architectural/design knowledge.

23
 The term “library” is used in the publications with different meanings: they can be related to a component (e.g.,

[Bauer2012435]) or a repository (e.g., [Ye2000266]).

56

provided in byte-code format (e.g., [Washizaki20061222]). Related information on these

components/assets include static and dynamic information present in a component (e.g.,

[Marshall200381]), such as dependency relationships between components

[Washizaki20061222] [Gonçalves2007872 / Oliveira2007461], semantic relationships among

software components [Ye2000266], their functional size (an indication of the amount of

functionality provided by them) [Washizaki20061222], and so on.

Some approaches provide detailed, fine-grained information on the represented

components and libraries. In [Ali200950], for instance, object-oriented information is presented,

such as referential relationships among classes of the library, parameter(s) or method(s) returned

value, inheritance tree of all the classes, amongst others. In [Yazdanshenas2012143], in turn, the

focus is on information regarding the intercomponent and intra-component information flow

(dependencies between a component’s input and output ports, dependencies between system-

level inputs and outputs, and so on).

Source code may be visualized in terms of its lines of code [Helfman199631]

[Yazdanshenas2012143] as well as its related information, which can be either static

[Ali200950] or dynamic [Biddle199992 / Marshall2001 / Marshall2001103], e.g., method calls

between objects and how objects interact [McGavin2006153]. Dependencies are also illustrated,

as structural relationships between classes [Gonçalves2007872 / Oliveira2007461] or semantic

relationships between objects [Constantopoulos19951]. Clusters of source code and byte code

can be created based on their dependencies [Dietrich200891].

Another aspect is the analysis of commonalities and variabilities in the source code of

multiple software systems [Duszynski2011303 / Duszynski201237], in order to separate feature

code from base code or to analyze the percentage of each feature in the source code file

[Feigenspan20121].

Approaches that visually represent architecture and design elements include UML

diagrams [Biddle199992 / Marshall2001 / Marshall2001103], reusable design knowledge claims

and their relationships [Wahid2004414], and quality attributes of interest (e.g., quality criteria

relevant to a given audit, including their hierarchy and relations [DeBoer200951] or architecture

rationale represented by softgoal interdependencies [López20091198]). Requirements/analysis

and related information include specifications [Mittermeir200195], goal templates

[Stollberg2007236] and information related to requirements and traceability items

[Kelleher200550], including relationships between them and requirement attributes, such as

status and priority.

Some approaches visually represent feature models [Feigenspan20121], dependency

relations between elements of features [Apel2011421] and trace information [Anquetil2010427],

including the name and type of each link/artifact, time links related to a product, and versions of

artifacts which have evolved. Software repositories (also referred to as “software component

repositories” or “software libraries”) are only represented statically [Ye2000266]

[Charters2002765]. As stated in Section 4.2.4, no usage data information related to reuse

repositories could be found in the analyzed publications. Software project representations include

their hierarchical composition [Bauer2012435] or their sub-systems, projects, and libraries

[Mancoridis199374]. Web service information includes available Web services and their

usability in a problem domain with respect to the goals that can be solved by them

[Stollberg2007236].

57

The identified items that are visually represented reveal a variety of selected sources

(TQ3.1). However, a common category of source is related to a specific type of repository, such

as a software library or a simple database to store data about components. One example of this

kind of source is presented in [Helfman199631], in which the code is used together with a

database including information about moments and causes of creations and changes in C code.

Beyond the source code, other artifacts are used as data source. In [Mittermeir200195],

the approach is based on test logs. Binary files serve other mechanisms as well, such as Java

byte-code in [Marshall200381], [Anslow2004 / Marshall200435], [Washizaki20061222],

[Dietrich200891] and [Ali200950] approaches. Software behavior also provides sources for

exploration. [McGavin2006153]’s approach uses information stored in an execution trace format

as a XML file, while [Marshall2001103 / Anslow2004] uses events during runtime to extract

data.

Despite the different sources and approach goals, it is noteworthy that most of the

approaches directly use the source code as a means to obtain the data. [Helfman199631],

[Mittermeir200195], [Marshall2001103 / Anslow2004], [Gonçalves2007872 / Oliveira2007461],

[Dietrich200891], [Damaeviius2009507], [Bauer2012435], [Feigenspan20121] and

[Yazdanshenas2012143] are examples of approaches that base their processing on the code itself.

In order to gather data and visually represent them, approaches use different collection

procedures (TQ3.2). For instance, [Washizaki20061222] extracts data from Java binary files by

applying byte-code analysis and uses Java reflection for obtaining the dependency relationships

in the components. Similarly, using JAR or binary (.class) files as input, the approach presented

in [Ali200950] loads all the classes, interfaces and packages stored in the library, and the system

analyzes the loaded entities and collects detailed information about them.

Combining source code and byte-code, [Dietrich200891] proposes a separation of a graph

in clusters using the betweenness measure for edges, which indicates the shortest paths between

all pairs of nodes in the graph passing through that edge. In some cases, when the data source is a

software repository or database, the collection is made by user queries through a search system

[Alonso1998483] [Wahid2004414].

4.4.1. Discussion

The vast majority of the visualized items and data (SQ3) are source code artifacts (object-

oriented entities, such as classes and relationships, or software components). In spite of this

imbalance, there are many different kinds of artifacts (from different software development

stages) that can be visualized.

There are few approaches for visualizing software repositories with the intention to

promote reuse (providing relevant reuse data), and no repository information or metadata are

visually represented as a means of awareness.

One can observe that the data sources (TQ3.1) are usually the source code of a program

and databases. Only a few approaches combine information from different sources (e.g.,

[Kelleher200550]), and some are compatible with a limited set of data types. Although several

kinds of information may be used for supporting reuse, some common data sources are not

explored by any of the works (e.g., version control system repositories, issue trackers etc.).

58

Moreover, although many assets have additional related data available online, such data are

usually underexplored or overlooked.

Since each visualization technique may have some constraints, each collection procedure

(TQ3.2) must deal with this issue and make the proper arrangements. For instance, in

[Kelleher200550] some format conversions are mentioned in order to make the data ready to be

represented by the intended visualization. During the data collection procedure, the source may

still require some transformations to have the data set in the correct format to be used by

different representations. Some authors also defend the use of intermediary formats for storing

the collected data [Alonso1998483] [Anslow2004 / Marshall200435] in order to make them

reusable in different visualizations.

4.5. Representation – how to represent the data?

Particularly for this dimension, it must be emphasized that all the considerations are

based solely in the information presented in the selected publications. Some interpretations were

made only for categorizing purposes.

In order to make the data representation more intelligible, some visual metaphors are

adopted in these works trying to look for more appropriate ways to communicate the results.

Table 17 shows which visualization metaphors are used for representing the items/data (SQ4).

Table 17. Visualization metaphors employed by the approaches (SQ4)

Visualization metaphors # of approaches Approaches

Network / Graph 13

[Mancoridis199374]

[Constantopoulos19951]

[Lange1995342]

[Mittermeir200195]

[Wahid2004414]

[Gonçalves2007872 / Oliveira2007461]

[Stollberg2007236]

[Dietrich200891]

[López20091198]

[Anquetil2010427]

[Areeprayolkij2010208]

[Apel2011421]

[Yazdanshenas2012143]

Hierarchy 10

[Alonso1998483]

[Biddle199992]

[Biddle199992 / Marshall2001 /

Marshall2001103]

[Ye2000266]

[Tangsripairoj2006283]

[Holmes2007100]

[Ali200950]

[DeBoer200951]

[Anquetil2010427]

[Bauer2012435]

59

Visualization metaphors # of approaches Approaches

Diagrams 6

[Biddle199992]

 [Biddle199992 / Marshall2001 /

Marshall2001103]

[Marshall2001103]

[Marshall2001103 / Anslow2004]

[McGavin2006153]

[Yazdanshenas2012143]

Matrix / Matrix-like 5

[Helfman19963]

[McGavin2006153]

[DeBoer200951]

[Bauer2012435]

[Yazdanshenas2012143]

Geometric forms 5

[Washizaki20061222]

[Holmes2007100]

[Duszynski2011303 /

Duszynski201237]

[Bauer2012435]

[Feigenspan20121]

Map 4

[Ye2000266]

[Kelleher200550]

[Tangsripairoj2006283]

[Damaeviius2009507]

Real world metaphor 2
[Mancoridis199374]

[Charters2002765]

Others 2

[Biddle199992 / Marshall2001 /

Marshall2001103]

[McGavin2006153]

N/A 2
[Marshall200381]

[Anslow2004 / Marshall200435]

The selected approaches show a major adoption of the network/graph and hierarchical

metaphors for representing the data. Among the hierarchy metaphors used, tree representations

are the most common ones (e.g., hyperbolic tree [Alonso1998483], sideways tree

[Biddle199992], tree lists and tables [Holmes2007100] [Bauer2012435] and interactive cone tree

[Ali200950]).

It is also noteworthy to highlight the fact that the diagram metaphor chosen by some

approaches make use of UML diagrams [Biddle199992 / Marshall2001 / Marshall2001103]

[Marshall2001103] [Marshall2001103 / Anslow2004]. Additionally, some real world metaphors

were used by 2 approaches [Mancoridis199374] [Charters2002765], presenting the results with

cityscape, world, country, city, districts, streets, buildings etc.

Regarding the way the data are mapped to the visualizations (TQ4.1), the following

mapping categories were identified:

 Colors: Different colors indicate different items or different properties of an item;

60

 Nodes and edges/arrows: Edges/arrows are used for indicating whether there is a
relationship between the items described as nodes – in some cases, different edge/arrow

formats may also indicate the kind of relationship;

 Position: Positioning of elements provides information regarding a given measure: for

instance, it may indicate a particular value associated to an item (e.g., when related to

Cartesian axes) or whether a given property applies to an item or not (e.g., when items

are depicted close to each other);

 Size/dimension: The length, width and/or height of an item may be proportional to the
measure of one or more of its properties;

 Brightness/contrast: Similar to the color mapping, but in this case, there is an underlying
scale whose ends usually relate to a given amount of a measure;

 Ordering: This can be seen as a particular case of position, in which items are disposed in
ascending or descending order of a given measure or property;

 Icon: Different visual representations usually indicate different items or item properties;

 Containment: The fact that an item is contained inside another may indicate some kind of
relationship between them (e.g., hierarchical);

 Density: The more items are close to each other, the more a given property applies to
them;

 General/customizable: In this case, the user can customize the mapping between

data/items and visual representations;

 N/A: No mapping was identified during the analysis.

Table 18 shows a mapping between approaches and these graphical representation

resources. More detailed information for each approach can be found in Appendix B.

61

Table 18. Data-to-visualization mapping (TQ4.1)

Colors are the most frequent visual resource to represent variations of data. Nodes and

arrows usually map to concrete artifacts and their relations, respectively. Position (along an axis)

and dimensions (e.g., height) represent a given aspect of software. In [Apel2011421], a feature

has a higher cohesion than coupling if its elements are close to each other; [Bauer2012435] uses

the width of the colored bars to indicate the total number of API calls.

Other identified attributes include ordering ([Lange1995342] [Ali200950]

[Bauer2012435] [Feigenspan20121]) and density ([Mancoridis199374]). There are also

approaches that use different icons to distinguish software elements and their properties

([Holmes2007100] [Dietrich200891] [Ali200950] [López20091198]). Some approaches offer a

custom mapping between visual elements and data ([Alonso1998483] [Biddle199992 /

Marshall2001 / Marshall2001103] [Marshall2001103 / Anslow2004]).

Finally, as regards to the visualization strategies and techniques employed (TQ4.2), Table

19 shows a mapping between approaches and such strategies. More detailed information can be

found in Appendix C, and individual information of the approaches is presented in Appendix B.

62

Table 19. Visualization strategies and techniques employed (TQ4.2)

63

Looking for ways to represent the data in an intuitively composition, a large variety of

visualization techniques are employed
24

. From the table results, it is possible to reinforce the

importance of techniques related to selection, browsing/navigation, drill-down, clustering and

filtering by highlighting/mitigation, the most frequently used strategies among the results.

From the works that allow panning (e.g., [Dietrich200891]), some provide support for

drag and drop (e.g., [Alonso1998483], [Marshall2001103] and [Stollberg2007236]). Regarding

zoom interactions, the most frequent use is the geometric zooming (i.e., enlarging objects while

zooming in and shrinking them while zooming out [Buering et al. 2006]). Examples include

[Marshall2001103 / Anslow2004], [Washizaki20061222] and [Apel2011421]. In contrast,

semantic zooming – which shows different visual representations to information items according

to the available space based on zooming interactions [Buering et al. 2006] – was only found in

[McGavin2006153].

Focus + context techniques integrates focus and context into a single display where all

parts are concurrently visible and the focus is displayed seamlessly within its surrounding

context [Cockburn et al. 2008] (e.g., [Alonso1998483] and [Holmes2007100]). The overview +

detail technique, in turn, is characterized by the simultaneous display of both an overview and

detailed view of an information space, each in a distinct presentation space [Cockburn et al.

2008] (e.g., [Helfman199631], [Ye2000266] and [Charters2002765]). According to Table 19, the

latter technique is more frequently than the former. Browsing interactions can be performed

through navigation (e.g., [Wahid2004414] and [Anquetil2010427]) or querying (e.g.,

[Constantopoulos19951] and [Ye2000266]). Regarding presentation techniques, some works

present different, multiple views simultaneously (e.g., [Lange1995342]).

Filtering is applied by collapsing/expanding a set of elements (e.g., [Holmes2007100]

and [Bauer2012435]), by including/removing an element from the view (e.g.,

[Mancoridis199374] and [Gonçalves2007872 / Oliveira2007461]), by highlighting items of

interest (e.g., [Ye2000266], [López20091198] and [Yazdanshenas2012143]) or by

tuning/tweaking (through parameters customization) (e.g., [Marshall2001103] and

[Feigenspan20121]). Some approaches offer more than one kind of filtering (e.g.,

[Biddle199992]).

Drill-down techniques can be applied in order to reveal details on demand, as in

[Alonso1998483], in which the user can select a visual item for revealing its source code. An

alternative way for exploration of details on demand is through labeling (e.g., [Dietrich200891]).

Labeling can also be presented as tooltips (e.g., [Apel2011421]).

Among overlap-based techniques, flipping (e.g., [Alonso1998483]) and transparency

(e.g., [Biddle199992]) are used. Other visualization techniques employed include rotating (e.g.,

[Washizaki20061222]), sorting (e.g., [Helfman199631] and [Kelleher200550]) and linking (e.g.,

[DeBoer200951]), among others.

Some cognitive-driven decisions also lead to some visualization strategies. In order to

prevent matches between frequent tokens from saturating the plot, [Helfman199631]’s approach

resorts to reconstruction methods and inverse-frequency weighting for displaying matches from

more than one pair of tokens in a single pixel. In [Charters2002765], monuments are placed in

24

 A detailed explanation of these visualization strategies and techniques is available in [Vasconcelos et al. 2014]

64

the center and at each corner of Component City aiding users in their construction of a cognitive

map. [Holmes2007100]’s tool allows to quickly traverse through a series of dependencies

without getting lost; moreover, the nodes retain their parents so their origin can be easily seen.

A strategy that also supports cognitive interactions is to keep track of user’s actions and

showing to them as a history. In [Constantopoulos19951], a history list contains the names of the

objects selected as current during a session in chronological order. In [Ye2000266], the system

records the process of users’ navigation, and some marks are drawn on the accessed maps to

trace the users’ action so that they can easily identify where they are and which region in the map

has been explored.

4.5.1. Discussion

Regarding the representation of data (SQ4), as expected, different abstractions are used

for representing different data. Although several types of abstractions are used, publications lack

a discussion on how/why a given metaphor was chosen and, more importantly, whether it is

effective or not in its purpose. The mapping between data and visualizations (TQ4.1) is barely

described in most of the publications, so the reader/user has to “guess” it, which can be risky and

lead to wrong interpretations of data.

Moreover, although several visualization strategies and techniques are used (TQ4.2), only

a few approaches make a comprehensive use of them. This does not mean that every possible

technique should be employed, but some approaches may require more interaction facilities for

allowing an effective understanding of data.

There is a lack of mechanisms that offer flexibility to software stakeholders in

customizing their visualizations, so one can focus on relevant data and information to improve

the understanding of their activities (as stated in [Silva et al. 2012]). Although this can be seen as

a downside, on the other hand, letting the user decide which visualization to use may not be

adequate, as he/she may not know which metaphors better fit the structure to be visualized.

In [Marshall2001], for instance, the user must map visualizations to data, although the

amount of required mapping information that the user needs to supply was intended to be

minimized. The author recognizes that this can be a problem, as the purpose is to understand the

component, and “a developer may not know enough (...) which methods should map to which

sequence”. However, there is no tool support for this task. According to the author, “it is

bordering on the impossible for a tool to be able to automatically create mappings from one

arbitrary name to another arbitrary name, so it is necessary for the developer to say which

method in the component maps to which sequence”, and this can be a one-to-one or a many-to-

one mapping [Marshall2001]. Nevertheless, there should be at least some kind of support for

filtering inappropriate visualizations according to underlying restrictions associated with the

data.

The flexibility may also be compromised due to some approach restrictions. In

[Marshall200381], the collected information for creating visualizations as a complement for

documentation is mostly based on the developers’ experiences of using the components, and

creating visualizations “does require some prior knowledge of the component and its important

features and uses (i.e., knowing what to focus on in the visualization)” [Marshall200381]. This

means that “any configuration is better left to experienced users who wish to create

65

visualizations of that component for other developers”. Nevertheless, there is no support for

either the developer or other users in creating, choosing or selecting visualizations.

As stated in [Silva et al. 2012], some works try to generate flexible visualizations, but

they usually require expertise knowledge (e.g., programming skills for configuring/mapping

views and data) for stakeholders to operate them. A list of works in this regard can be found in

[Silva et al. 2012]. When an approach makes an assumption of a particular technical knowledge

for creating the visualizations, it may potentially inhibit some stakeholders to use it.

Another issue that must be taken into account is that, in comparative visualizations,

elements must be compared using the same visualization [Alonso & Frakes 2000] – otherwise, in

addition to the data-to-visualization mapping, another mental mapping between visualizations

would be required.

Enhancing awareness and understanding of software information and the software itself

requires the identification of adequate abstractions according to the comprehension needs

[Schots et al. 2012]. The choice of the visualization abstractions and techniques for representing

the data, as well as the interaction techniques to be employed, heavily depends on contextual

information, e.g., the nature of data, the visualization constraints, and the task to be supported

(e.g., selecting the most suitable assets from a set of reusable assets).

Regardless of the number of occurrences for each of the strategies, it is unwise to affirm

that certain techniques are more important than others. Visualization strategies and techniques

must be chosen according to the visualization goals. Moreover, the available data must meet the

representation constraints associated to the employed visualizations.

4.6. Medium – where to present the visualization?

During the analysis, it was noticed that some publications (12) do not specify information

regarding the medium (i.e., the device and/or the environment) where the visualizations are

displayed (SQ5). In such cases, the assumed information is based on the analysis of publications’

contents.

Only a single approach [Charters2002765] uses a virtual reality environment (VRML-

enabled browsers or standalone viewers) for displaying information (not specifying the physical

medium). The other 33 approaches present visual information in a computer screen. From these,

10 contain (in their corresponding publications) information associated with the environment: 6

of them use a web environment [Alonso1998483] [Marshall2001103] [Marshall2001103 /

Anslow2004] [Anslow2004 / Marshall200435] [López20091198] [Bauer2012435] and 4 employ

the Eclipse IDE [Holmes2007100] [Dietrich200891] [Anquetil2010427] or an extension of it

[Stollberg2007236] (the latter depends on an IDE implemented in the Eclipse framework, called

Web Service Modeling Toolkit (WSMT)). The remaining 23 approaches are standalone tools

(e.g., [Ye2000266]) or characterize their own environment (e.g., [Constantopoulos19951]), but

only around half of them (11) makes such information explicit (that is, the aforementioned 12

approaches that do not specify information regarding the medium are among these 23).

Regarding the resources which can be used for interacting with the visualizations

(TQ5.1), only 2 approaches ([Ye2000266] and [Holmes2007100]) explicitly state the use of both

keyboard and mouse, while other 13 approaches mention mouse or mouse interactions. Among

the remaining approaches, based on other details presented, it is assumed that 20 of them provide

mouse support and 3 support keyboard as interaction resources, 2 of these supporting both

66

devices [Constantopoulos19951] [Kelleher200550]. Although [Charters2002765] runs in a

virtual reality environment, no interaction resource is specified – it seems to be mouse-based,

though; thus, it is included in the set of 20 approaches.

4.6.1. Discussion

Regarding the medium for displaying information (SQ5), it was noticed that only a few

approaches (explicitly) mention that they work in (or are integrated with) a web environment.

This was somehow surprising, since computers are usually equipped with web browsers, not

requiring any additional installation procedure. Some recent web-based visualization frameworks

may help changing this scenario.

Publications also lack more detailed information regarding the compatibility of the

approaches with different media. For instance, even among more recent approaches, none

mentions or focuses on mobile devices as an alternative to execute and interact with the

visualizations. Moreover, in spite of the existence of web-based approaches, one cannot state

(based solely on the publications) that they are multiplatform, i.e., whether they work in other

devices or not, since some devices such as smartphones and tablets contain displaying and

interaction constraints that must be accounted for when designing visualizations.

Regarding the resources used for interacting with the visualizations (TQ5.1), it is not

surprising that mouse and keyboard are the main interaction resources, as current information

visualization systems still largely focus on these peripherals for interacting with data [Lee et al.

2012].

In spite of that, there has been a constantly growing interest for incorporating more

natural forms of interaction such as touch, speech, gestures, handwriting, and vision. However,

these new forms of interaction need to “follow the basic rules of interaction design, which means

well-defined modes of expression, a clear conceptual model of the way they interact with the

system, their consequences, and means of navigating unintended consequences” [Norman 2010].

According to the same author, because gesturing is a natural, automatic behavior, systems

also have to “be tuned to avoid false responses to movements that were not intended to be system

inputs”. Thus, as an interaction technique, gestures “need time to be better developed”, so that

interaction designers can “understand how best to deploy them” and, as a consequence, standard

conventions can be established [Norman 2010].

4.7. Requirements – which resources are required by or used in the

visualization?

In order to deploy and execute the systems and their visualizations (SQ6), 4 approaches

cite the Eclipse IDE as a requirement [Holmes2007100] [Dietrich200891] [Anquetil2010427]

[Duszynski2011303 / Duszynski201237], and other 2 approaches require Jun for Java

[Washizaki20061222] [Ali200950]; the latter also requires OpenGL. In terms of hardware, no

special requirements are mentioned in the publications – at most, one approach states that a color

monitor should be preferably used [Constantopoulos19951].

The selected approaches use a variety of programming languages, APIs and frameworks

(TQ6.1). Java is the most adopted language, explicitly mentioned by 16 approaches. For building

the visualizations, the Prefuse toolkit is used by 3 approaches ([Gonçalves2007872 /

Oliveira2007461] [Dietrich200891] [Anquetil2010427]). Other visualization frameworks include

67

the Tk graphics library (Tcl/Tk) [Biddle199992] [McGavin2006153], JPowerGraph

[Stollberg2007236], Grappa [Areeprayolkij2010208] and JUNG [Dietrich200891].

4.7.1. Discussion

Software and hardware requirements (SQ6) are not well discussed in the publications,

which hampers the proper evaluation of the feasibility of the approaches to particular contexts.

The same occurs with information about programming languages, APIs and frameworks

(TQ6.1). Such information, if properly discussed, helps to evaluate how up-to-date a tool is, as

well as to identify any potential integration constraint. It can be noticed that some of the

technologies used by the approaches are already in disuse.

A particular concern is the lack of integration with development environments: this

hampers integration with other tools (and among the tools themselves), and may require

additional efforts from stakeholders to cope with reuse tasks. IDEs can provide an enormous

amount of information about the developer and his/her system, and using the IDE as the source

of information is the closest way to understand the developer’s intentions [Robbes & Lanza

2006].

4.8. Evidence – are the proposed visualizations worthwhile?

In the analysis of the evidence dimension, only evaluations informed on the selected

publications were analyzed (i.e., no other sources of information were observed). Moreover,

example applications made by the authors themselves without quantitative measurements

(comparatively) and a minimal evaluation goal, as well as comparative evaluations made by

them only mentioning differences in terms of features, were not taken into account.

Regarding the methods used for assessing the quality of the visualizations (SQ7), almost

half of the approaches (16 out of the 34) do not describe any kind of evaluation of their use, not

even performed by the authors themselves. In some cases, at most, a simple example of use is

shown. Among the remaining 18 approaches, one publication presents a semi-controlled

experiment [Holmes2007100] and another one presents three experiments [Feigenspan20121].

The other 16 are evaluated in terms of their use in practice, and 5 mention external

evaluators/subjects ([Constantopoulos19951] [Lange1995342] [Wahid2004414]

[DeBoer200951] [Yazdanshenas2012143]), sometimes applying user tests followed by a survey

[Wahid2004414] or exploratory studies followed by a structured interview, guided by a

questionnaire [Yazdanshenas2012143].

Only a few of the other 11 evaluations in practice specify that they were performed by the

authors themselves (e.g., [Dietrich200891] and [Duszynski2011303 / Duszynski201237]), but it

is assumed that they all may fit into this setting, since no external evaluators/subjects is

mentioned. Evaluation methods include usability evaluations [Biddle199992 / Marshall2001 /

Marshall2001103], tests executing the tool [Gonçalves2007872 / Oliveira2007461], exploratory

studies [Apel2011421] and experiments that may be classified as benchmarking analyses

[Ye2000266] [Tangsripairoj2006283], due to their comparative nature. Moreover, although 3

approaches mention a case study [Damaeviius2009507] [López20091198]

[Areeprayolkij2010208], they do not present some expected information to be categorized this

way (such as the definition of a research question, a planning of the data collection procedures

and the inferences from the collected data) [Runeson & Höst 2009].

68

Regarding the scenarios in which the visualizations are employed (TQ7.1), from the 18

approaches (described in the publications) that present some kind of evaluation, 6 are performed

in an academic context, 7 use open source data, and 9 present studies involving commercial

projects. Some approaches are evaluated in more than one scenario. One approach does not

specify the evaluation scenario. Figure 14 summarizes such information.

Figure 14. Evaluation scenarios (A = Academic; C = Commercial/Industrial; OS = Open Source)

(TQ7.1)

Concerning the evaluated aspects of the approaches (TQ7.2), some examples include

usability [Biddle199992 / Marshall2001 / Marshall2001103] [Yazdanshenas2012143], opinion of

subjects [Wahid2004414] [Feigenspan20121], performance and response times

[Duszynski2011303 / Duszynski201237] [Feigenspan20121], correctness

[Areeprayolkij2010208] [Feigenspan20121], usefulness [Areeprayolkij2010208], effectiveness

[Ye2000266] [Holmes2007100] [Yazdanshenas2012143] and scalability [Dietrich200891]

[Duszynski2011303 / Duszynski201237].

Finally, regarding the results/outcomes of the conducted evaluations (TQ7.3), among the

publications that present some evaluation of the proposed approaches, most of them show

benefits on the use of visualizations. Some publications also present limitations that were found

from the evaluation results (e.g., [Wahid2004414], [Damaeviius2009507], [López20091198],

[Feigenspan20121] and [Yazdanshenas2012143]). Particularly, [Feigenspan20121] and

69

[Yazdanshenas2012143] present a detailed description of the findings, which may support and

give insights for future works.

4.8.1. Discussion

In this dimension, it was observed that the majority of the works does not present a

proper evaluation on their use (SQ7): some of them do not present any at all. This can be

partially explained by the lack of demand for evidence in publications (a scenario that has been

changing in the last years). In many cases, the evaluation is done by the authors themselves,

which is subjective and may bring some bias. The absence of proper evaluations may raise

questions as regards to meeting the purpose to which the approaches were proposed. This can be

seen as a major downside.

Because quantitative evaluations that involve humans can be very time-consuming, at

least qualitative evaluations should be performed during the design of visualization tools or

posthoc [Diehl 2007]. For instance, two criteria that can be used for evaluating the mapping of

data to visual metaphors are expressiveness and effectiveness [MacKinlay 1986] [Maletic et al.

2002]. The former refers to the capability of the metaphor to visually represent all the

information to be visualized (e.g., if the number of visual parameters available in the metaphor

for displaying information is equal to or greater than the number of data values to be visualized).

The latter relates to the efficacy of the metaphor as a means of representing the information, and

can be further distinguished in effectiveness regarding the information passing as visually

perceived, regarding aesthetic concerns etc.

Moreover, in general, the reported data about the evaluations lack more useful details, so

one cannot understand in which scenarios they were conducted (TQ7.1), which aspects were

evaluated and why (TQ7.2), how the analysis was made and which strengths and opportunities

for improvements were identified (TQ7.3). It must be emphasized that the experimental rigor

must be correlated with the relevance of the findings, in order to avoid wrong conclusions. Some

recent works present a proper experimental soundness that helps to understand the identified

limitations, so that other researches aiming to support reuse can use their evaluation report as a

basis.

An interesting finding is that there is a balance between the evaluation scenarios (TQ7.1),

since not only academic projects are used, but open source projects are also taken into account

(which allows verification of results), as well as commercial (thus strengthening the interaction

with industry). Still, the field lacks studies on whether the perceptive and cognitive abilities of

the stakeholders in carrying out software reuse tasks are properly stimulated [Schots et al. 2012].

Particularly, since industry stakeholders can directly benefit from the results of such studies,

experiments in industry are recommended for strengthening interaction with academia.

5. Final Remarks

Enhancing awareness and understanding of both software information and software itself

requires the identification of adequate abstractions according to the comprehension needs. In this

sense, software visualizations have been increasingly supporting software engineers in

performing their day-to-day activities. However, no work to date has provided a comprehensive

set of research questions for providing evidence on how visualization approaches have been

supporting software reuse. Moreover, the presented study also contributes with a broad and

70

concrete use of the task-oriented taxonomy framework proposed in [Maletic et al. 2002]. The

results found in this review can be used as a starting point for future research directions that can

be addressed by the software engineering community when choosing, instantiating or developing

visualization-based approaches for supporting software reuse.

Besides, the presented information can also be used as a body of knowledge to support

the decision making regarding the choice of visualization approaches, as well as to conduct other

secondary studies on software visualization applied to another field of interest (e.g., software

maintenance). This study can also be seen as a summarized catalog of the approaches (also

available in a website
25

 for a better exploration of the findings), whose further details can be

obtained from the corresponding original publications. The extended framework not only allows

organizing the findings of the study in terms of visualization dimensions, but also highlights

aspects that lack support, and may indicate research opportunities on software reuse and software

visualization.

Finally, the lack of data in publications for answering the research questions in terms of

the software visualization dimensions may serve as a motivation to researchers for describing

and categorizing their approaches.

5.1. Limitations

Some limitations of this study include:

 (i) the chosen search string, which may have not captured some relevant related work;

 (ii) the scope of analysis, which was based solely on the content of the retrieved
publications (i.e., no other source was taken into account);

 (iii) the lack of variety of search engines used, which may not be representative, and

 (iv) the publication selection and the data analysis, which were made from the viewpoint

of the researchers, and may be biased.

For each threat identified, some actions were performed to minimize its damage on the

study results.

With respect to (i), it is known that software engineering has several terminology

problems [França & Travassos 2011]; thus, for establishing the search string, an ad-hoc literature

review was performed to identify the most common terminology in software visualization and

software reuse (as presented in Section 2.6.1). Moreover, a recent study [Novais et al. 2013] has

used a similar set of visualization-related keywords, which brings more confidence to the chosen

strategy.

Regarding (ii), although it is known that publications may not have mentioned some of

the visualization features in the corresponding approaches, hands-on analyses made by the

researchers would make the research results too biased, since a full understanding of the tool

capabilities would be required. Moreover, many of the tools are not available online. So, it was

decided to accept this limitation.

25

 http://www.cos.ufrj.br/~schots/survis_reuse/

71

With respect to (iii), although the search was only performed in Scopus and in manual

search on Brazilian events, there is evidence that Scopus has the better coverage publications on

software engineering area. After analyzing the trade-off between the effort to perform the search

in other bases and the Scopus effectiveness, the risk was assumed.

Finally, regarding (iv), it is worth mentioning that the main researcher (responsible for

conducting the study) has practical experience in software reuse (as a developer and by

implementing reuse programs in Brazilian software organizations) [Schots & Werner 2013] and

academic experience in software visualization, with publications in the field (e.g., [Schots &

Werner 2013] and [Schots et al. 2002], among others). This may alleviate the risk of rejecting a

relevant publication. Even so, relevant data may not have been observed.

It was a very intense process of reading, analysis and data extraction (due to the large

number of research questions), and some information may be mismatched due to the error-

proneness nature of the manual work. During the extraction process, the studies were classified

based on the judgment of the researchers, which means that some studies may have been

classified incorrectly. The second researcher and the data validation procedure (mentioned in

Section 2.8.8) were defined for mitigating this risk. Indeed, problems were identified and fixed

due to this support. Additionally, if any problem with this study is identified afterwards, an

erratum may be included in the technical report of the next review round.

5.2. Open Questions and Future Works

This study has provided evidence for answering the following question: What are the

characteristics and limitations of the visualization approaches that have been proposed to

support software reuse?

Some questions that could not be answered (or were raised) by means of this quasi-

systematic-review are listed as follows:

 Which aspects (comprising stakeholders’ needs, reuse tasks and reuse-related data)

should be taken into account for a visualization-based approach to support software

reuse?

 Are reuse-oriented visualizations feasible in helping stakeholders to be aware of the
reuse scenario and performing reuse tasks more accurately, increasing their efficiency

and efficacy?

 Can the use of proper visualization resources assist stakeholders in carrying out their
software reuse tasks, facilitating the institutionalization of a reuse program in software

development organizations?

Regarding the first question, Marshall et al. (2003) present a wish list of what they want

to see in software visualizations of reusable components, as well as a wish list for the

characteristics of the intermediary format that would carry collected information about the

components. A drawback is that they are not based on or supported by any study or any kind of

evaluation that demonstrates the adequacy, completeness and/or relevance of the wish list items.

Moreover, other aspects of reuse management (present in other approaches) are not taken into

account.

In this sense, future works include studies with worldwide software reuse researchers and

organizations that implemented reuse processes, in order to identify and/or validate what

72

information should be taken into account for supporting reuse tasks. Some of the findings and

perceptions obtained from the current study can be used for validation. This might also provide

directions on what information should be visualized by what kinds of reuse stakeholders.

Based on the findings of this study, it was noticed that literature lacks a visualization

approach that supports analyzing/monitoring the reuse scenario in an organization, providing and

correlating information from different sources regarding reusable assets, users (producers and

consumers of these assets) and projects in which the assets were reused. Evolution information,

for instance, allows assessing an asset’s stability and frequency of updates (i.e., how active the

development community is). Projects’ history is also useful for identifying new assets candidate

to reuse, as well as for analyzing projects in which there have been reuse attempts and, from

those, which were successful and why. “Social” information (e.g., who developed/reused which

assets with/from which developers) has proven to be relevant as well – as shown in [Schots &

Werner 2013] –, but this is also not well explored. An approach that encompasses this set of

information can be provided not only for a better, effective reuse management, but also for

supporting decision making on reuse activities.

We also intend to perform a new round of this review in the future (include potential term

variations that were not explored in the search string of the first round), for enriching the

captured information with novel approaches.

Acknowledgements

The authors would like to thank:

 the researchers Eric Wong, Robertas Damaševičius, Mariagrazia Fugini and Hironori

Washizaki for gently providing by e-mail their publications that were not available on the

web,

 professor Guilherme Horta Travassos, for his contributions in the research protocol of
this study,

 the anonymous reviewers of the submitted papers related to the study results
26

, for their
suggestions on improving the description of the taxonomy framework,

 the Ph.D. students Chessman Corrêa and Natália Schots, for kindly supporting the

conflict resolution procedure (during the selection process) and the data verification and

aggregation (during the analysis), respectively, and

 Maria Helena Oliveira, for partially supporting the transcription and copy of data from
publications in PDF.

References

Alonso, O., Frakes, W. B. (2000). “Visualization of Reusable Software Assets”. In: Proceedings

of the 6th International Conference on Software Reuse (ICSR 2000), pp. 251-265, Vienna,

Austria, June.

26

 The reviewers were provided with an early release of this study.

73

Barcelos, R. F., Travassos, G. H. (2006). “Evaluation Approaches for Software Architectural

Documents: a Systematic Review”. In: Ibero-American Conference on Software Engineering

(CIbSE 2006), La Plata, Argentina, pp. 433-446, April.

Basili, V., Caldiera, G., Rombach, H. (1994). “Goal Question Metric Paradigm”, Encyclopedia

of Software Engineering, v. 1, edited by John J. Marciniak, John Wiley & Sons, pp. 528-532.

Bavoil, L., Callahan, S. P., Crossno, P. J., Freire, J., Scheidegger, C. E., Silva, C. T.,. Vo, H. T.

(2005). “Vistrails: Enabling interactive multiple-view visualizations”. In: IEEE Visualization

(IEEE VIS 2005), Minneapolis, USA, pp. 135-142, October.

Benedicenti, L., Succi, G., Valerio, A., Vernazza, T. (1996). “Monitoring the efficiency of a

reuse program”. SIGAPP Applied Computing Review, v. 4, n. 2, pp. 8-14, September.

Biolchini, J., Mian, P. G., Natali, A. C. C., Travassos, G. H. (2005). “Systematic review in

software engineering”. Technical Report ES 679/05, COPPE/UFRJ.

Braga, R. M. M., Werner, C. M. L., Mattoso, M. (2006). “Odyssey-Search: A Multi-Agent

System for Component Information Search and Retrieval”. Journal of Systems and Software,

v. 79, n. 2, pp. 204-215, February.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., Khalil, M. (2007). “Lessons from

applying the systematic literature review process within the software engineering domain”.

Journal of Systems and Software, v. 80, n. 4, pp. 571-583, April.

Buering, T., Gerken, J., Reiterer, H. (2006). “User interaction with scatterplots on small screens

– a comparative evaluation of geometric-semantic zoom and fisheye distortion”. IEEE

Transactions on Visualization and Computer Graphics, v. 12, n. 5, pp. 829-836.

Cockburn, A., McKenzie, B. (2000). “An evaluation of cone trees”. In: McDonald, S., Waern,

Y., Cockton, G. (eds.), People and Computers XIV – Usability or Else! – Proceedings of HCI

2000, pp. 425-436, Springer London.

Diehl, S. (2007). Software Visualization: Visualizing the Structure, Behaviour, and Evolution of

Software, 1st ed., Springer.

Few, S. (2009). Now You See it: Simple Visualization Techniques for Quantitative Analysis, 1st

ed., Analytics Press.

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D. (1999). Refactoring: Improving the

Design of Existing Code. Addison-Wesley.

Frakes, W., Fox, C. (1996). “Quality Improvement Using a Software Reuse Failure Modes

Model”. IEEE Transactions on Software Engineering, v. 22, n. 4, April.

França, B. B. N., Travassos, G. H. (2011). “Quasi-Systematic Review – Simulation Studies in

Software Engineering”. Technical Report. Available at http://lens-

ese.cos.ufrj.br/rsl_sbs/RSL_SBS.pdf. Accessed on June 2013.

Griss, M. L., Favaro, J., Walton, P. (1994). “Managerial and organizational issues – Starting and

Running a Software Reuse Program”. In: Schaefer, W., Prieto-Diaz, R., Matsumoto, M.

(eds.), Software Reusability, pp. 51-78, Ellis Horwood Ltd..

74

Hattori, L. (2010). “Enhancing collaboration of multi-developer projects with synchronous

changes”. In: 32nd ACM/IEEE International Conference on Software Engineering (ICSE

2010), Cape Town, South Africa, pp. 377-380, May.

Kim, Y., Stohr, E. A. (1998). “Software Reuse: Survey and Research Directions”. Journal of

Management Information Systems, v. 14, n. 4, pp. 113-147, March.

Kitchenham, B. (2004). “Procedures for Performing Systematic Reviews”, Keele University

Technical Report TR/SE-0401. Available at http://www.scm.keele.ac.uk/ease/sreview.doc.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., Linkman, S. (2009).

“Systematic literature reviews in software engineering – A systematic literature review”,

Information and Software Technology, v. 51, n. 1, pp. 7-15, January.

Lanza, M., Marinescu, R. (2006). Object-Oriented Metrics in Practice. Springer-Verlag Berlin

Heidelberg New York, 1st edition.

Lee, B., Isenberg, P., Riche, N. H., Carpendale, S. (2012). “Beyond Mouse and Keyboard:

Expanding Design Considerations for Information Visualization Interactions”. IEEE

Transactions on Visualization and Computer Graphics, v. 18, n. 12, pp. 2689-2698,

December.

Lisboa, L. B., Garcia, V. C., Lucrédio, D., Almeida, E. S., Meira, S. R. L., Fortes, R. P. M.

(2010). “A Systematic Review of Domain Analysis Tools”. Information and Software

Technology, v. 52, n. 1, pp. 1-13, January.

MacKinlay, J. D. (1986). “Automating the design of graphical presentation of relational

information”. ACM Transaction on Graphics, v. 5, n. 2, pp. 110-141, April.

Maletic, J. I., Marcus, A., Collard, M. L. (2002). “A task oriented view of software

visualization”. In: Proceedings of the 1st International Workshop on Visualizing Software for

Understanding and Analysis (VISSOFT 2002), Paris, France, pp. 32-40, June.

Marshall, S. (2001). “Using and Visualizing Reusable Code: Position Paper for Software

Visualization Workshop”. In: Workshop on Software Visualization, 2001 ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA 2001), Tampa, USA, October.

Marshall, S., Jackson, K., Anslow, C., Biddle, R. (2003). “Aspects to visualising reusable

components”. In: Proceedings of the Australasian Symposium on Information Visualisation

(InVis.au 2003), Adelaide, Australia, pp. 81-88, February.

Moore, J. M., Bailin, S. C. (1991). “Domain Analysis: Framework for reuse”. In: Prieto-Díaz, R.,

Arango, G. (eds), Domain Analysis and Software System Modeling, pp. 179-202, IEEE

Computer Society Press, Los Alamitos, USA.

Morisio, M., Ezran, M., Tully, C. (2002). “Success and failure factors in software reuse”. IEEE

Transactions on Software Engineering, v. 28, n. 4, pp. 340-357.

Mukherjea, S., Foley, J. (1996). “Requirements and Architecture of an Information Visualization

Tool”. In: Database Issues for Data Visualization, Springer Berlin/Heidelberg, pp. 57-75.

75

Mulholland, P. (1997). “Using a fine-grained comparative evaluation technique to understand

and design software visualization tools”. In: 7th Workshop on Empirical Studies of

Programmers, Alexandria, USA, pp. 91-108, October.

Norman, D. A. (2010). “Natural User Interfaces Are Not Natural”. Interactions, v. 17, n. 3, pp.

6-10, May.

Novais, R. L., Torres, A., Mendes, T. S., Mendonça, M., Zazworka, N. (2013). “Software

Evolution Visualization: A Systematic Mapping Study”. Information and Software

Technology, v. 55, n. 11, pp. 1860-1883.

Pai, M., McCulloch, M., Gorman, J. D., Pai, N., Enanoria, W., Kennedy, G., Tharyan, P.,

Colford, J. M. (2004). “Systematic Reviews and Meta-Analyses: An Illustrated, Step-by-Step

Guide”, The National Medical Journal of India, v. 17, n. 2, pp. 89-95.

Robbes, R., Lanza, M. (2006). “Change-Based Software Evolution”. In: Proceedings of the 2nd

International ERCIM Workshop on Software Evolution (EVOL 2006), Lille, France, pp. 159-

164, April.

Runeson, P., Höst, M. (2009). “Guidelines for Conducting and Reporting Case Study Research

in Software Engineering”. Empirical Software. Engineering, v. 14, n. 2, pp. 131-164, April.

Santa Isabel, S. L. (2011). “Selection of Testing Approaches for Web Applications” (in

Portuguese). M.Sc. Thesis, COPPE/UFRJ, July.

Schots, M., Werner, C. (2012). ““Exploiting the Intangible: An Overview of Software

Visualization and its Applications” [Explorando o Intangível: Um Panorama da Visualização

de Software e suas Aplicações], Tutorial. In: 3rd Brazilian Conference on Software: Theory

and Practice (CBSoft 2012), Natal, Brazil, September.

Schots, M., Werner, C., Mendonça, M. (2012). “Awareness and Comprehension in

Software/Systems Engineering Practice and Education: Trends and Research Directions”. In:

Proceedings of the 26th Brazilian Symposium on Software Engineering (SBES 2012), Natal,

Brazil, pp. 186-190, September.

Schots, M., Werner, C. (2013). “Characterizing the Implementation of MR-MPS-SW Reuse

Processes: Preliminary Results” [Caracterizando a Implementação de Processos de

Reutilização do MR-MPS-SW: Resultados Preliminares]. Proceedings of the IX Annual

Workshop of MPS (WAMPS 2013), Campinas, Brazil, pp. 44-53, October.

Sensalire, M., Ogao, P., Telea, A. (2009). “Evaluation of software visualization tools: Lessons

learned”. In: Proceedings of the 5th IEEE International Workshop on Visualizing Software for

Understanding and Analysis (VISSOFT 2009), Edmonton, Canada, pp. 19-26, September.

Silva, M., Schots, M., Werner, C. (2012). “Supporting Software Maintenance Activities through

a Software Visualization Product Line Infrastructure”. In: IX Workshop on Modern Software

Maintenance (WMSWM 2012), Fortaleza, Brazil, pp. 1-8, June.

Tichy, W. F. (1998). “Should computer scientists experiment more?”, IEEE Computer, v. 31, n.

5, pp. 32-40, May.

Travassos, G. H., Santos, P. S. M., Mian, P. G., Dias Neto, A. C., Biolchini, J. (2008). “An

Environment to Support Large Scale Experimentation in Software Engineering”, In:

76

Proceedings of the 13th International Conference on Engineering of Complex Computer

Systems (ICECCS 2008), Belfast, Northern Ireland, pp. 193-202, April.

Vasconcelos, R., Schots, M., Werner, C. (2014). “An Information Visualization Feature Model

for Supporting the Selection of Software Visualizations”. In: Proceedings of the 22nd

International Conference on Program Comprehension (ICPC 2014), Early Research

Achievements Track, Hyderabad, India, pp. 261-264, June.

77

Appendix A – Consensus information

The first and the second researcher met personally for discussing the divergent results

from the selection process and achieve the consensus. This appendix presents the following

details of this stage:

 List of publications selected by both researchers (Table 20);

 List of publications selected only by the first researcher (Table 21);

 List of publications selected only by the second researcher (Table 22).

 List of publications included manually (Table 23).

Table 20. Publications accepted by both researchers

BibTeX ID Title Year

Ali200950
Cognitive support through visualization and focus specification for

understanding large class libraries
2009

Alonso1998483 Visualization of Reusable Software Assets 1998
Anquetil2010427 A model-driven traceability framework for software product lines 2010

Areeprayolkij2010208
IDMS: A system to verify component interface completeness and

compatibility for product integration
2010

Biddle199992 Reuse of debuggers for visualization of reuse 1999

Charters2002765 Visualisation for informed decision making; from code to components 2002

Damaeviius2009507
Analysis of components for generalization using multidimensional

scaling
2009

DeBoer200951 Ontology-driven visualization of architectural design decisions 2009
Dietrich200891 Cluster analysis of Java dependency graphs 2008

Duszynski201237
Recovering variability information from the source code of similar

software products
2012

Gonçalves2007872
DigitalAssets discoverer: Automatic identification of reusable software

components
2007

Lange1995342
Interactive visualization of design patterns can help in framework

understanding
1995

López20091198
Visualization and comparison of architecture rationale with semantic

web technologies
2009

Marshall2001103 Visualising reusable software over the web 2001

Marshall200381 Aspects to visualising reusable components 2003

Marshall200435 Using software visualisation to enhance online component markets 2004

McGavin2006153
Visualisations of execution traces (VET): an interactive plugin-based

visualisation tool
2006

Oliveira2007461
Automatic Identification of reusable Software development assets:

Methodology and tool
2007

Stollberg2007236 Goal-based visualization and browsing for semantic Web services 2007

78

Table 21. Publications accepted only by the first researcher

BibTeX ID Title Year
Previous

status
27

Decision Comments

Apel2011421
Feature cohesion in software

product lines: An

exploratory study
2011

Rejected

(abstract)
Accepted N/A

Bauer2012435

Understanding API usage to

support informed decision

making in software

maintenance

2012
Rejected

(title)
Accepted N/A

Constantopoulos

19951
The software information

base: A server for reuse
1995

Rejected

(abstract)
Accepted N/A

DiFelice199128

7

An interaction environment

supporting the retrievability

of reusable software

components

1991
Rejected

(full)
Rejected

Decision (by consensus):

The visual part of the

developed tool is a

Graphical User Interface

(GUI), thus it does not

present a visualization

approach for supporting

software reuse.

Duszynski20113

03

Analyzing the source code

of multiple software variants

for reuse potential
2011

Rejected

(abstract)
Accepted N/A

Feigenspan2012

1

Do background colors

improve program

comprehension in the #ifdef

hell?

2012
Rejected

(title)
Accepted N/A

Holmes2007100
Task-specific source code

dependency investigation
2007

Rejected

(full)
Accepted

Decision (by consensus):

After the new read, it was

agreed that the

visualization approach

supports software reuse

tasks in usual software

development paradigms.
Mancoridis1993

74
Conceptual framework for

software development
2007

Rejected

(title)
Accepted N/A

Mittermeir20019

5

Goal-driven combination of

software comprehension

approaches for component

based development

2001
Rejected

(abstract)
Accepted

Decision (by consensus):

After re-analyzing the

publication (a full read), it

was observed that it is

indeed related to software

reuse.

27

 This column represents the classification given by the second researcher before the consensus.

79

BibTeX ID Title Year
Previous

status
27

Decision Comments

Tangsripairoj20

06283

Organizing and visualizing

software repositories using

the growing hierarchical

self-organizing map

2006
Rejected

(full)
Accepted

Decision (by consensus):

Although the authors do

not present a visualization

tool, they provide

information (i.e., give

enough details) on how the

visualization of the

growing hierarchical self-

organized map can be

visually presented.

Wahid2004414

Visualization of design

knowledge component

relationships to facilitate

reuse

2006
Rejected

(abstract)
Accepted N/A

Washizaki20061

222

A system for visualizing

binary component-based

program structure with

component functional size

2006
Rejected

(abstract)
Accepted N/A

Washizaki20072

84

A framework for measuring

and evaluating program

source code quality
2007

Rejected

(abstract)
Rejected

Decision (by consensus):

Although the authors point

out a “visualization tool”,

such tool is a HTML table

that presents the

aggregated results from the

measurement process.

Thus, it was decided to

reject the publication, since

it does not present a

visualization approach for

supporting software reuse.

Yazdanshenas20

12143

Tracking and visualizing

information flow in

component-based systems
2012

Rejected

(full)
Accepted

Decision (by consensus):

Although not clearly

stated, the visualization

supports software reuse.

Ye2000266

A visualised software

library: Nested self-

organising maps for

retrieving and browsing

reusable software assets

2000
Rejected

(abstract)
Accepted

Decision (by consensus):

After re-analyzing the

publication (a full read), it

was observed that it indeed

supports software reuse by

visualization.

80

Table 22. Publications accepted only by the second researcher

BibTeX ID Title Year
Previous

status
28

Decision Comments

Kelleher200550
A reusable traceability

framework using patterns
2005

Rejected

(abstract)
Accepted N/A

Kang1998175
Using design abstractions to

visualize, quantify, and

restructure software
1998

Rejected

(full)
Rejected

Decision (by consensus): It

was noticed that the

publication focuses on

reengineering software

systems, but its impact on

software reuse is not

clearly stated.

Helfman199631
Dotplot patterns: a literal

look at pattern languages
1996

Rejected

(title)
Accepted N/A

Kazman199694
Tool support for architecture

analysis and design
1996

Rejected

(full)
Rejected

Decision (after analysis of

a third researcher): The

visualization support

presented in the

publication does not

support software reuse.

Sefika1996389
Architecture-oriented

visualization
1996

Rejected

(abstract)
Rejected

Decision (by consensus):

Reuse is mentioned in the

introduction (high-level

architectures support

reuse), but the publication

does not present a

visualization for

supporting reuse.

Table 23. Publications manually included (agreed by both researchers)

BibTeX ID Title Year
Anslow2004 Software visualization tools for component reuse 2004

Marshall2001 Using and Visualizing Reusable Code
29

 2001

28

 This column represents the classification given by the first researcher before the consensus.
29

 Already included as control publication.

81

Appendix B – Publication data extracted on the selection

process

The following tables (from Table 24 to Table 57) present the data extracted on the

selection process for each approach listed in Table 10.

Table 24. Software Landscape [Mancoridis199374]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Conceptual framework for software development

Authors Mancoridis, S., Holt, R. C., Penny, D. A.

Publication date (year/month) February, 1993

Publication type Conference

Source Proceedings of the 1993 ACM Computer Science Conference

Volume and Edition (for journals) N/A

Place (for conferences) Indianapolis, USA

Pages pp. 74-80

Link (if applicable) http://dx.doi.org/10.1145/170791.170806

Abstract

Large scale software development is an intrinsically difficult task.

Developers use a set of specialized tools to alleviate some of this

difficulty. The problem is that most of these tools are not integrated

and do little to help developers and managers maintain an overall

view of the development by organizing the software entities, created

by tools, in a consistent fashion. Our solution, called the Software

Landscape, provides developers with a conceptual framework of

integrated tools while providing a metaphor for managing the

complexities of large-scale software development. The Software

Landscape is a metaphor of a country-side viewed from above in

which each major entity, such as a software project, appears as a large

plot of land, and each minor entity, such as a source C module, is

contained within a plot. Plots can be libraries of reusable software as

well as ongoing developments. A Software Landscape can be used as

a mechanism that allows the developer to navigate around the entities

created during the software development process, much the way a

flight simulator allows one to ‘fly’ and optionally to dive down to

entities of interest. During this flight, the SDE ‘pilot’ chooses

appropriate views of entities and controls their level of visible detail.

This model is constructive, allowing the developer to manipulate, as

well as view, the entities of the Landscape.

82

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Software Landscape

Screenshot

T
a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Developers use a set of specialized tools to alleviate some of this

difficulty. The problem is that most of these tools are not integrated

and do little to help developers and managers maintain an overall

view of the development by organizing the software entities, created

by tools, in a consistent fashion. Currently, there is no mechanism that

would provide developers and managers with an intuitive “big

picture” of the status of each project.

Approach goals (SQ1)

Make software development information more accessible (by

collecting as much of it as possible in one place and by providing

uniform visual access to it at the appropriate level of granularity), and

provide an intuitive “big picture” understanding to the person

navigating through the software space, thus managing the

complexities of large-scale software development paradigm for

developing and organizing software.

Visualizations’ reuse-specific goals

(SQ1)

Explore, understand, and use the products of software development,

including analyses, designs, specifications, and implementations.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Software development in general (during the software development

process / analysis, specification, prototyping, implementation, and

tuning)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Understanding assets’ structure / asset information / repository

(explore, understand, and use the products of software development)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

 Developer / programmer (developers / programmers / coders)

 Software architect/designer (software designer / designers)

 Analyst (analysts)

 Manager (managers)
30

30

 The authors state that the visualization is targeted to developers, but points out actions that could eventually be

performed by managers [Mancoridis199374].

83

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Component / Asset and related information (libraries of reusable

software)

 Source code and related information (source module, programming

language constructs such as modules and classes)

 Software project and related information (software project / sub-

systems, projects, and libraries)

Source of visualized items/data

(TQ3.1)

The entities and relations of the Software Landscape are stored in the

SDE repository.

Collection procedure/method of

visualized items/data (TQ3.2)

The automatic checking of syntax rules against a design is done by

generating a Prolog database. The database is checked for correctness

by a Prolog program that encodes definitions and rules.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)

 Network / Graph (box-and-arrow diagrams)

 Real world metaphor (country-side viewed from above)

Data-to-visualization mapping

(input/output) (TQ4.1)

Each major entity, such as a software project, appears as a large plot

of land, and each minor entity, such as a source C module, is

contained within a plot. Plots can be libraries of reusable software as

well as ongoing developments.

Each of these projects appears as a box (a plot). Shaded boxes

represent software entities that contain subsystems.

A Landscape cluttered with entities indicates insufficient structuring,

and one cluttered with arrows indicates excessive coupling. Entities

are represented as boxes.

The import relation is shown by arrows, and the contain relation by

drawing one entity inside the other. The inherit relation is shown by

arrows labeled inherit. The export relation is shown by having the

exported entity protrude from its exporting entity.

Visualization strategies and

techniques (TQ4.2)

 Browsing / Navigation (navigate around the entities / navigate into a

particular entity)

 Details on demand / Drill-down (navigate around the entities created

during the software development process, much the way a flight

simulator allows one to “fly” and optionally to dive down to entities

of interest)

 Details on demand / Labeling (arrows labeled inherit)

 Filtering / Highlighting/Mitigation (controls their level of visible

detail)

 Filtering / Inclusion/Removal (hide entities and relations that are of

no relevance to their current task / allows users to expose or hide the

sub-structure of each entity)

 Overview + detail (navigate around the entities created during the

software development process, much the way a flight simulator

allows one to “fly” and optionally to dive down to entities of

interest)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (on a large

display screen / a language-centered programming environment)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse

84

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)
Hardware and software

requirements/dependencies (SQ6)

 SW: A prolog database is necessary.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

It is based in a Prolog program that encodes the domain definitions

and rules.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

Table 25. Software Information Base (SIB) [Constantopoulos19951]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title The software information base: A server for reuse

Authors Constantopoulos, P., Jarke, M., Mylopoulos, J., Vassiliou, Y.

Publication date (year/month) ??, 1995

Publication type Article (Journal)

Source The VLDB Journal

Volume and Edition (for journals) v. 4, n. 1

Place (for conferences) N/A

Pages pp. 1-43

Link (if applicable) http://dx.doi.org/10.1007/BF01232471

Abstract

We present an experimental software repository system that provides

organization, storage, management, and access facilities for reusable

software components. The system, intended as part of an applications

development environment, supports the representation of information

about requirements, designs and implementations of software, and

offers facilities for visual presentation of the soft-ware objects. This

article details the features and architecture of the repository system,

the technical challenges and the choices made for the system

development along with a usage scenario that illustrates its

functionality. The system has been developed and evaluated within

the context of the ITHACA project, a technology integration/software

engineering project sponsored by the European Communities through

the ESPRIT program, aimed at developing an integrated reuse-

centered application development and support environment based on

object-oriented techniques.

85

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Software Information Base (SIB)

Screenshot

T
a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

Object-oriented computing constitutes yet another touted path to the

reuse silver bullet. Better understanding of the process of software

reuse, supported by appropriate tools, is another. Designs,

requirements specifications, and development processes are also

reusable and can contribute as much to the legendary productivity

increase as the reuse of existing programs. One can characterize the

degree of reuse in terms of a channel of communication between the

original developers and the re-users. The broader and better defined

the channel, the greater the potential for reuse and, therefore, for

productivity improvements.

Assuming a repository-based reuse methodology, key technical

challenges (directly related to repository system development) are:

providing the right abstraction concepts/mechanisms, carefully

organizing, effectively managing, and efficiently selecting and

understanding the software artifacts.

The issues of representation and presentation of information about

reusable artifacts do not have simplistic solutions and need to be

addressed separately.

Approach goals (SQ1)

Store and manage information about requirements, designs, and

implementations of software and offers facilities for locating and

selecting software components, thus broadening and supporting the

communication channel between developer and reuser.

Visualizations’ reuse-specific goals

(SQ1)

Offer valuable assistance to software artifact understanding efforts

through the representation and organization of software descriptions,

in order to find the software artifacts faster than the time it takes to

develop them.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Software development with reuse (reuse-based software development)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ structure / asset information / repository

(assist software artifact understanding)

 Searching and retrieving reusable assets (find the software artifacts

faster than the time it takes to develop them)

86

 Field Information to be extracted
A

u
d

ie
n

ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

 Developer / programmer (developer / application developers /

application engineers)

 Developer with reuse (reuser)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Source code and related information (software artifacts (objects) /

semantic relationships)

Source of visualized items/data

(TQ3.1)

The Software Information Base itself and the descriptions that provide

information about a software system.

Collection procedure/method of

visualized items/data (TQ3.2)

Descriptions serve as basic building blocks, and provide information

about a software system, which may concern a requirements, design,

or implementation specification for a particular software system. Such

information may also be used to represent design decisions or run-

time performance information about a software object. Developers

change the schema by populating the SIB system with software

descriptions (either manually or through development tools).

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Network / Graph (directed attributed graph)

Data-to-visualization mapping

(input/output) (TQ4.1)

Nodes describe software artifacts (objects) and edges represent

semantic relationships that hold among them. The types of links are

represented by a color code.

Visualization strategies and

techniques (TQ4.2)

 Selection (selection strategy)

 Browsing / Navigation (navigational facilities / an implicit query is

generated through navigational commands in the browsing mode /

querying facilities (e.g., browsing, filtering, navigating))

 Browsing / Querying (explicit query involves an arbitrary predicate

explicitly formulated in a query language or through an appropriate

form interface / approximate retrieval based on similarities among

software artifacts)

 Details on demand / Labeling (make it possible to associate with any

software object annotations and/or animations / edges may have

their own labels)

 Filtering (filtering)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (ITHACA

application development environment / window / color monitor)

Resources used for interacting with

the visualizations (TQ5.1)

 Mouse

 Keyboard (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: The system runs on Sun3, Sun4 series, SparcStations and 386

machines under UNIX. The X window system is required.

 HW: Preferably a color monitor.

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

The implementation is based on C++. The representation language

chosen for the SIB is Telos, a conceptual modeling language in the

family of entity-relationship (ER) models. It also uses the Graphical

Browser, built using the LABY graphical editor.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
Practical use [by others]

Application scenarios of the

visualizations (TQ7.1)

In the context of a specific reuse-oriented methodology developed in

the ITHACA project. [commercial]

Evaluated aspects (TQ7.2) The SIB model and system

Visualization evaluation

results/outcomes (TQ 7.3)

Application engineers, who also use Telos directly, have found the E-

R nature of the language and the graphical visualization very

effective.

87

Table 26. Program Explorer [Lange1995342]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Interactive visualization of design patterns can help in framework

understanding

Authors Lange, D. B., Nakamura, Y.

Publication date (year/month) October, 1995

Publication type Conference

Source
Proceedings of the 10th Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA 1995)

Volume and Edition (for journals) N/A

Place (for conferences) Austin, USA

Pages pp. 342-357

Link (if applicable) http://dx.doi.org/10.1145/217839.217874

Abstract

Framework programming is regarded as one the main advantages of

object-oriented software engineering, and is expected to increase

software reuse. In exploiting frameworks, however, programmers

often face difficulties caused by the complexity of the hidden

architecture and the multiplicity of the design decisions that are

embedded in a framework. Interactive visualization of design patterns

occurring in a framework shows how the framework is operating, in a

flexible yet structured way that contributes to the programmer’s

understanding of the underlying software architecture. In this way,

programmers can explore and use frameworks efficiently even when

they are distributed without vast amounts of documentation and

source code.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Program Explorer

Screenshot

88

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

The most profoundly elegant framework will never be reused unless

the cost of understanding it and then using its abstractions is lower

than the programmer’s perceived cost of writing them from scratch

[Booch]. Although programmers can normally use a framework

without completely understanding how it works, and can even extend

it, a framework is most useful to someone who understands it in

detail. Running O-O systems involves generating huge amounts of

static and dynamic program information that is hard to digest,

especially if the information is presented in a purely textual format.

Any unguided attempt to understanding will most likely lead to

cognitive overload and result in an inability to localize relevant parts

of the framework or determine which paths to explore. What aids

understanding is the coupling of the abstract and the concrete, that is,

of static and execution information. Static information can leverage

execution information and vice versa.

Approach goals (SQ1)

Make the process of O-O understanding more empirical and realistic

by connecting program execution to the understanding of objects and

interactions, and the static program information source code to the

understanding of classes and their relationships, aiming to

demonstrate how patterns can serve as guides in program exploration

and thus make the process of understanding more efficient.

Visualizations’ reuse-specific goals

(SQ1)

Provide class- and object-centered views of the structure and behavior

of large C++ systems with information accurate enough to enable

programmers to reuse and maintain undocumented parts of these

systems.

Software engineering activities

addressed by the visualizations

(TQ1.1)

 Software design (design)

 Programming / Coding (programming)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ structure / asset information / repository

(provide class- and object-centered views of the structure of

systems)

 Understanding assets’ behavior (provide class- and object-centered

views of the behavior of systems)

 Integrating reusable assets (provide information to enable reuse and

maintenance of undocumented parts of systems)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer / programmer (programmers)

89

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Source code and related information (objects, design patterns / static

class relationship, interactions, class inheritance, function calls,

variable access, object creation, object call)

Source of visualized items/data
(TQ3.1)

A program database for C++.

Collection procedure/method of

visualized items/data (TQ3.2)

Coupling semantics are described in terms of logic rules. Static

program information is retrieved by the Program Database from so-

called pdb-files generated by IBM’s xlC compiler. The following

entities are instrumented: object creation and deletion; implicit and

explicit constructors, destructors, copy-constructors, and assignment

operators; member functions and variables; and template classes and

functions. Program events generated by the inserted code are captured

by the Trace Recorder process events to produce a trace, which it also

stores. Program execution is controlled and trace information is

queried by Program Explorer through the Trace Recorder’s external

interface.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Network / Graph (graph)

Data-to-visualization mapping

(input/output) (TQ4.1)

Objects are displayed as nodes in the graph, and interactions between

objects, such as creation, invocation and variable access, are displayed

as arrows.

Each bar represents the longevity of a specific object. Arrows

represent interactions as in the Object Graph, and are displayed from

top to bottom in the order in which the interactions actually took

place.

Visualization strategies and

techniques (TQ4.2)

 Selection (breakpoint facility, which allows the user to control

program execution / it is possible to set breakpoints at virtually and

visible entities: classes, call-relationships, objects, invocations, and

so on)

 Browsing / Navigation (interactive hypertext like navigation / users

initially sees only the class in focus and its immediate base class and

derived classes; they can then interactively explore the inheritance

relationships of each of these classes)

 Filtering / Collapse/Expand (expanded)

 Presentation / Simultaneous (Program Explorer’s GUI consists of

four panes)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: Program Database, a stand-alone application that implements

the schema of static program information.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

The implementation is based on a predicate logic and uses Prolog

notation.

90

 Field Information to be extracted
E

v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
Practical use [by others] (being used [in the time of publication])

Application scenarios of the

visualizations (TQ7.1)

Within IBM, as well as in a commercial project outside IBM.

[commercial]

Evaluated aspects (TQ7.2) Not specified

Visualization evaluation

results/outcomes (TQ 7.3)

Users were satisfied after using the tool for various purposes, most

notably: (1) for support in the process of understanding specific in-

house C++ frameworks; (2) as a design review tool, where designers

can visualize the actual design as opposed to the planned design; and

(3) for visual debugging of application logic in C++ based systems.

Table 27. Dotplot Patterns [Helfman199631]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Dotplot patterns: a literal look at pattern languages

Authors Helfman, J.

Publication date (year/month) ??, 1996

Publication type Article (Journal)

Source Theory and Practice of Object Systems

Volume and Edition (for journals) v. 2, n. 1

Place (for conferences) N/A

Pages pp. 31-41

Link (if applicable)
http://dx.doi.org/10.1002/(SICI)1096-9942(1996)2:1<31::AID-

TAPO3>3.0.CO;2-A

Abstract

This article describes the dotplot data visualization technique and its

potential for contributing to the identification of design patterns.

Pattern languages have been used in architectural design and urban

planning to codify related rules-of-thumb for constructing vernacular

buildings and towns. When applied to software design, pattern

languages promote reuse while allowing novice designers to learn

from the insights of experts. Dotplots have been used in biology to

study similarity in genetic sequences. When applied to software,

dotplots identify patterns that range in abstraction from the syntax of

programming languages to the organizational uniformity of large,

multicomponent systems. Dotplots are useful for design by successive

abstraction – replacing duplicated code with macros, subroutines, or

classes. Dotplots reveal a pervasive design pattern for simplifying

algorithms by increasing the complexity of initializations. Dotplots

also reveal patterns of wordiness in languages – one example inspired

a design pattern for a new programming language. In addition,

dotplots of data associated with programs identify dynamic usage

patterns – one example identifies a design pattern used in the

construction of a UNIX(tm) file system.

91

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Dotplot Patterns

Screenshot

T
a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Design patterns have been identified through reverse architecture, a

process of “analyzing many software systems in an effort to recover

recurring designs and rationals behind them”. Reverse architecture

requires reading a lot of code, learning about many different systems,

and reflecting on the relative merits of previous designs.

Unfortunately, reverse architecture requires a tremendous amount of

time and thought. In this sense, visualization tools may be particularly

helpful for identifying software design patterns. Previous work in

visualizing object-oriented systems has shown that animated plots of

information about class interactions are useful for identifying patterns

of behavior between classes. Interactive tools can let designers record

and organize their observations of object interactions. By plotting

matches and relying on the human visual system to identify patterns

of squares and diagonals, dotplots reveal similarity structures in data

regardless of format and in text and software regardless of language.

Grouping objects by similarity is a simple and natural strategy for

establishing order. Automatic detection of similarity structures is

useful for organizing multiple versions of large numbers of objects.

Approach goals (SQ1) Identify patterns in software at many different levels of abstraction.

Visualizations’ reuse-specific goals

(SQ1)

Allow to identify patterns that range in abstraction from the syntax of

programming languages to the organizational uniformity of large,

multi-component systems – given that pattern languages promote

reuse.

Software engineering activities

addressed by the visualizations

(TQ1.1)

 Software maintenance (software maintenance and analysis)

 Software design (software design)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Discovering and evaluating potentially reusable assets (identify

patterns to the organizational uniformity of large, multi-component

systems)

92

 Field Information to be extracted
A

u
d

ie
n

ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Software architect/designer (novice designers / designers)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)
Source code and related information (code, lines of code)

Source of visualized items/data

(TQ3.1)

C code and a database that includes information about when and why

the code was created or changed.

Collection procedure/method of

visualized items/data (TQ3.2)

A sequence is tokenized and plotted from left to right and top to

bottom with a dot where the tokens match.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Matrix / Matrix-like (dot, grid boxes)

Data-to-visualization mapping

(input/output) (TQ4.1)

A sequence is tokenized and plotted from left to right and top to

bottom with a dot where the tokens match. Dots off the main diagonal

indicate similarities. Darker areas indicate regions with a lot of

matches (a high degree of similarity); dark areas off the main diagonal

indicate a degree of similarity between submodules; the darker the

area, the higher the degree of similarity. Lighter areas indicate regions

with few matches (a low degree of similarity). Dark areas along the

main diagonal indicate submodules. Software sequences are tokenized

into lines of code so that a dot appears where two entire lines of code

match.

Visualization strategies and

techniques (TQ4.2)

 Clustering (concatenation to combine sequences / shuffling to

combine sequences / insertion (a trivial type of shuffling) /

reordering (a crude type of shuffling))

 Overview + detail (visual overview of the structure of enormous

systems)

 Sorting (concatenation to combine sequences / shuffling to combine

sequences / insertion (a trivial type of shuffling) / reordering (a

crude type of shuffling))

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

N/A

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

93

Table 28. Alonso & Frakes’s approach [Alonso1998483]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Visualization of Reusable Software Assets

Authors Alonso, O., Frakes, W. B.

Publication date (year/month) June, 2000

Publication type Conference

Source
Proceedings of the 6th International Conference on Software Reuse

(ICSR 2000)

Volume and Edition (for journals) N/A

Place (for conferences) Vienna, Austria

Pages pp. 251-265

Link (if applicable) http://dx.doi.org/10.1007/978-3-540-44995-9_15

Abstract

This paper presents methods for helping users understand reusable

software assets. We present visualization techniques for assets, and

describe the architecture and implementation of a system that supports

these techniques.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) N/A

Screenshot

94

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

If software engineers cannot understand components, they will not be

able to reuse them. However, current methods for representing

reusable components are inadequate. A study of four common

representation methods for reusable software components showed that

none of the methods worked very well for helping users understand

the components. For visualizing certain attributes some

representations are more suitable than others.

Statistics about reuse, numbers of hits and percentage of code reused

can be very helpful when the user is analyzing the history of reuse of

the component. Also, comparison is key for decision making.

Approach goals (SQ1) Help the user to understand and compare reusable components.

Visualizations’ reuse-specific goals
(SQ1)

Help users understand and integrate components into applications.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Software development with reuse (understand assets so they can reuse

them)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ structure / asset information / repository (help

understand components)
31

 Integrating reusable assets (integrate components into applications)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

User (users)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Component / Asset and related information (reusable software

assets, reusable software components)

 Source code and related information (source code, concept, content)

Source of visualized items/data

(TQ3.1)
The repository stores and manages the assets and its metadata.

Collection procedure/method of

visualized items/data (TQ3.2)

The approach emphasizes the understanding process assuming a

known search method. Using a search system, the user queries the

repository and get, if found, a list of assets. The repository stores,

manages, and provides a search mechanism for the assets and its

metadata. An intermediate representation allows for data interchange

between the repository and a visualization metaphor. If the

visualization metaphor supports the format, it will render it

accordingly. Otherwise, a transformer will map the intermediate

representation to the visualization metaphors format. The intermediate

representation consists of 3CML documents that represent assets and

its metadata in terms of the 3Cs. 3CML (3Cs Markup Language)

describes assets information in terms of the 3Cs model.

31

 The authors mention a model and system for storing, retrieving, and visualizing components in a software

repository, but the visualization is not used in this stage. The authors assume the existence of a system that can store,

retrieve, and manage different asset types [Alonso1998483].

95

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)
Hierarchy (trees, hyperbolic tree)

Data-to-visualization mapping

(input/output) (TQ4.1)

The files in 3CML are mapped to a visual structure, which augment a

spatial substrate with marks and graphical properties. It is important

that all the data in 3CML is mapped to a visual structure.

The concept is the root. Each content represents a link from the root.

Visualization strategies and

techniques (TQ4.2)

 Selection (double click and see the source code in the Web browser)

 Browsing / Navigation (navigation)

 Details on demand / Drill-down (double click and see the source

code in the Web browser)

 Filtering / Highlighting/Mitigation (highlighted)

 Panning / Drag-and-drop (point to the node and drag it)

 Overlap / Flipping (in comparative visualization the components are

compared using the same visualization (e.g. a table))

 Focus + context (focus + context technique / root at the center, but

the display can be transformed to bring other nodes into focus)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, in a web environment (the screen / web browser)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: It is assumed the existence of a system that can store, retrieve,

and manage different asset types. A web browser is also necessary.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Implemented as Java applets, it uses the 3C model (concept, content,

and context) through the 3CML (3Cs Markup Language).

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

96

Table 29. Dy-re (Dynamic reuse) [Biddle199992]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Reuse of debuggers for visualization of reuse

Authors Biddle, R., Marshall, S., Miller-Williams, J., Tempero, E.

Publication date (year/month) May, 1999

Publication type Conference

Source
Proceedings of the 5th Symposium on Software Reusability (SSR

1999)

Volume and Edition (for journals) N/A

Place (for conferences) Los Angeles, USA

Pages pp. 92-100

Link (if applicable) http://dx.doi.org/10.1145/303008.303037

Abstract

We have been investigating tool support for managing reuse of source

code. One approach we have been exploring is the use of visualization

in programming tools. A difficulty with this approach is that effective

program visualization of ordinary programs requires substantial

sophisticated low-level software. Our solution to this problem is to

reuse debugging systems in an innovative way. We present our

experience with this approach, both to evaluate the reusability of the

debugging systems we used, and to provide a case study in reuse.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Dy-re (Dynamic reuse)

Screenshot

97

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Making reuse technically easier is still important. The key

requirements are controllability and observability of running

programs; be target independent, and work with ordinary programs

and components, not just specially created or annotated code; be

unobtrusive, and not change the code itself to assist visualization.

Actions as low-level as the program code should be provided, because

it cannot be predicted what aspects of the code behavior the

programmer may be interested in. For portability and ease of use

reasons, actions from the compile phase should not be generated. This

leaves the executable phase as the best place to generate actions. A

debugger provides much of the functionality required, and any mature

programming environment has some form of debugging system. Most

debuggers require a compiler to embed information within the

generated code to assist debugging. A pure representation of the PMV

model might separate the components completely and develop a

communication protocol between them. However, it proved easier for

the mapping component and the visualization component to be parts

of the same physical program. Not all events will be important to a

visualization.

Approach goals (SQ1)

Help the programmers to understand some dynamic aspects involved

in code reuse and assist to better understand the structure of the

software they themselves are developing (supporting programming for

reuse, by dynamic display of the internal structure of software in

development), and better identify potentially reusable components

within the structure.

Visualizations’ reuse-specific goals

(SQ1)

Make it easy to detect patterns of usage and patterns of dependence

within a program – these patterns in turn help the programmer to

determine how best to articulate the structure of a program using

components that will be useful and independent for later reuse in other

contexts.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Software development for reuse (programming for reuse / Dy-re

addresses programming for reuse)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Discovering and evaluating potentially reusable assets (detect patterns

of usage and dependence within a program / determine how best to

articulate the structure of a program using components)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer for reuse (programmer)

98

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Source code and related information (C++ programs / code

components and their connections)

Source of visualized items/data

(TQ3.1)
Information gathered at runtime from executing code.

Collection procedure/method of

visualized items/data (TQ3.2)

General: The program component interacts with the target program.

Its purpose is to determine what the target program is doing, and send

information, in the form of actions, about what has occurred on to the

mapping component. Action generation can come from three possible

phases in program creation: at the source code phase, by modifying

the source code (manually or automatically) to generate the actions,

the compiler phase, by modifying the compiler to insert the actions,

and at the executable phase, using post-processing to generate actions

from information contained in the executable. Finally, actions can be

generated directly from the executable. Post-processing the executable

uses information contained in the compiled binary to generate events.

Dy-re: The tool works with software being developed in C++. When

the user selects the target program, Gdb reads in the debugging

information contained within the executable. Gdb extracts the names

of all the methods in the target program (excluding the basic system

library routines). It then places breakpoints at the start and end of

these methods so that the program will pause at these places. When

the user runs the program, if a message call or return occurs, the

program will pause. At this point it is possible to extract information

about the current state of the program (for example, the call stack).

The program is then restarted, so that from the user perspective, the

visualizations appear to be updated continuously. Dy-re runs the target

program, and the program may be paused, resumed, or restarted at any

time. As the program runs, Dy-re displays diagrams. The trace view is

based on the runtime call stack.

99

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)

 Hierarchy (sideways tree)

 Diagrams (diagrams)

Data-to-visualization mapping

(input/output) (TQ4.1)

The assemblies are typically objects (instances of classes) and the

dynamic structure of the program is shown where different objects are

involved in different dynamic structures. The diagrams show objects

as they are created. When one object calls a method of another object,

a line is drawn between the objects, and an envelope is animated

moving in one direction at the call, and back when the method returns.

Any call still current is represented by a red line, and calls already

complete are represented by black lines. The thickness of the line is

increased as calls from distinct places are detected, to greater

emphasize the occurrence of reuse, and highlight potential usefulness

of particular program units. The calls from one object’s method to

another object’s method are depicted from left to right on the

horizontal axis. Any period of execution is shown as a sideways tree,

with the root at the left, and any path through the tree represents the

run-time stack at a particular time. Together the horizontal and

vertical axes are used to show the run-time trace over a period of time.

Visualization strategies and

techniques (TQ4.2)

 Filtering (filtering out unwanted information)

 Filtering / Tuning/Tweaking (dynamic visualization / allow the user

to modify the graphical features of the display / the user could set

display colors, arrange the layout, or focus the visualization on

specific areas)

 Filtering / Collapse/Expand (objects can be expanded)

 Layout (when a method returns it remains shown, and later calls

from the same method are then displayed below using the vertical

axis)

 Animation (create an animated display)

 Sorting (displays the list of loaded classes ordered by the inheritance

hierarchy used by Java)

 Presentation / Simultaneous (multiple visualizations can be

displayed simultaneously)

 Overlap / Transparency (expanded objects are displayed

transparently against the background diagram to aid comprehension

that diagram reorganization might otherwise hinder)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

The PMV (program-mapping-visualization) component model is

applied (the extended version developed by Noble). For debugging C

and C++ code, Gdb (the Gnu source level debugger) is used. Besides,

the following frameworks and libraries are used: Expect, Tcl, and the

Tk graphics library (Tcl/Tk), “Expectk” [Lib94], a combination of

Expect and the Tk toolkit.

100

 Field Information to be extracted
E

v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

101

Table 30. Dyno [Biddle199992 / Marshall2001 / Marshall2001103]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title

Reuse of debuggers for visualization of reuse [Biddle199992]

Using and Visualizing Reusable Code: Position Paper for Software

Visualization Workshop [Marshall2001]

Visualising reusable software over the web [Marshall2001103]

Authors

Biddle, R., Marshall, S., Miller-Williams, J., Tempero, E.

[Biddle199992]

Marshall, S. [Marshall2001]

Marshall, S., Jackson, K., McGavin, M., Duignan, M., Biddle, R.,

Tempero, E. [Marshall2001103]

Publication date (year/month)

May, 1999 [Biddle199992]

October, 2001 [Marshall2001]

December, 2001 [Marshall2001103]

Publication type

Conference [Biddle199992]

Conference [Marshall2001]

Conference [Marshall2001103]

Source

Proceedings of the 5th Symposium on Software Reusability (SSR

1999) [Biddle199992]

Workshop on Software Visualization, 2001 ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA 2001) [Marshall2001]

Proceedings of the Australasian Symposium on Information

Visualisation (InVis.au 2001) [Marshall2001103]

Volume and Edition (for journals)

N/A [Biddle199992]

N/A [Marshall2001]

N/A [Marshall2001103]

Place (for conferences)

Los Angeles, USA [Biddle199992]

Tampa, USA [Marshall2001]

Sydney, Australia [Marshall2001103]

Pages

pp. 92-100 [Biddle199992]

?? [Marshall2001]

pp. 103-111 [Marshall2001103]

Link (if applicable)

http://dx.doi.org/10.1145/303008.303037 [Biddle199992]

http://www.research.ibm.com/people/w/wim/oopsla2001/papers/mars

hall.pdf [Marshall2001]

http://dl.acm.org/citation.cfm?id=564053 [Marshall2001103]

102

 Field Information to be extracted

Abstract

We have been investigating tool support for managing reuse of source

code. One approach we have been exploring is the use of visualization

in programming tools. A difficulty with this approach is that effective

program visualization of ordinary programs requires substantial

sophisticated low-level software. Our solution to this problem is to

reuse debugging systems in an innovative way. We present our

experience with this approach, both to evaluate the reusability of the

debugging systems we used, and to provide a case study in reuse.

[Biddle199992]

This paper describes a software visualization tool for helping a

developer reuse existing Java code. The tool supports the creation and

viewing of visual documentation of reusable code based on a

developer’s experience of using that code. The visual documentation,

in essence software visualisations, can be used by the developer to

understand what the code does, and how it does it. We have sought to

create a tool that can create customizable software visualizations of

Java code with minimal modifications to the code itself. This paper

looks at both our first prototype, a stand alone Java application called

Dyno, as well as at our second prototype called Vare. Vare expands

on Dyno by working over a network and also acting as a code

repository. We discuss the issues that have arisen so far in our

development of these prototypes. [Marshall2001]

This paper describes an architecture we have developed for web-based

visualisation of remotely executing software. The motivation for this

work is to allow users of web-based software repositories to explore

existing code components and frame-works, to see what they do, and

create interactive visual documentation of that code based on the

developer’s actions. This visual documentation can be used to

determine what the code or framework does, how it does it, and

whether it can be reused in the developer’s current project. The

architecture is designedy to be language neutral, and supports

customisable software visualisations, viewable through widely

available plug-ins to standard web browsers, and does not require

modification of the source code being visualised. [Marshall2001103]

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Dyno
32

Screenshot

32

 For dynometer [Biddle199992]

103

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Achieving effective software reuse is a difficult problem in itself, one

that requires more support than has generally been available. In many

cases of code reuse, only the compiled code is available and the

developer can not inspect the source. Moreover, the reusable code is

not typically an entire application in of itself. In this context, writing

trial programs, or “test-harnesses”, to explore how to use a component

is a common practice. Such programs typically invoke the methods of

the public interface of an object and then display the results returned

and the resultant state of the object so the programmer can check they

are consistent with expectations. This is not a substitute for

understanding of a component specification, but can be of assistance

in better understanding practicalities of actually using a component. In

order to determine the correct filtering, some input from the use is

required. However, the component writer and the visualization

template writer are not necessarily the same person, and each writer

has total control over the nomenclature used in their code. This

sometimes creates a problem as the purpose of the test driving is to

understand the component, and a developer may not know which

methods should map to which sequence. It is bordering on the

impossible for a tool to be able to automatically create mappings from

the arbitrary for the developer to say which method in the component

maps to which sequence. Note that this can be a one-to-one mapping,

or a many-to-one mapping. It is necessary to explore the development

of tools to explicitly support the reuse process, in particular how to

best help a programmer understand the reusable software well enough

so as to be able to use it effectively [Marshall2001]

[Marshall2001103]. At the point in the process where a programmer

has identified and retrieved a candidate component, such programmer

needs to verify that the component will actually meet their

requirements, and then needs to determine how to actually use the

component. Both these steps will require some level of understanding

of what the component actually does. For the fact that the user may

want to review visualizations of a component without having to re-

execute the method and re-set its state, the visualizations should be

stored separately. [Biddle199992].

Approach goals (SQ1)

Help the programmers to understand some dynamic aspects involved

in code reuse and help to better understanding the correct usage and

functionality of a component they are considering reusing, allowing

the programmer to take the component on a “test drive” in order to

understand the behavior of a Java component [Biddle199992]; help a

developer reuse existing Java code by creating customizable software

visualizations (dynamic documentation) of Java executing code

(getting all the necessary runtime information) with minimal

modifications to the code itself (i.e., “test-drive” by exploring the

behavior of a reusable Java component interactively), and provide the

developer with a deeper understanding of what the component does,

and how it does it, thus helping to decide if and how the component

can be reused [Marshall2001] [Marshall2001103].

Visualizations’ reuse-specific goals

(SQ1)

Make code reuse more appealing with a better understanding what the

code does, and how it does it.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Software development with reuse (programming with reuse / Dyno

addresses programming with reuse / reuse of software components)

104

 Field Information to be extracted

Reuse-related tasks supported by

the visualizations (TQ1.2)

Understanding assets’ behavior (better understand what the code does,

and how it does it)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

 Developer with reuse (programmer / developer / a developer

wishing to understand how a component works or what a

component does)

 Developer for reuse (a component writer who wishes to create

visual documentation of their own components)

105

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Source code and related information (Java programs / code

components (components are individual – or groups of – Java

classes) / list of loaded classes / methods and fields on that object /

the static methods and the static fields of that class / for objects, the

methods and fields for its supertypes / what methods were called

when, or who, by who, and with what arguments, what methods

returned when, and with what return values, what fields were

accessed, and when, what fields were modified, when, what they

modified to, from, and by who, what exceptions were thrown/caught

and when / data structures)

 Architecture / Design artifacts and related information (UML

diagrams)

Source of visualized items/data
(TQ3.1)

Information gathered at runtime from executing code.

Collection procedure/method of

visualized items/data (TQ3.2)

General: The program component interacts with the target program.

Its purpose is to determine what the target program is doing, and send

information, in the form of actions, about what has occurred on to the

mapping component. Action generation can come from three possible

phases in program creation: at the source code phase, by modifying

the source code (manually or automatically) to generate the actions,

the compiler phase, by modifying the compiler to insert the actions,

and at the executable phase, using post-processing to generate actions

from information contained in the executable. Finally, actions can be

generated directly from the executable. Post-processing the executable

uses information contained in the compiled binary to generate events.

Dyno: Visualizations are created from information gathered at runtime

from executing Java code. A visualization template is required so that

the tool uses it to determine what to draw, and when to draw it

(visualization templates describe the type of information to display).

The templates then use the information gathered at runtime to flesh

out concrete visualizations. Visualization templates are written in

Java, and component writers may even write visualization templates

that work specifically with their component rather than use general

purpose templates. That also means that the component writer may

create a template which will not work if it is used on any other

component. Visualizations are created from events that occur as code

executes during a test drive. Dyno uses JVMDI to place breakpoints at

the beginning of all methods (both instance and static) other than

those belonging to classes in the JDK distribution or those that

comprise Dyno itself. The user can then request that methods be

executed on an object or class in the system, and Dyno’s JVMDI code

will detect when methods are first entered, forwarding appropriate

information to the mapping component for further processing so that

visualization data can be produced. A view in the visualization

component reads in the information it needs for the attributes from a

file written out by the mapping component. This sequence of events is

then displayed one at a time creating an animation as the state of the

component being examined changes.

106

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)

 Hierarchy (binary tree diagram)

 Diagrams (UML sequence diagram)

 Others (not limited to any particular set of pre-determined

visualizations)

Data-to-visualization mapping

(input/output) (TQ4.1)

Information about events can be used to map to a frame or sequence

of frames in the visualization. In order to successfully map events in

the code to visualization sequences, there is the need for at least some

mapping information.

Visualization strategies and

techniques (TQ4.2)

 Selection (allows the user to select a class, object, or primitive, and

will then proceed to display information concerning the methods

and fields on that object / the user can select objects from the object

browser to be passed to the method invocation)

 Filtering (filtering out unwanted information / filtering the

information to locate only that information that is needed for the

visualization)

 Filtering / Tuning/Tweaking (dynamic visualization / allow the user

to modify the graphical features of the display / the user could set

display colors, arrange the layout, or focus the visualization on

specific areas)

 Animation (create an animated display / animation)

 Presentation / Simultaneous (multiple visualizations can be

displayed simultaneously)

 Linking (if an object is selected in the object browser, the methods

and fields for that object are displayed in the panel to the right)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Dyno is a stand-alone Java application, which uses the Java Virtual

Machine Debugger Interface (JVMDI). The PMV (program-mapping-

visualization) component model is applied (the extended version

developed by Noble). The Java Native Interface (JNI), serialization

API, and the Java Reflection API are also used.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods
(SQ7)

Practical use [probably by the authors themselves] (described in

[Marshall et al. 2002]
33

, cited by Marshall2001103) (usability

evaluations)

Application scenarios of the

visualizations (TQ7.1)
Not specified

Evaluated aspects (TQ7.2)
Usability (described in [Marshall et al. 2002], cited by

Marshall2001103)

Visualization evaluation

results/outcomes (TQ 7.3)

High usability is an important but difficult element of the software

tool design (described in [Marshall et al. 2002], cited by

Marshall2001103)

33

 [Marshall et al., 2002] Marshall, S., Biddle, R., Tempero, E. (2002). “How (not) to help people test drive code”.

In: 3rd Australasian User Interface Conference (AUIC 2002), Melbourne, Australia, pp. 39-42, January.

107

Table 31. Nested Software Self-Organising Map (NSSOM) [Ye2000266]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
A visualised software library: Nested self-organising maps for

retrieving and browsing reusable software assets

Authors Ye, H., Lo, B. W. N.

Publication date (year/month) ??, 2000

Publication type Article (Journal)

Source Neural Computing and Applications

Volume and Edition (for journals) v. 9, n. 4

Place (for conferences) N/A

Pages pp. 266-279

Link (if applicable) http://dx.doi.org/10.1007/s005210070004

Abstract

This paper presents an approach to self-structuring software libraries.

The authors developed a representation scheme to construct a feature

space over a collection of software assets. The feature space is

represented and classified by a variety of the self-organising map,

called the Nested Software Self-Organising Map (NSSOM),

consisting of a top map and a set of sub-maps nested in the top map.

The clustering on the top map provides general improvements in

retrieval recall, while the lower-level nested maps further elaborate

the clusters into more specific groups enhancing retrieval precision.

The results of preliminary evaluation showed that NSSOM is capable

of enhancing precision without sacrificing recall. In addition, a user-

friendly browsing facility has also been developed which helps users

predict the desired components by providing an intelligible search

space. The present approach attempts to achieve an optimal

combination of efficiency, accuracy and user-friendliness, which is

not offered by the existing software retrieval systems.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Nested Software Self-Organising Map (NSSOM)

Screenshot

108

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

The two key issues in developing a software library are: (a) what

information about software components is necessary to be stored in

the library; and (b) how this information is to be organised. Although

a large amount of research has been undertaken on the techniques of

structuring software libraries for the storage and retrieval of software

assets, none of them offers the right combination of efficiency,

accuracy and user-friendliness to facilitate a breakthrough in the

practice of software reuse. Controlled vocabularies and knowledge-

based techniques need intensive human effort in manual indexing or

knowledge acquisition and representation. Although the human effort

can be minimised in uncontrolled vocabularies by using automatic

indexing, the semantic relationship among software components are

often obscured. A single Software Self-Organising Map (SSOM) is

only suitable for a small software collection. When a software library

grows in size, recall can be maintained while precision tends to go

wrong. After a SSOM is established (i.e. a classified library of

software assets is formed), it should be able to accommodate a

continually expanding collection of components. The need of

continuous change is an inevitable process in most software

organisations. For a large library, a set of nested semantic maps may

serve as a set of catalogues of the library at different levels.

Browsing is an exploratory, information seeking strategy that depends

on serendipity. Navigating through large software libraries without

any guide to help users predict the desired components can be very

frustrating. The users may not know where to start the navigation or

may become disoriented during the browsing when facing a

sophisticated information space. Besides, manually interpreting the

semantic meanings of a map is a labour-intensive and tedious task,

especially for very high-dimensional feature spaces. As the users of

software libraries may deal with a particular software library for a

relatively longer time than the casual users in a general information

library, the accumulated knowledge with regard to the content and

organisation of the library gained from the previous browsing will

substantially improve their searching skills later.

Approach goals (SQ1) Make software libraries self-structuring.

Visualizations’ reuse-specific goals

(SQ1)

Help users predict the desired components by providing an intelligible

search space, and provide a whole picture of the library at a relatively

general level for finding some interests in certain subareas of the

semantic map.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Software development with reuse (software reuse / exploration of a

software library)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ structure / asset information / repository

(provide a whole picture of the library for finding some interests in

certain subareas)

 Searching and retrieving reusable assets (help to predict the desired

components / retrieval of software assets)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

User (users)

109

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Component / Asset and related information (software asset, software

components / semantic relationships among software components)

 Software repository and related information (software library)

Source of visualized items/data

(TQ3.1)
The feature space of a software library.

Collection procedure/method of

visualized items/data (TQ3.2)

The feature space of a software library is presented to the SOM as its

input data. After removing common function words and stemming,

each word in a document is assigned a weight based on how often it

occurs in the document, and how rarely it occurs in the remainder of

the collection. Single terms with a sufficient high weight are selected

as indices. The indices need to be grouped into concept classes and

stored in a thesaurus. The number of the total features in a corpus is

the dimension of the input feature vectors. Each document can be

represented as an input feature vector, each element of which

corresponds to a certain feature. If a feature exists in a document, the

value of the correspondent element is the weight of the feature,

otherwise the value is zero. All the vectors will form an input feature

space and be presented to a SOM. The node with the maximum

similarity is selected as the winning node. Such node c and its

neighbouring nodes will learn something from the current input x, and

their weights will be modified to make them more responsive to the

current input (updating reference vectors). Selecting winning nodes

and updating weight vectors should be iterated many times until a

steady convergence is obtained. The size of the subspace is defined by

a distance threshold (dt). All the neighbouring nodes that have a

distance less than the dt with centroid node c will form a subspace for

the nested map. If the number of components located in a subspace is

less than the predefined threshold, called ct, the corresponding NM

does not need to be constructed. The nested depth is defined by an

integer to denote which level the corresponding NM is located. The

features with higher frequency are considered the better

representations of semantic relationships among the components. A

set of single feature vectors whose correspondent feature has a

frequency greater than a pre-defined threshold is selected. By

comparing each reference vector to the set of single feature vectors in

terms of their Tanimoto similarity, the feature containing in the

winning single vector will be assigned to the corresponding node.

This latter step is repeated until all the nodes are assigned a feature.

110

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)

 Hierarchy (a top map and a number of nested maps (NM))

 Map (map, semantic map, dot on the map)

Data-to-visualization mapping

(input/output) (TQ4.1)

Each node in the grid denotes an artificial neurone and is

topologically connected with each other. Software components with

similar functions are mapped onto adjacent areas. Each input vector is

mapped to a node closest to it. The winning nodes responding to the

input vectors are marked with the name of the corresponding UNIX

commands.

The Top Map is the component map of a whole software component

collection, and the Nested Maps are software component maps of

subset of the whole collection. Each dot on the map indicates a node

and the numbers shown near individual nodes indicate how many

components are located in the corresponding nodes. Small rectangles

shown in the map indicate that there is a nested map for all the

components locating in the corresponding area.

A component space (representing the content of a software library)

and a feature space (explaining the semantic meanings of the

components stored in the library) are incorporated into a set of

semantic maps. Semantic explanations are the major features

distributed to the different regions of the maps, indicating the

functions associated with the components located in the

corresponding regions.

Visualization strategies and

techniques (TQ4.2)

 Selection (when this item is selected, the main features are displayed

in the list box and a NSM will be displayed (if it exists))

 Browsing / Navigation (user-friendly browsing facility / direct

browsing)

 Browsing / Querying (keyword-based browsing / based on the

keyword(s) or short statements submitted to the system)

 Details on demand / Drill-down (when this item is selected, the

main features are displayed in the list box and a NSM will be

displayed (if it exists))

 Details on demand / Labeling (nodes responding to the input vectors

are marked with the name of the corresponding UNIX commands /

numbers shown near individual nodes)

 Clustering (clustering / software components with similar functions

will be mapped onto adjacent areas of the output layer / nodes

geographically close to each other will have similar weights / a top

map and a set of sub-maps nested in the top map)

 Filtering / Highlighting/Mitigation (makes the most important

semantic relationships among the data items geometrically explicit)

 Overview + detail (users are able to get a whole picture of the

library from the TSM at a relatively general level and may find

some interests in certain subareas of the TSM)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)

 Mouse

 Keyboard

111

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)
Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

N/A

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)

Practical use [probably by the authors themselves] (retrieval

experiment) [similar to a benchmark analysis]

Application scenarios of the

visualizations (TQ7.1)

1) A small test collection containing 97 manual pages of the most

commonly used Unix commands.

2) A document collection consisting of more than 440 Unix manual

pages. [open source]

Evaluated aspects (TQ7.2)

1) Retrieval effectiveness of the NSSOM (measured by recall and

precision) compared with a public retrieval system – Personal

Librarian (PL).

2) Retrieval effectiveness of the NSSOM compared with Guru, a

representative of Information Retrieval based methods in software

storage and retrieval, and with the PL (by using an expanded query set

with all of the Guru’s queries and additional queries obtained from a

survey).

Visualization evaluation

results/outcomes (TQ 7.3)

NSSOM is capable of enhancing precision without sacrificing recall.

Improvement on precision was observed in comparison with a similar

software retrieval system and a publicly available full-text retrieval

system:

1) SSOM achieved a higher precision at the same level of recall than

PL.

2) Not only was NSSOM significantly better than PL, but also

achieved better precision at the same level of recall than Guru.

112

Table 32. Framework Interaction for REuse (Fire) [Marshall2001103]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Visualising reusable software over the web

Authors
Marshall, S., Jackson, K., Biddle, R., McGavin, M., Tempero, E.,

Duignan, M.

Publication date (year/month) December, 2001

Publication type Conference

Source
Proceedings of the Australasian Symposium on Information

Visualisation (InVis.au 2001)

Volume and Edition (for journals) N/A

Place (for conferences) Sydney, Australia

Pages pp. 103-111

Link (if applicable) http://dl.acm.org/citation.cfm?id=564053

Abstract

This paper describes an architecture we have developed for web-based

visualisation of remotely executing software. The motivation for this

work is to allow users of web-based software repositories to explore

existing code components and frame-works, to see what they do, and

create interactive visual documentation of that code based on the

developer’s actions. This visual documentation can be used to

determine what the code or framework does, how it does it, and

whether it can be reused in the developer’s current project. The

architecture is designedy to be language neutral, and supports

customisable software visualisations, viewable through widely

available plug-ins to standard web browsers, and does not require

modification of the source code being visualised. [Marshall2001103]

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Framework Interaction for REuse (Fire)

Screenshot

113

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Using a framework requires an intimate understanding of how it will

interact with the extensions that the programmer will provide –

knowledge that has to be learned. To acquire knowledge of a

framework’s behaviour can take a great deal of effort, and increases

the costs of development the first time a framework is used. This is

seen as one of the major problems with frameworks.

Approach goals (SQ1)

Support the visualization of framework interactions, which aids the

identification and understanding of the critical interactions between

framework and user objects.

Visualizations’ reuse-specific goals
(SQ1)

Help to understand how the frameworks are used.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Software development with reuse (code reuse / produce a new

application)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Understanding assets’ behavior (understand how the frameworks are

used)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer / programmer (advanced programmer)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)
Component / Asset and related information (C++ frameworks)

Source of visualized items/data

(TQ3.1)
Works with C++ programs compiled in the usual way.

Collection procedure/method of

visualized items/data (TQ3.2)
N/A

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)

Diagrams (diagrams based on UML / a static UML class diagram, a

UML sequence diagram, and an instance diagram)

Data-to-visualization mapping

(input/output) (TQ4.1)
N/A

Visualization strategies and

techniques (TQ4.2)

 Filtering / Tuning/Tweaking (allows the user to enlarge or reduce

their sizes)

 Filtering / Inclusion/Removal (hide irrelevant classes or objects)

 Panning / Drag-and-drop (move objects around on the screen to

customise the layout)

 Animation (animated, and updated immediately when the events are

received)

 Presentation / Simultaneous (allows simultaneous viewing)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, in a web environment (over the web / networked

computers)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

N/A

114

 Field Information to be extracted
E

v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

115

Table 33. Visualization Architecture for REuse (VARE) [Marshall2001103 / Anslow2004]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Visualising reusable software over the web [Marshall2001103]

Software visualization tools for component reuse [Anslow2004]

Authors

Marshall, S., Jackson, K., Biddle, R., McGavin, M., Tempero, E.,

Duignan, M. [Marshall2001103]

Anslow, C., Marshall, S., Noble, J., Biddle, R. [Anslow2004]

Publication date (year/month)
December, 2001 [Marshall2001103]

October, 2004 [Anslow2004]

Publication type
Conference [Marshall2001103]

Conference [Anslow2004]

Source

Proceedings of the Australasian Symposium on Information

Visualisation (InVis.au 2001) [Marshall2001103]

2nd Workshop on Method Engineering for Object-Oriented and

Component-Based Development, 19th Annual ACM Conference on

Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA 2004) [Anslow2004]

Volume and Edition (for journals)
N/A [Marshall2001103]

N/A [Anslow2004]

Place (for conferences)
Sydney, Australia [Marshall2001103]

Vancouver, Canada [Anslow2004]

Pages
pp. 103-111 [Marshall2001103]

?? [Anslow2004]

Link (if applicable)
http://dl.acm.org/citation.cfm?id=564053 [Marshall2001103]

http://dx.doi.org/10.1.1.91.7214 [Anslow2004]

Abstract

This paper describes an architecture we have developed for web-based

visualisation of remotely executing software. The motivation for this

work is to allow users of web-based software repositories to explore

existing code components and frame-works, to see what they do, and

create interactive visual documentation of that code based on the

developer’s actions. This visual documentation can be used to

determine what the code or framework does, how it does it, and

whether it can be reused in the developer’s current project. The

architecture is designedy to be language neutral, and supports

customisable software visualisations, viewable through widely

available plug-ins to standard web browsers, and does not require

modification of the source code being visualised. [Marshall2001103]

This paper describes our experiences with our software visualization

tools for web-based visualization of remotely executing object-

oriented software. The motivation of this work is to allow developers

to browse web-based software repositories to explore existing code

components and frameworks by creating visual documentation.

Components are test driven to capture their static and run-time

information in program traces and are then transformed into useful

visualizations. Visualizations can help developers understand what a

component does, how it works, and whether or not it can be reused in

a new program. [Anslow2004]

116

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ)

Visualization Architecture for REuse (VARE), which includes

Abstraction Tool (AT), XML Data Storage Environment (XDSE) and

Blur

Screenshot

117

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

The main reasons for wanting to reuse components are to save on

time, effort, and costs in both development and maintenance of quality

software. This will mean the developer will not have to implement a

new solution to an old problem. Instead they can recycle existing

components to solve their problem. There are many ways component

reuse can be applied. For example, copying and pasting code into a

new program, inheritance of classes, instantiation of common

methods within programs, using a framework, and using an

application programming interface. When reusing a component it may

need to be modified or extended in some way so that it will meet the

requirements of the new program. The assumption is that even

modifying or extending a component will result in the reduction of

time, cost and effort compared with designing the component from

scratch. A key benefit from reusing components is that when

modifications, bug fixes or updates occur, the developer can save time

by incorporating them into their program. Problems then don’t have to

be solved for every instance. This can happen on a global scale and

examples include online updates of both proprietary and open source

software.

To reuse a software component, developers need to understand what a

component does, how it works, and how it can be reused. For what a

component does, it is important to look at the external side-effects and

the results that occur as a consequence of interacting with a

component’s public interface. For how a component works, it is

important to look at the internals of a component. This is because it

may open up opportunities for modifying the component’s behavior to

what is required by replacing sub-components, extending components

or overloading methods. For how a component can be reused or

modified, it is important to look at how it has previously been used.

Helping developers understand components by creating visualizations

means that they will potentially be able to reuse a component in a new

program. However, this is difficult in practice. Currently, several

techniques exist to help understand how software works and these

include documentation, experimenting, and visualizations.

Documentation is sometimes provided with software either in online

or in written form, but is often difficult to use, read and understand.

Experimenting with reusable components means that developers will

gain practical experience and learn how components work.

Visualizing a component’s static or run-time information can show

developers how a component has been designed, and how it works

when executed. However, to visualize a design or a software

component, certain information has to be selected. Extracting the

correct information and gathering it in program traces is a difficult

procedure. Program traces are expensive to generate because they are

extremely large and take a long time to create. There are many factors

which can affect this procedure, such as the language a component is

written in, or the design complexity. [Anslow2004]

[Marshall2001103].

Approach goals (SQ1)

Explore existing reusable code components and frameworks by

creating visual documentation, besides storing and retrieving program

traces.

Visualizations’ reuse-specific goals
(SQ1)

Help to understand what a component does, how it works, and

whether or not it can be reused in a new program.

118

 Field Information to be extracted

Software engineering activities

addressed by the visualizations
(TQ1.1)

 Software development with reuse (reuse a component in a new

program / development)

 Software maintenance (maintenance)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ behavior (understand what a component does

and how it works)

 Integrating reusable assets (understand whether a component can be

reused in a new program)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer / programmer (developers)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)
Component / Asset and related information (reusable components)

Source of visualized items/data
(TQ3.1)

Test Driver: C++ and Java programs / the source or binary files.

AT: programs written in C++.

Blur: events in the run-time environment.

Collection procedure/method of

visualized items/data (TQ3.2)

Components are test driven to capture their static and run-time

information in program traces and are then transformed into useful

visualizations. Test driving (defined as “specifying a sequence of

method invocation and field access/modifications and then executing

the sequence on a component”) generates static and run-time

information about a component such as class descriptions and the

methods that have been invoked on objects. Two XML based program

trace languages were created for describing object-oriented programs.

Program traces are stored in an XML database and can be queried and

then transformed into Scalable Vector Graphics (SVG) visualizations.

The approach examines or spies on programs during execution and

gathers events in a program trace.

The design of VARE supports multiple programming languages. On

the client side, the user manages the activities associated with creating

and viewing a visualization. The component repository interface lets

the user select a component from the repository to create a component

set. Once this is created, the user can select an engine type from the

engine repository to control the test driving of these components. The

engine generates a program trace/test drive trace as output, which is

stored in the test drive report repository. A program trace is then used

as input to a transformer. The transformer repository interface lets the

user select the transformer to use and the program trace to use with it.

The transformer then transforms the program trace into an appropriate

visualization. Finally the finished visualization is stored in the

visualization repository.

Blur takes a PAL program trace and transforms it into a Scalable

Vector Graphics (SVG) visualization.

119

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)

Diagrams (static visualizations / run-time visualizations / UML class

diagram / sequence diagram)

Data-to-visualization mapping

(input/output) (TQ4.1)

The user selects the transformer to use and the program trace to use

with it. The transformer then transforms the program trace into an

appropriate visualization.

Visualization strategies and

techniques (TQ4.2)

 Browsing / Navigation (navigate)

 Filtering / Highlighting/Mitigation (highlights)

 Filtering / Tuning/Tweaking (provides user control for the different

parts in the visualization process)

 Filtering / Collapse/Expand (fold and unfold call sequences)

 Zooming / Geometric (zoom-in-out)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, in a web environment (web environment / over the

web)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: Apache/Jakarta Tomcat.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Scalable Vector Graphics (SVG), Program Mapping Visualization

(PMV) conceptual model, Process Abstraction Language (PAL),

GNU Debugger (GDB). AT is written in the Python scripting

language, and uses SOAP for remote method invocation. Reusable

Component Descriptions (RCD) are used for static information, and

eXtensible Trace Executions (XTE) for dynamic information. XDSE

is implemented with an Ipedo native XML database, SOAP, Apache

Tomcat, and XQuery. Blur is implemented as a Java Servlet.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)

N/A (“in past work on software tools to provide visualisation of

reusable software components, usability evaluations were conducted”)

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

120

Table 34. Mittermeir et al.’s approach [Mittermeir200195]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Goal-driven combination of software comprehension approaches for

component based development

Authors Mittermeir, R. T., Bollin, A., Pozewaunig, H., Rauner-Reithmayer, D.

Publication date (year/month) May, 2001

Publication type Conference

Source
Proceedings of the 2001 Symposium on Software Reusability (SSR

2001)

Volume and Edition (for journals) N/A

Place (for conferences) Toronto, Canada

Pages pp. 95-102

Link (if applicable) http://dx.doi.org/10.1145/375212.375264

Abstract

This paper reports on our approaches to combine various software

comprehension techniques (and technologies) in order to establish

confidence whether a given reusable component satisfies the needs of

the intended reuse situation. Some parts of the problem we are

addressing result from differences in knowledge representation about

a component depending on whether this component is a well

documented in-house development, some externally built

componentry, or a COTS-component.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

 Approach/tool name (PQ) N/A

Screenshot N/A

121

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

One of the key issues causing the Not-Invented-Here syndrome

remains: How can developers be sure that the component they plan to

use in their new construction venture meets the expectations placed

into it. In general, people are not interested in (and not capable for)

comprehending a larger piece of software in its entirety – they are just

interested to know, whether it does what they want it to do and

whether it does not what it should not do. A software engineer does

not need to know every detail about a component to be integrated.

S/he does need to know though, whether the component at hand

renders the required functionality and whether in doing so it would

not occasionally spoil parts of the system to be built by performing

unwanted functionality. The reuser, specifically the COTS integrator,

might not have all the information a maintainer might have at hand;

the reuser even more than the maintainer might be interested in

perusing the component at hand at various levels of granularity. The

reuser does need an adequate proxy for a full comprehension though.

Hence, a suitable way (perhaps the only way) is to correlate partial

evidence to form a hypothesis about what the piece at hand actually is

all about and then use further clues to either stepwise support this

hypothesis until a level of satisfactory trust is reached or to disprove

it.

Specific mechanisms have to be devised in order to compensate for

the loss of in-depth informal information. It is important to foresee

that the software to be integrated will come at different levels of

representation and it will be supported by different degrees of

documentation. There are differences in knowledge representation

about a component depending on whether this component is a well

documented in-house development, some externally built

componentry, or a COTS-component. If only binaries are available,

the armory for checking whether the respective software actually is

what it is supposed to be will be rather limited (although the situation

is not hopeless). But if other forms of documentation are available, the

set of comprehension aids will correspondingly become larger, thus

allowing for more efficient analysis. The role of source code in its

original textual form is quite limited, if the component to be analyzed

is beyond a critical size. It is known from source-code comprehension,

that the geometrical arrangement of statements substantially aids

comprehensibility. The same argument applies for specification styles

and the respective arrangement of properties and terms. It is important

to verify whether the specification is still a valid high level

representation of the code at hand.

The comprehension problem is to build oneself a conceptual model

about a piece of software; the representational form changes

depending on the level of abstraction and the level of

comprehensiveness of such a model. Humans do not comprehend (and

mentally manipulate) conceptual models when facing them as long

strings of text. We have to accept that “full comprehension” of some

sufficiently sizable piece of code is impossible anyway. Thus, the

proper combination of partial representations of software, be it

representations by means of test/trace-data, by means of source-code

or by means for formal specifications as well as variations in the level

of abstraction and presentation will help software engineers to more

effectively and more efficiently establish the trust needed to integrate

a component which is not invented here.

122

 Field Information to be extracted

Approach goals (SQ1)

Establish confidence whether a given reusable component satisfies the

needs of the intended reuse situation (i.e., investigate reusable

components) and identify whether the hidden state of such an object

(class) satisfies the properties a reuser is expecting from the piece of

code at hand, by combining various software comprehension

techniques (and technologies).

Visualizations’ reuse-specific goals

(SQ1)
Support the comprehension task.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Software development with reuse (investigating reusable components

/ COTS integration)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ structure / asset information / repository

(support the comprehension task)

 Integrating reusable assets (establish confidence whether a given

reusable component satisfies the needs of the intended reuse

situation)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

 Developer / programmer (software developer)

 Developer with reuse (reusers)

 Software engineer (software engineer)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Component / Asset and related information (component / trace

sequences represented by different test cases, dynamic models (state

charts), data-points)

 Source code and related information (state-bearing software

(objects, classes), source code)

 Requirements/Analysis artifacts and related information

(specification)

Source of visualized items/data
(TQ3.1)

Source code and component’s test logs.

Collection procedure/method of

visualized items/data (TQ3.2)

Some approaches to better grasp the semantic content of source code

are partitioning and visualization. Partitioning may require some kind

of slicing. Other partitioning strategies are declaration analysis,

signature analysis, chunking etc. They are valuable for focused partial

comprehension. Figuratively, a chunk can be seen as a “horizontal”

portion of code while a slice is a “vertical” portion cut along the data

and control-flow. For deriving an understandable and interpretable

behavioral model automatically by analyzing the effect (the test data)

of software directly, descriptions can be done based on the (relatively

simple) model of finite state machines, knowing that this covers only

a modest portion of potential software. Trace data (i.e., sequences of

function calls invoking a complex component) are available by

analyzing test logs. Traces are obtained by analyzing the component’s

test logs. Dynamic models (state charts) can be derived from (object-

oriented) source code. Variables, respective object attributes

maintaining state information are identified. From that attributes, the

potential states is inferred by analyzing conditions in the control flow

graph. Such identified states are the basis for revealing state

transitions by looking at the variable’s value changes. By considering

all identifiable objects of one class, many potential modification

curriculi can be derived. The combination of all potential modification

curriculi represents the final dynamic model of the component.

123

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)
Network / Graph (deterministic finite automaton)

Data-to-visualization mapping

(input/output) (TQ4.1)

Each line represents the sequence of method calls during a “life cycle”

of a component.

Colors can be used to model more than two dimensions on the plane

of a sheet of paper or a video screen.

Visualization strategies and

techniques (TQ4.2)

 Details on demand / Drill-down (cross-level trace from a

specification to its implementation)

 Filtering / Highlighting/Mitigation (syntax highlighting in source-

code helping to provide some specific focus on textual

representations / using graphics (or color) to highlight relatedness)

 Layout (partitioning for supporting comprehensibility by reduction

in volume)

 Animation (animation)

 Presentation (multiple representations (of different views) /

visualization (transformation into whatever form of two or even

higher dimensional representations) as a means to spread out

information in various dimensions)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

N/A

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods
(SQ7)

N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

124

Table 35. Charters et al.’s approach [Charters2002765]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Visualisation for informed decision making; from code to components

Authors Charters, S. M., Knight, C., Thomas, N., Munro, M.

Publication date (year/month) July, 2002

Publication type Conference

Source
Proceedings of the 14th International Conference on Software

Engineering and Knowledge Engineering (SEKE 2002)

Volume and Edition (for journals) N/A

Place (for conferences) Ischia, Italy

Pages pp. 765-772

Link (if applicable) http://dx.doi.org/10.1145/568760.568891

Abstract

The problem of trying to view and comprehend large amounts of data

is a well-known one. A specialised variant of this problem is the

visualisation of software code and components for the purposes of

understanding, decision-making, reuse and even integration. In

particular the visualisation of software components, at a much higher

level than source code, has received very little research. Visualisation

is a powerful tool in situations such as this. This paper presents the

application of real world metaphor based visualisations that address

this problem. The application of visualisation to selecting software

components is especially novel. It seeks to decrease the effort required

by system integrators when locating suitable components in what is an

increasingly crowded marketplace. Accurate information and

understanding are vital if correct and informed decisions and

judgements are to be made.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) N/A

Screenshot

125

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

New and novel methods for the selection of components are required

to ease the burden on the component purchaser. Whilst visualisation is

not a ‘silver bullet’ to the problem it has many advantages that can be

brought to bear on the problem of component selection. The use of

abstract visualisation features has already received a small amount of

attention in the software visualisation field and a real world

visualisation was decided to be worth investigation. The basic ideas of

exploiting metaphors and space to represent essentially intangible

attributes have proved useful with both code and components.

Approach goals (SQ1)

Increase the understanding of a given code and aid any future

development and maintenance, by providing a mechanism in which

informed decisions can be made.

Visualizations’ reuse-specific goals
(SQ1)

Provide an easily navigable environment with a shallow learning

curve for non-expert users allowing them to select components based

on multiple attributes and find a selection of components that could

possibly be used in the development of their system.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Software development with reuse (start of a project / finding and

evaluating components for the system)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Searching and retrieving reusable assets (find a selection of

components that could possibly be used in the development of their

system / allow to select components based on multiple attributes)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer with reuse (system integrators / developers of software

systems)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Component / Asset and related information (software components)

 Source code and related information (Java source code)

 Software repository and related information (static representation of

a software component repository)

Source of visualized items/data
(TQ3.1)

An XML representation of the software component repository.

Collection procedure/method of

visualized items/data (TQ3.2)

The generation for the visualisation uses an XML representation of

the software component repository detailing software components and

their functional properties. This XML file is fed into a self-organizing

map that is used to group the components based on their functional

properties. The results from the self-organizing map are then

transformed using XSLT into a VRML model of Component City that

can be viewed within any VRML Viewer or Web Browser with

appropriate plug-in.

126

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)

Real world metaphor (cityscape, world, country, city, districts,

streets/buildings/gardens/monuments, elements inside

buildings/gardens)

Data-to-visualization mapping

(input/output) (TQ4.1)

The colour of the buildings represents whether the method the

building represents is private or not. The height is a representation of

the number of lines of code. Similar components, sharing the same

functional properties, appear close to each other. Each building has a

minimum height of one storey and a roof, but for each extra ten lines

of code an extra storey is added to the building.

All buildings have a blue door – the reason being that a method may

have no parameters and there still needs to be a logical way for a user

to enter the building when exploring the environment. Parameters are

shown in number and type (at a basic level) by extra doors. A door

with either yellow or green paintwork shows all method parameters;

the formal type of the parameter determines the exact colour.

World is a flattened overview of Component City showing the

distribution of components, City is a more detailed overview

highlighting areas representing functionality groups, District is a

functionality group (components are clustered into districts based on

their functional properties and their relationship to other components),

and Building, that represents a single component or multiple very

similar components.

Buildings can be houses, which represent a single component,

Mansions, which represent two components, and Skyscrapers, which

represent more than two components (with skyscrapers the number of

levels indicates the number of components at that location).

The top of the monument has four arms, each of a different colour;

that arm corresponds to the colour of the corner monument to which

the arm is pointing.

The front door acts as an entry point, allowing to select the

component, while the windows indicate that a component has been

selected by changing their colour.

Visualization strategies and

techniques (TQ4.2)

 Selection (select the desired functionality and then descend to street

level)

 Browsing / Navigation (navigation)

 Details on demand / Drill-down (select the desired functionality and

then descend to street level)

 Clustering (clustering which brings together those components that

share functionalities allowing the user to review all the components

of a similar type in one area / functional groupings)

 Overview + detail (overview / examine in detail)

 Layout (block (grid) structure for layout (blocks as in a city and

roads))

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

In a virtual reality environment (VRML enabled browsers or

standalone viewers)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

127

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: Any VRML Viewer or Web Browser with appropriate plug-in.

Users can view the visualisation using standard VRML enabled

browsers or stand alone viewers.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Software World was implemented using a desktop virtual reality

system using C code. This C code was automatically generated from

the Java source code in a two-step process. The source was parsed in

order to populate a repository, and then from this the necessary code

for the visualisation was generated.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

Table 36. Test Driver + SpyApp + Transformer [Marshall200381]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Aspects to visualising reusable components

Authors Marshall, S., Jackson, K., Anslow, C., Biddle, R.

Publication date (year/month) February, 2003

Publication type Conference

Source
Proceedings of the Australasian Symposium on Information

Visualisation (InVis.au 2003)

Volume and Edition (for journals) N/A

Place (for conferences) Adelaide, Australia

Pages pp. 81-88

Link (if applicable) http://dl.acm.org/citation.cfm?id=857091

Abstract

We are interested in helping developers reuse software by providing

visualisations of reusable code components. These visualisations will

help determine if and how a given code component can be reused in

the developer’s new context. To provide these visualisations, we need

both formatted information and tools. We need a format to describe

the visualisations in. We need tools to create the visualisations. We

need a format to describe information about the component and its

runtime usage, and we need a tool to gather this information in the

first place. In this paper, we discuss our two wish-lists for the required

information formats. We set this against the background of software

visualisation and code reuse research. Currently we are working with

components from object oriented languages, specifically Java.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

 Approach/tool name (PQ) Test Driver + SpyApp + Transformer
34

Screenshot N/A

34

 Test Driver and Transformer are also mentioned in VARE and Spider as modules of these approaches. According

to [Marshall2001103], as opposed to Dyno and Fire, they are not described as a standalone application.

128

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Described separately at the end of this table (before Table 37), due to

space issues.

Approach goals (SQ1)

Help developers to reuse software by providing visualisations of

reusable code components, allowing to identify what information is

important in deciding if and how a component can be reused, and

develop tools to allow developers to create and view visualisations of

this information.

Visualizations’ reuse-specific goals
(SQ1)

Help to determine if and how a given code component can be reused

in the developer’s new context, guide a developer’s decision as to

whether a component is reusable in the developer’s current context,

and help foster understanding in the developers as to how they could

save time and effort through the process of reusing old code in new

contexts.

Software engineering activities

addressed by the visualizations

(TQ1.1)

 Software development with reuse (reuse software / development)

 Software maintenance (maintenance)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Integrating reusable assets (determine if and how a given code

component can be reused in the developer’s new context / whether a

component is reusable in the developer’s current context)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer with reuse (developers / reuser / code reusers)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Component / Asset and related information (reusable code

components, a given fragment of old code (referred to as a

component) / static and dynamic information present in a component)

Source of visualized items/data

(TQ3.1)
Events in the Java Virtual Machine and .class files.

Collection procedure/method of

visualized items/data (TQ3.2)

Java debugger libraries collect information gathered from developers’

experiences of using the component. The static information gathered

by the Test Driver can be done so from .class files. Dynamic

information is gathered purely from executing .class files as well.

SpyApp watch for events in the Java Virtual Machine. When these

events occur, SpyApp then collects event information through calls to

the JDI, and sends the collected information to the filesystem or a

database as output.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
N/A

Data-to-visualization mapping

(input/output) (TQ4.1)
N/A

Visualization strategies and

techniques (TQ4.2)
N/A

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

129

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)
Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

XML, Java Reflection API, Java Debugger Interface (JDI) and Java

are used.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

Test Driver + SpyApp + Transformer [Marshall200381] / Approach motivation/Assumptions (SQ1):

For all the benefits that reusing code is claimed to be able to deliver, it is perceived that code reuse is not as

widespread or as efficiently implemented as it could be. Certainly, code reuse does happen on some levels. A

common example of this is the increasing range and availability of libraries and APIs for the Java platform that offer

rich opportunities for reuse. But even where code reuse is possible, often the rewards in time and effort saved are not

as great as they could be due to problems in the process of reuse. There have been several areas of cost identified in

the reuse process, where cost is measured in time, effort and financial terms. Despite the other costs of reuse do exist

– notably the time to search for potential candidate components for reuse and the financial cost of purchasing

reusable components –, there is the cost of understanding. Research into software visualisations for understanding

program traces does exist, but much of this is not focused specifically on reuse and the information required in that

process. Text based is the most common form of documentation currently available, and it should be complemented

by visualisations, rather than be replaced entirely.

While code reusers are interested in what a component does, it will be of equal importance to understand

how to use that component. A code reuser is also approaching the reusable component from the perspective of

having it collaborate with other components that it was possibly not intended to be with originally. This means that

the component’s external influences are important to visualise as well. Code reusers are, like software visualisers,

trying to understand whether a component matches its specification, interested in the side-effects and results of a

component. To decide whether a potentially reusable component is useful in the new context, a developer must

know what the component does (component as a black box). The results of executing certain sequences of method

calls on a component’s public interface, or the side-effects of these sequences on other components’ data or the

component’s own state, will affect its applicability for reuse in a new context. If a component is to be reused, then

any information sent or requested by that component to such entities as a network, filesystem or database, needs to

be handled in the new context. It is important that the code reuser understands the requirements and actions of the

component with regards to the external environment. This ensures that any components whose needs can not be met

(either directly or through relatively minor modification) by the new context, can be discarded from the selection

process. Should a component require interaction with a user to perform its functionality, then this needs to be

understood by a code reuser if they are to make an informed decision as to its appropriateness in a new context.

There is also the question of how the component works. This is important as the resource or permission

requirements of operation may be prohibitive in the new context, and rule the component out as a candidate for

reuse. Understanding how the internals of the components work may open up opportunities for modifying its

behaviour to what is required by replacing sub-components or overloading methods (component as a white box).

Visualisations aimed at promoting understanding how a component works should incorporate feedback from the

author and users. Some visual techniques could be applied to the descriptions, to aid readability and understanding,

but people’s reports on their experiences of components remains a powerful way of sharing knowledge. The system

permissions required by a component affect its appropriateness for reuse in a given situation. Some environments

may restrict permissions for security reasons. Describing what permissions a component requires allows the code

reuser to make an informed decision regarding its usefulness. Should a component require other software to fulfill

its functionality, then visualising this information will enable a code reuser to better understand whether that

component is appropriate for reuse. Visualising the information may help to identify the specifics of what software

130

is required, why, and where. A code reuser can then investigate whether this other software is available and usable

in the new context. The performance of a component may make it prohibitively expensive to reuse in a new context.

Visualising this information gives the code reuser a better understanding of the appropriateness of a code component

within the restrictions placed by the new context. Visualising what methods get called, on what classes, and when,

may give the code reuser a better understanding as to what methods or classes need modifying to change the

behaviour. This relates primarily to the execution hidden by the public interface of the component. By tracing the

execution internal to a component, the code reuser can gain a better understanding of potential consequences and

alternative executions that can be created by overloading or replacing certain parts of the component. Issues of

threading, synchronisation, resource sharing and deadlock avoidance are important factors in deciding whether a

component is reusable in a new context. A component’s reliance on threads may make it unsuitable for a particular

architecture. Threading and synchronisation data may comprise a large amount of information. Using visualisation

techniques to highlight the important parts of this information can help the code reuser make a more informed

decision about the reusable component’s ability to work in collaboration with other components. Visualising the

time line of execution can help a code reuser measure the component’s performance against what is required, and

against other potentially reusable components fulfilling the same functionality.

When a developer has decided that what a component does (or can be easily modified to do) is what they

need, and that how it does it is acceptable to them, they will still need to understand how to reuse it. Examples

showing previous uses of the public interface of a component can show us how to link in the component to other

code in the new context. Reusing code may also involve extending the currently available functionality to match the

new requirements. Another barrier is the time and effort involved in installing the component for use in the new

project. Components may need more complex installation procedures. These could include recompilation for the

local architecture, and downloading of other ancillary components that the reused component needs to work.

To create visualisations we need to think about what information should be visualised. We also need to

consider the details of extracting, storing and transporting this information. Some software visualisation researchers

have designed their visualisation architectures so that the visualisation tool is built directly into the information

gathering tool. We wish to remove the tight coupling between the source and destination, by transferring the

information in an independent, consistent format – so that can be replaced and reused in different circumstances.

This will solve a common problem, where the captured information is abstracted too soon. Because a specific

visualisation abstracts away information unnecessary in that visualisation, information relevant to other types of

visualisation may be difficult to extract, or not even present. There is the need for an intermediary format for the

information gathered from a component, that can be used to generate a visualisation. The visualisations, as well as

the information about the component and its runtime usage, needs formats to be described in. There is also the need

for tools to create the visualisations and to gather this information in the first place. At the time of exploration the

software visualiser may not know what kinds of visualisations to view, or the need to view a different visualisation

may become apparent at a point in the future. It should be possible to store trace output on a filesystem or database,

so that it can be replayed in the future to produce a different visualisation. Often, understanding software through

visualisation is an explorative process, where a software visualiser will tinker with a component and view the

changes that the tinkering makes to the visualisation. Therefore, the changes detected may need to be transferred

directly as they occur, rather than being sent at the close of execution. Supporting live streaming may impose certain

restrictions upon the representation of the data. A file format should be able to be transferred in a culture neutral

representation, and the data format should support an easy method of filtering, so that only relevant information

need be passed. Any architecture involving the internet, and platform independent languages should transfer

information in a platform-neutral manner. Execution traces can get large very quickly. The format chosen will need

to be easily used, filtered and queried, even when it scales. The program trace information should be easily queried,

so that a transformer can efficiently request subsets of information. In spite of the variety of programming

languages, there is sufficient similarity between many object-oriented languages that it makes sense for the trace

format to represent the execution of any of these languages.

131

Table 37. Spider [Anslow2004 / Marshall200435]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title

Software visualization tools for component reuse [Anslow2004]

Using software visualisation to enhance online component markets

[Marshall200435]

Authors
Anslow, C., Marshall, S., Noble, J., Biddle, R. [Anslow2004]

Marshall, S., Biddle, R., Noble, J. [Marshall200435]

Publication date (year/month)
October, 2004 [Anslow2004]

January, 2004 [Marshall200435]

Publication type
Conference [Anslow2004]

Conference [Marshall200435]

Source

2nd Workshop on Method Engineering for Object-Oriented and

Component-Based Development, 19th Annual ACM Conference on

Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA 2004) [Anslow2004]

Proceedings of the Australasian Symposium on Information

Visualisation (InVis.au 2004) [Marshall200435]

Volume and Edition (for journals)
N/A [Anslow2004]

N/A [Marshall200435]

Place (for conferences)
Vancouver, Canada [Anslow2004]

Christchurch, New Zealand [Marshall200435]

Pages
?? [Anslow2004]

pp. 35-41 [Marshall200435]

Link (if applicable)

http://www.open.org.au/Conferences/oopsla2004/PapersME/4-

Anslow.pdf [Anslow2004]

http://dl.acm.org/citation.cfm?id=1082101.1082106 [Marshall200435]

Abstract

This paper describes our experiences with our software visualization

tools for web-based visualization of remotely executing object-

oriented software. The motivation of this work is to allow developers

to browse web-based software repositories to explore existing code

components and frameworks by creating visual documentation.

Components are test driven to capture their static and run-time

information in program traces and are then transformed into useful

visualizations. Visualizations can help developers understand what a

component does, how it works, and whether or not it can be reused in

a new program. [Anslow2004]

Online component markets can be costly for consumers to use, in

terms of the time and effort spent understanding the components on

offer. This cost of understanding will deter consumers from reusing

the available components. Software visualisations derived from the

components’ run-time behaviour can lessen the cost of understanding.

We have developed a prototype tool called Spider for providing this

functionality to producers and consumers. We discuss some of the

issues involved, along with our experiences in implementing the

prototype. [Marshall200435]

132

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Spider

Screenshot

T
a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Described separately at the end of this table (before Table 38), due to

space issues.

Approach goals (SQ1)

Browse web-based software repositories to explore existing reusable

code components and frameworks by creating visual documentation

[Anslow2004], and provide software visualizations of a component’s

behaviour [Marshall200435].

Visualizations’ reuse-specific goals
(SQ1)

Help to understand what a component does, how it works, and

whether or not it can be reused in a new program [Anslow2004], and

complement other existing documentation, thus helping consumers to

evaluate a candidate component (by giving them an insight into the

existing behaviour as well as possible means of extending that

behaviour) and helping producers advertise components

[Marshall200435].

Software engineering activities

addressed by the visualizations
(TQ1.1)

Software development with reuse (reuse of existing artifacts)

Reuse-related tasks supported by

the visualizations (TQ1.2)
Integrating reusable assets (help consumers evaluate components)

133

 Field Information to be extracted
A

u
d

ie
n

ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer with reuse (developers / consumers / the visualisation

audience are the consumers)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Component / Asset and related information (Java components,

component’s behaviour)

Source of visualized items/data

(TQ3.1)
Information stored in a component (the content of .class and jar files).

Collection procedure/method of

visualized items/data (TQ3.2)

Spider interprets information stored in a component, detects events in

the run-time environment, and interrogates the runtime environment’s

state. The information to be visualized is generated on the server-side.

Debugger and XML technologies are used to capture and store

interesting events. RCD documents are generated by analyzing the

content of the associated .class and jar files. XTE documents are

generated by listeners attached to a VM monitor. The listeners are

responsible for extracting useful information from the events sent by

the VM monitor. Test driving is performed through an HTML form.

The test drive is specified as a sequence of constructor or method

invocations on the component that is currently being investigated.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
N/A

Data-to-visualization mapping

(input/output) (TQ4.1)
N/A

Visualization strategies and

techniques (TQ4.2)

Filtering / Inclusion/Removal (filter out certain data, and focus on the

important information / remove extraneous information that is not

relevant to that goal)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, in a web environment (accessible through a

standard web browser / W3C standards-compliant web browser)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: Apache/Jakarta Tomcat.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Spider uses SGML/XML, HTML/CSS, Scalable Vector Graphics

(SVG) and XML. Reusable Component Descriptions (RCD) are used

for static information, and eXtensible Trace Executions (XTE) for

dynamic information. Java, servlets and JSP pages, besides JSP tag

libraries, are also used in Spider. The Java Reflection API and the

Java Debugger Interface (JDI) are also used.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods
(SQ7)

N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

Spider [Anslow2004 / Marshall200435] / Approach motivation/Assumptions (SQ1): In [Anslow2004],

motivation is the same from VARE’s motivation (described in Table 33).

Online markets bring together consumers and producers of reusable components. Consumers benefit by

having a central repository that they can refer to when they need to find functionality to implement a requirement in

a new system. Producers benefit by having a centralised audience for their sales pitch, whether the intention is to

create revenue by charging a license fee, or to solely build a user-base. Markets can categorise components by field,

134

language, and function. Markets also provide search engines that allow a consumer to narrow down a set of

candidate components through supplying some general keywords. Markets can also publish newsletters that

highlight new and popular components as they arrive.

Component markets attempt to reduce the costs for producers and consumers, but the approaches used to

achieve this still have some limitations, and the costs can still be sufficiently high to deter consumers. Such markets

can be costly for consumers to use, in terms of the time and effort spent understanding the components on offer.

This cost of understanding will deter consumers from reusing the available components. Consumers must search for

components applicable to their situation in a potentially huge search-space. This can be costly in time alone,

irrespective of whether services to support this are charged for. Once consumers have identified a small set of

components worth further study with respect to applicability, they must evaluate each component. This evaluation

involves gaining a better understanding of each component’s behaviour, and potential for extension or modification.

Thus, consumers must have access to material that can help them understand a component’s behaviour. This

documentation can include a producer’s text-based descriptions of form and function, as well as reviews written by

market reviewers, and by fellow consumers who have previously evaluated or used that component. This requires

time and effort be spent in program comprehension. There is also a cost associated with trusting a component, and

determining not only whether the candidate component matches the required functionality, but also whether it poses

a security risk in a trusted environment. Producers’ cost includes analysis and design of problem domains to extract

common functionality, as well as the points at which this common functionality should be extendible. This cost then

includes implementing and testing the code that performs this functionality. Finally, this cost also includes

advertising the component to a consumer base, through the creation of material to be used by consumers in making

an adoption decision; as well as also hosting the component for consumers to find. The cost of advertising to a

consumer base is partly alleviated by having a central point to which consumers come. The published newsletters

also benefit producers, especially those with an established reputation for excellence.

Component markets limitations in support are especially with regards to consumers understanding

components’ behaviour. Software visualisations derived from the components’ run-time behaviour can lessen the

cost of understanding. Consumers can use software visualisations to comprehend more information than they would

normally be able to do in a strictly textual format. Producers can create test-driven software visualisations to

advertise the features of their components. These software visualisations would then complement other text-based

documentation currently supplied. A key aspect to a successful visualisation is that useful information is not

obscured by unnecessary data. The producer is in a position to know which sequence of actions (i.e. calls to public

methods) results in a particular task being performed, and can tailor the visualisation to show this specific goal being

achieved. It is relevant to consider the intended audience for these visualisations, and what they intend to learn from

viewing them. A component’s runtime behaviour may consist of a massive number of events. If every event is

stored in the visualisation, then the resources required to store, process, view, and comprehend the visualisation

would be prohibitive. The consumers are viewing the visualisations to understand how the component works, and

are not in an informed position to significantly help with filtering out unnecessary data. It is not particularly useful

to capture all events that occur within another component (such as a standard library) even though it is due to the

candidate component’s behaviour. It would be sufficient to identify that the other component has been invoked,

along with the details of the service requested. When test driving a component, the server could note the version of

Java the component was implemented for. User interface components require a different means of control, as well as

components that use an event-listener model, which need special configuration before they can be test driven. There

may be a few scenarios where the component will not perfectly fit into the new context, as the server environment

may subtly differ from the consumer’s environment. It is unavoidable that the consumer will need to test the final

selected component in their own environment. [Marshall200435]

135

Table 38. Claims Exploration of Relationships Visualization (CERVi) [Wahid2004414]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Visualization of design knowledge component relationships to

facilitate reuse

Authors Wahid, S., Smith, J. L., Berry, B., Chewar, C. M., McCrickard, D. S.

Publication date (year/month) November, 2004

Publication type Conference

Source
Proceedings of the 2004 IEEE International Conference on

Information Reuse and Integration (IRI 2004)

Volume and Edition (for journals) N/A

Place (for conferences) Las Vegas, USA

Pages pp. 414-419

Link (if applicable) http://dx.doi.org/10.1109/IRI.2004.1431496

Abstract

Within the software development process, reuse at the requirements

level has become an increasingly more compelling notion. Following

a human-centric approach, this work focuses on both requirements

and design solution reuse using a design knowledge repository. In

recent years, many improvements have been made to increase reuse

through design knowledge repositories, but retrieval of knowledge in

the context of design activities continues to be a formidable challenge.

We propose a new system, called CERVi, to browse a repository

through visualization by exploiting relationships between units of

knowledge (in our case, claims). These relationships are key to

finding the most appropriate reusable knowledge based on design

conditions. Testing shows that CERVi enhances the design knowledge

selection process and helps users proceed through structured design

decision making. Our approach will be most useful to those interested

in unlocking the potential of design knowledge reuse.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Claims Exploration of Relationships Visualization (CERVi)

Screenshot

136

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

Component selection is a very important characteristic of reuse. The

ability to locate, compare, and select stored components is vital to the

success of a software reuse repository. However, most design

knowledge repositories do not support an outlined search strategy, a

series of steps they can follow depending on their needs, to ensure that

they will find all of the components they need. As with most

knowledge management systems, acquisition is the bottleneck. In

order to facilitate their reuse, Design knowledge claims must be

generalized, classified, stored in a design knowledge repository, and

retrieved as appropriate for use within a new design context. By

studying relationships types among knowledge components, users can

begin to follow links to find more components.

Approach goals (SQ1)
Browse a repository through visualization by exploiting relationships

between units of knowledge (in this case, claims).

Visualizations’ reuse-specific goals

(SQ1)

Find the most appropriate reusable knowledge based on design

conditions.

Software engineering activities

addressed by the visualizations
(TQ1.1)

 Software design (design)

 Analysis / Specification / Requirements engineering (requirements)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Searching and retrieving reusable assets (find the most appropriate

reusable knowledge based on design conditions)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Software architect/designer (designers)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Architecture / Design artifacts and related information (reusable

claims / claim relationships)

Source of visualized items/data
(TQ3.1)

A design knowledge repository.

Collection procedure/method of

visualized items/data (TQ3.2)

Designers can first use components discovered through a traditional

search query to find more by browsing and following relationship

links based on a certain design need.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Network / Graph (networked structure of relationships among claims)

Data-to-visualization mapping

(input/output) (TQ4.1)
Colors are used to represent relationship types between claims.

Visualization strategies and

techniques (TQ4.2)

 Selection (see claim details by clicking on a claim)

 Browsing / Navigation (navigating)

 Details on demand / Drill-down (see claim details by clicking on a

claim)

 Filtering (filter based on relationships / showing claims related to

the center claim)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse

137

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)
Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

N/A

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
Practical use [by others] (user testing, followed by a survey)

Application scenarios of the

visualizations (TQ7.1)
Performed by sixteen undergraduate HCI students. [academic]

Evaluated aspects (TQ7.2)

The impact of CERVi on finding reusable knowledge for interface

design, to verify that the defined relationships can be incorporated

into a strategy for locating claims, and to validate the tool as a

selection mechanism to facilitate claims reuse.

Participants’ perceived understanding of the relationships and their

use, the incorporation of those relationships into participants’ search

strategies, and the impact of the relationships on the resulting design

work.

Visualization evaluation

results/outcomes (TQ 7.3)

Descriptions of the envisioned systems were consistent and generally

appropriate for the given scenario. Search strategies were also

somewhat consistent. Approximately one third of the participants

produced effective designs; designs created using CERVi were

considerably better than those created using the traditional library

search mechanism. Most participants located the majority of their

claims using CERVi, and could easily retrieve a claim based on a

displayed relationship. Users who primarily used CERVi to search for

claims committed fewer errors and received higher design scores.

Participants gained a basic understanding of the four high level

relationships while that understanding decreased significantly for the

lower level relationships. There was uncertainty in using the

relationships to understand the underlying purpose of a related claim,

but they indicated that examination of claim details was a key aspect

of the selection process. Design scores for a second group of six

expert users (that were asked to perform the same tasks) rose

considerably.

138

Table 39. TRAceability Pattern Environment (TRAPEd) [Kelleher200550]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title A reusable traceability framework using patterns

Authors Kelleher, J.

Publication date (year/month) November, 2005

Publication type Conference

Source
Proceedings of the 3rd International Workshop on Traceability in

Emerging Forms of Software Engineering (TEFSE 2005)

Volume and Edition (for journals) N/A

Place (for conferences) Long Beach, USA

Pages pp. 50-55

Link (if applicable) http://dx.doi.org/10.1145/1107656.1107668

Abstract

To accomplish reusable traceability practices a common framework

must be established. In this paper we describe a traceability

framework which consists of a TRAceability Metamodel (TRAM)

and a TRAceability Process (TRAP). TRAM provides a language for

describing the elements of a traceability process. The TRAceability

Process (TRAP) is a process authoring tool for publishing product

lifecycle process configurations as a web site for practitioners to

access. A key component of the traceability process is the introduction

of traceability patterns which provide a standardized mechanism for

the visualization and communication of reusable traceability practices.

A tool environment supporting the traceability framework is

described. The TRAceability Pattern Environment (TRAPEd) is an

environment for the structured and collaborative design of a

traceability metamodel, process and patterns. Finally we represent the

traceability metamodel, process and patterns using Topic Maps (ISO

13250).

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) TRAceability Pattern Environment (TRAPEd)

Screenshot

139

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

Traceability patterns describe best practices, good traceability designs,

and captures successful work experiences. In spite of that, little

research focused on the reusability of engineering activities or the

recognition of commonalities in practices within the traceability

domain.

Approach goals (SQ1)
Provide a standardized mechanism for the visualization and

communication of reusable traceability practices.

Visualizations’ reuse-specific goals
(SQ1)

Visualize and communicate reusable traceability practices.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Analysis / Specification / Requirements engineering (requirements

management)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Integrating reusable assets (visualize and communicate reusable

traceability practices)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Analyst (requirement engineer)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Requirements/Analysis artifacts and related information (information

related to requirements and traceability / traceability items, their

attributes, and their relationships with other requirements /

requirement attributes, such as status and priority / relationships

between requirements)

Source of visualized items/data
(TQ3.1)

Information from different sources (customer requirements versus

project requirements).

Collection procedure/method of

visualized items/data (TQ3.2)

The traceability items can be stored in many different locations.

Information is retrieved on the progress of a project with regard to

priorities, workloads, and deadlines, the addition of new requirements,

and changing or unstable requirements. There is a round-trip

engineering from UML to XMI to CSV to XTM and vice versa. The

traceability metamodel and traceability patterns are represented in

UML. UML is converted to XMI, and XMI is transformed into CSV.

The CSV format is imported into a requirement management tool

(Rational RequisitePro) and the resulting traceability matrix is

reviewed. The XMI is finally converted to XTM, visualizing the

results topic maps.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Map (topic maps)

Data-to-visualization mapping

(input/output) (TQ4.1)

Traceability items, their attributes, and their relationships with other

requirements are displayed in nodes. Each requirement or any

traceability item can be represented as a topic. The relationship

between topics or traceability can be represented by an association.

Visualization strategies and

techniques (TQ4.2)

 Browsing / Querying (query functions)

 Clustering (topic maps can be merged into a single topic map and

integrated into a meaningful whole)

 Filtering (filtering)

 Sorting (sorting)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)

 Mouse (assumed)

 Keyboard (assumed)

140

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)
Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

The following technologies and frameworks are used: Software

Process Engineering Metamodel (SPEM) specification, Meta-Object

Facility (MOF), Unified Modeling Language (UML), XML Metadata

Interchange (XMI), XML Topic Maps (XTM) 1.1, TMQL (Topic

Map Query Language) and the TM4J (an open-source framework for

developing topic map processing applications) is used. The standard

topic map format used is XTM.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

Table 40. Visualisation of Execution Traces (VET) [McGavin2006153]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Visualisations of execution traces (VET): an interactive plugin-based

visualisation tool

Authors McGavin, M., Wright, T., Marshall, S.

Publication date (year/month) January, 2006

Publication type Conference

Source
Proceedings of the 7th Australasian User Interface Conference (AUIC

2006)

Volume and Edition (for journals) N/A

Place (for conferences) Hobart, Australia

Pages pp. 153-160

Link (if applicable) http://dl.acm.org/citation.cfm?id=1151780

Abstract

An execution trace contains a description of everything that happened

during an execution of a program. Execution traces are useful,

because they can help software engineers understand code, resulting

in a variety of applications such as debugging software, or more

effective software reuse. Unfortunately, execution traces are also

complex, typically containing hundreds of thousands of events for

medium size computer programs, and more for large scale programs.

We have developed an execution trace visualisation tool, called VET,

that helps programmers manage the complexity of execution traces.

VET is also plugin based. Expert users of VET can add new

visualisations and new filters, without changing VET’s main code

base.

141

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Visualisation of Execution Traces (VET)

Screenshot

142

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Code can be difficult to read either because of developers’ differing

writing styles, or because the code isn’t available for legal reasons, or

because control flow jumps from one block of code to some other

distant block of code, or because (in the case of languages that support

polymorphism) it can be difficult to say exactly what one statement

will do until the software is actually executing. The traditional

approach for understanding code is to read source code or

documentation written by the software’s author. This approach has

several problems: source code is static, complex, and hard to

understand; and documentation might be out of date or incomplete.

Associated documentation may or may not exist, and may not cover

the particular facet of the behaviour that the developer is interested in.

Execution traces are useful, because they can help software engineers

understand code, resulting in a variety of applications such as

debugging software, or more effective software reuse. Unfortunately,

execution traces are also complex, typically containing hundreds of

thousands of events for medium size computer programs, and more

for large scale programs. Moreover, a developer may only be

interested in one particular facet of an execution. Although debuggers

can be useful, they often require the developer to know where to insert

interesting breakpoints prior to understand the software. Capturing,

logging, and visualising run-time information requires significant tool

support to automatically extract and present useful information. While

sequence diagrams are useful for understanding what has happened

when software executes, they quickly become difficult to view as the

execution traces become large. A solution to the information overload

is to let developers configure their tools. As developers typically use

these tools because they do not understand the software, it can be

difficult for the developer to identify what is useful information before

actually seeing a visualisation of the information. Moreover, different

developers have different information requirements – affecting what a

tool needs to display as well as how that information should be

displayed. With a plugin-based architecture, users can build their own

filters and visualisations.

Approach goals (SQ1)

Help programmers to manage the complexity of execution traces, by

visualising the dynamic execution of software and letting users

interact with and understand execution traces.

Visualizations’ reuse-specific goals
(SQ1)

Help to understand code behaviour, resulting in more effective

software reuse.

Software engineering activities

addressed by the visualizations
(TQ1.1)

 Programming / Coding (programming)

 Quality assurance / Testing / Debugging / Profiling (debugging /

profiling
35

)

Reuse-related tasks supported by

the visualizations (TQ1.2)
Understanding assets’ behavior (understand code behaviour)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer / programmer (software engineers / programmers /

developers)

35

 Profiling (“program profiling”, “software profiling”) is a form of dynamic program analysis that measures, for

example, the space (memory) or time complexity of a program, the usage of particular instructions, or frequency and

duration of function calls. The most common use of profiling information is to aid program optimization.

143

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Source code and related information (method calls between objects /

how objects interact)

Source of visualized items/data

(TQ3.1)
Information stored in an execution trace.

Collection procedure/method of

visualized items/data (TQ3.2)

The execution trace format uses XML to store execution traces in an

architecture- and language-independent manner. XTE documents

information for events and also stores the values and references for

any objects that are created during the execution of the software.

Information stored in an execution trace is retrieved from other parts

of the VARE architecture. VET parses an execution trace and

converts it to an event-driven interface for visualisation and filter

plugins. It makes the events of an execution trace available through an

abstract API. An expert user of VET can define their own

visualizations that draw pictures using a provided API, and their own

filters. At appropriate times, VET will send messages to the user-

designed visualisation components, instructing them to update their

displays. It also allows for non-expert users to alter parameters of

these filters before, during and after the processing of an execution

trace. For every event, each active filter is queried to determine if the

event should be displayed by visualisations. After checking the event,

VET passes the event to every visualisation plugin. A plugin

architecture is used in the process.

144

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)

 Diagrams (sequence diagrams)

 Matrix / Matrix-like (class association diagram (otherwise known as

a call graph) / scatter-graph)

 Others (users can build their own filters and visualisations)

Data-to-visualization mapping

(input/output) (TQ4.1)

All the objects are listed on both the X and Y axis. The point (x, y) is

colour coded to represent how often object x has invoked a method on

object y. There is a horizontal list of objects, and a vertical time line.

Method calls are represented on the timeline as an arrow from the

object that makes the method call to the object that receives the

method call. The darkness of the shade in each part of the grid

indicates the amount of messages that have been passed from the class

on the x axis to the class on the y axis. In other words, the frequency

of method call events from any class to another class is represented by

the darkness in the shade of each square relative to other squares in

the grid. The green arrows on the diagram indicate alternative flows

that take place if the user adjusts the settings of one of the active

filters.

Visualization strategies and

techniques (TQ4.2)

 Browsing / Navigation (real-time dynamic queries)

 Details on demand / Drill-down (easily get detailed information

about any particular data point on demand / drill down / “details on

demand”)

 Filtering / Tuning/Tweaking (visualisations are updated in real time

as filtering criteria are adjusted)

 Filtering / Inclusion/Removal (remove information they are not

interested in / let the user filter out unwanted information)

 Overview + detail (show the user everything at once when they start

the program / get an overview of all information)

 Zooming / Semantic (text in the latter diagram is automatically

shown as rectangles when it is reduced below a size beyond human

readability)

 Presentation / Simultaneous (display multiple visualisations in

parallel)

 Overlap / Flipping (keeps the two visualisations synchronised at the

same location)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (built and

tested in both NetBSD and Linux Operating System environments)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

VET is built using the Python scripting language, and the Tk

graphical toolkit. It uses XTE, Reusable Component Descriptions

(RCD), and XML DOM objects.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

145

Table 41. Growing Hierarchical Self-Organizing Map (GHSOM) [Tangsripairoj2006283]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Organizing and visualizing software repositories using the growing

hierarchical self-organizing map

Authors Tangsripairoj, S., Samadzadeh, M. H.

Publication date (year/month) ??, 2006

Publication type Article (Journal)

Source Journal of Information Science and Engineering

Volume and Edition (for journals) v. 22, n. 2

Place (for conferences) N/A

Pages pp. 283-295

Link (if applicable) http://dx.doi.org/10.1145/1066677.1067023

Abstract

A software repository, a place where reusable components are stored

and searched for, is a key ingredient for instituting and popularizing

software reuse. It is vital that a software repository should be well-

organized and provide efficient tools for developers to locate reusable

components that meet their requirements. The growing hierarchical

self-organizing map (GHSOM), an unsupervised learning neural

network, is a powerful data mining technique for the clustering and

visualization of large and complex data sets. The resulting maps,

serving as retrieval interfaces, can be beneficial to developers in

obtaining better insight into the structure of a software repository and

increasing their understanding of the relationships among software

components. The GHSOM, which is an improvement over the basic

self-organizing map (SOM), can adapt its architecture during its

learning process and expose the hierarchical structure that exists in the

original data. In this paper, we demonstrate the potential of the

GHSOM for the organization and visualization of a collection of

reusable components stored in a software repository, and compare the

results with the ones obtained by using the traditional SOM.

V
is

u
a

li
za

ti
o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Growing Hierarchical Self-Organizing Map (GHSOM)

Screenshot

146

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

A software repository, a place where reusable components are stored

and searched for, is a key ingredient for instituting and popularizing

software reuse. It is vital that a software repository should be well-

organized and provide efficient tools for developers to locate reusable

components that meet their requirements. There should be tools for

developers to find the desired reusable components quickly and easily,

and hence to make better decisions in selecting the right components

for reuse. In a software repository that is possibly large and ever-

growing, the process of specifying, locating, and retrieving reusable

components can be complex and time consuming, and hence

frustrating if the software repository is not well-organized. It is crucial

that the software repository should be well-structured such that the

reusable components closest to the developers’ needs are easy to

discover. The use of the traditional Self-Organizing Map (SOM) may

not be practical when the number of software components stored in a

software repository is large. Therefore, applying dynamic SOM

models to software repository organization seems to be a more

promising alternative.

Approach goals (SQ1)
Organize and visualize a collection of reusable components stored in a

software repository.

Visualizations’ reuse-specific goals

(SQ1)

Obtain better insight into the structure of a software repository and

increase understanding of the relationships among software

components.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Software development with reuse (reuse-based software development)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Understanding assets’ structure / asset information / repository (obtain

a better insight into the structure of a software repository and increase

understanding of the relationships among software components)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer / programmer (developers)

147

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Component / Asset and related information (reusable components – a

reusable component can be any software document or work product

generated during the software development process, examples include

requirement analysis documents, architectural designs, code modules,

test plans, test cases, and documentation)

Source of visualized items/data
(TQ3.1)

Stored in a software repository.

Collection procedure/method of

visualized items/data (TQ3.2)

SOM takes a set of inputs and maps them onto the neurons of a two-

dimensional grid. The weight vectors are randomly initialized at the

first stage. Then, the SOM network performs learning in two main

steps, and determines the winning neuron for a given input vector,

selected randomly from the set of all input vectors. For every neuron

on the grid, its weight vector is compared with the input vector by

using some similarity measures, e.g., Euclidean distance. The neuron

whose weight vector is closest to the input vector is selected to be the

winning neuron. After a winning neuron is determined, the weight

vectors of the winning neuron and all of its neighboring neurons are

adjusted by moving toward the input vectors according to the learning

rule. This learning process progresses repeatedly until it converges to

a stable state where there are no further changes made to the weight

vectors when they are presented with the given input vectors. After

the training has been completed, an orderly map is formed in such a

way that the topology of the data is preserved and becomes

geographically explicit in that similar input data are mapped onto

nearby regions of the map.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)

 Hierarchy (tree structure where the maps at each layer can branch

out to additional maps at the subsequent layer)

 Map (map)

Data-to-visualization mapping

(input/output) (TQ4.1)

Similar input data are mapped onto nearby regions of the map.

The size of these Self-Organizing Maps and the depth of the hierarchy

are determined during its learning process according to the

requirements of the input data.

Visualization strategies and

techniques (TQ4.2)

 Clustering (mapping of high-dimensional input space onto a low-

dimensional (usually two-dimensional) map, where similar input

data can be found on nearby regions of the map / clustering / the

clusters are the areas with high data densities on the map that are

further hierarchically expanded by growing SOMs)

 Overview + detail (the upper layers show a coarse organization of

the major clusters in the data, whereas the lower layers offer a more

detailed view of the data)

 Hierarchical visualization (a hierarchy of multiple layers where each

layer consists of several independent growing SOMs)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

A SOMLib4 Java package is used to extract keywords and create the

feature vectors, while MATLAB SOM Toolbox5 and GHSOM

Toolbox6 are used for the construction of the SOM and the GHSOM.

148

 Field Information to be extracted
E

v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)

Practical use [probably by the authors themselves] (experiment)

[similar to a benchmark analysis]

Application scenarios of the

visualizations (TQ7.1)

273 samples of C/C++ program source code files (gathered from

textbooks widely used in computer science classes) were used.

[academic]

Evaluated aspects (TQ7.2) Results of the application of the SOM against the GHSOM.

Visualization evaluation

results/outcomes (TQ 7.3)

Both SOM and GHSOM were successful in creating a topology-

preserving representation of the topical clusters of the software

components. However, when dealing with a large number of software

components, GHSOM behaved better than SOM: GHSOM was able

to reveal the inherent hierarchical structure of the data into layers and

provided the ability to select the granularity of the representation at

different levels of the GHSOM.

Table 42. Washizaki et al.’s approach [Washizaki20061222]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
A system for visualizing binary component-based program structure

with component functional size

Authors Washizaki, H., Takano, S., Fukazawa Y.

Publication date (year/month) ??, 2006

Publication type Article (Journal)

Source WSEAS Transactions on Information Science and Applications

Volume and Edition (for journals) v. 3, n. 7

Place (for conferences) N/A

Pages pp. 1222-1230

Link (if applicable) N/A

Abstract

Component-based software development is a development approach

which aims to reduce development costs and increase software

reliability. With component-based development, often new program is

created quickly by reusing components in binary form that have been

developed by third parties, without access to the source code of those

components. In order to maintain such program on an on-going basis,

it is important to be able to visualize the overall structure and behavior

of the program. However, because existing program visualization

systems need to analyze the program source code, it has been difficult

to apply them to program that incorporates components in binary

form. In this paper, we propose a program visualization system which

does not make use of the source code, but uses two techniques,

reflection and byte-code analysis, to measure the functional size of

each component and to determine the dependency relationships

among components and helper classes. These results are used to

provide an accurate visualization of the overall structure of the

component-based program. Our system can be applied to programs

built with JavaBeans components. As a result of comparative

evaluations, it is found that our system is useful for visualizing binary

component-based program structure with component functional size

to support maintenance activities.

149

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) N/A

Screenshot

150

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

Often in component-based development, components that have been

developed by a third party and delivered in binary format (without

access to the source code) are reused to build new software quickly. It

is well known that much of the time spent maintaining software is

consumed in simply understanding the software. In order to

effectively maintain software that has been obtained through

component-based development on an on-going basis, it is necessary to

provide the maintainer with an intuitive understanding of the software

as a collection of components. However, visualizing a program that

was created by incorporating binary components is very difficult. For

binary components whose internals are hidden, as the functional size

increases, the component’s applicability for reuse increases, but the

effort required understanding the functionality also increases, so it

may also indicate additional problems in terms of maintenance.

Conventional visualization systems do not distinguish between classes

and components that make up the program. They do not allow the user

to visually differentiate them, and provide no support for an intuitive

understanding of the internal structure. Further, analysis of the source

code is a prerequisite for using these existing systems, so they cannot

handle parts of binary component based program for which the source

code is not available.

Approach goals (SQ1)
Support maintenance activities, i.e., perform maintenance tasks such

as fixing bugs or adding extensions efficiently.

Visualizations’ reuse-specific goals

(SQ1)

Help programmers gain the understanding of the binary component-

based program and give an intuitive understanding of the overall

functional size, as well as whether the break-down and allocation of

functionality within the program is appropriate.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Software maintenance (maintenance)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Understanding assets’ structure / asset information / repository (help

to gain the understanding of the binary component-based program and

give an intuitive understanding of the overall functional size)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer / programmer (programmers)

151

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Component / Asset and related information (the static structure of

component-based program, binary components, the static structure of

a program made up of helper classes and components provided in

byte-code format / dependency relationships between components

(and helper classes), functional size of the components (which gives

an indication of the amount of functionality provided by the

component), the number of methods, properties and events made

public by a component)

Source of visualized items/data

(TQ3.1)
Components and Java byte-code.

Collection procedure/method of

visualized items/data (TQ3.2)

Reflection and byte-code analysis are used for obtaining the

dependency relationships, i.e., by using the Java reflection and

JavaBeans introspection functions and by analyzing the byte-code of

the components. The functional size measurement values are obtained

using a component-size metric. Component analysis determines

whether a Java class satisfies the JavaBeans specifications as

described above, and if it is a Bean, its functional size is determined

using the Bean reflection mechanism. Dependency analysis, in its

turn, is done by analyzing the data in the constant pool within the Java

byte-code, and obtaining the dependency relationships between

classes. To compute a reference value for the functional size of a

component (FOC) metric, evaluation data from the contributed

components made available on JARS.COM are used. On JARS.COM,

a large number of Beans in various categories such as Programming

and Utilities are judged (by development experts) and given an 8-level

evaluation with respect to expressiveness, functionality and

originality. This 8-level evaluation is normalized to fit into the range

[0, 1] (1 being best), and is called the JARS evaluation.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Geometric forms (box, spheres, straight lines)

Data-to-visualization mapping

(input/output) (TQ4.1)

Dependency relationships and functional size information are

arranged within a 3-D space.

Components are visualized as boxes which reflect the value of the

functional size of a component (FOC). The number of methods,

events and properties are related to the width, depth and height of the

box, respectively, so that the volume of the box is a visual

representation of the FOC, the component functional size.

If the FOC of a component is less than the FOC reference value, the

box is displayed in blue, and if it exceeds the standard value, the box

is displayed in red.

Java classes which are not components are displayed as light-green

spheres. Dependency relationships are displayed as straight lines

joining the visualization objects of the classes or components in the

relationship.

Visualization strategies and

techniques (TQ4.2)

 Layout / 3D (3-D coordinate space / the 3-D coordinate data

obtained using the visual mapping is output to the 2-D image)

 Zooming / Geometric (zoom-in/out)

 Rotating (rotate)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

152

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)
Hardware and software

requirements/dependencies (SQ6)

 SW: Jun for Java.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Implemented in Java, it uses the introspection mechanism and

reflection mechanism provided by the language. It also uses the

Javassist byte-code analysis tool and Jun for Java, a 3-D

graphics/multi-media framework.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

153

Table 43. DigitalAssets Discoverer [Gonçalves2007872 / Oliveira2007461]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title

DigitalAssets discoverer: Automatic identification of reusable

software components [Gonçalves2007872]

Automatic Identification of reusable Software development assets:

Methodology and tool [Oliveira2007461]

Authors

Gonçalves, E. M., Oliveira, M. D. S., Bacili, K. R.

[Gonçalves2007872]

Oliveira, M., Gonçalves, E. M., Bacili, K. R. [Oliveira2007461]

Publication date (year/month)
October, 2007 [Gonçalves2007872]

August, 2007 [Oliveira2007461]

Publication type
Conference [Gonçalves2007872]

Conference [Oliveira2007461]

Source

Proceedings of the 22nd Conference on Object-Oriented

Programming Systems, Languages, and Applications (OOPSLA

2007) [Gonçalves2007872]

Proceedings of the 2007 IEEE International Conference on

Information Reuse and Integration (IRI 2007) [Oliveira2007461]

Volume and Edition (for journals)
N/A [Gonçalves2007872]

N/A [Oliveira2007461]

Place (for conferences)
Montreal, Canada [Gonçalves2007872]

Las Vegas, USA [Oliveira2007461]

Pages
pp. 872-873 [Gonçalves2007872]

pp. 461-466 [Oliveira2007461]

Link (if applicable)
http://dx.doi.org/10.1145/1297846.1297932 [Gonçalves2007872]

http://dx.doi.org/10.1109/IRI.2007.4296663 [Oliveira2007461]

Abstract

DigitalAssets Discoverer is a tool that implements a group of

indicators for automatic identification of software components that

can be reused in the development of new applications and Web

Services. This tool brings into light the J2EE applications portfolio

developed in-house, increasing productivity and anticipating the ROI

in companies. The process of components harvesting and analysis

uses an interactive user graphical interface that enables the tuning of

selected indicators, visualization of the results and publishing the

identified components into a reusable software development assets

repository. [Gonçalves2007872]

Software reuse is seen as one of the main alternatives to increase

productivity in the development of new applications. The reuse of

legacy assets plays a vital role anticipating the ROI (Return on

Investment) on SOA (Service Oriented Architecture) and reuse

enterprise programs. This paper presents a tool that implements an

Automatic Identification of Software Components (AISC). AISC is an

approach that brings to light what companies have already developed

by applying reuse indicators with sophisticated mechanisms to

identify artifacts that can be considered as reusable assets. Thus, they

will have the potential of being reused in new applications, avoiding

redevelopment of already existing features, enabling savings and

increasing agility. Other tool features are the process of reusable

assets analysis and harvesting. This is an interactive graphic

visualization of the results and an export mechanism of the identified

assets through a widely adopted Metadata Representation Model.

[Oliveira2007461]

154

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) DigitalAssets Discoverer

Screenshot

T
a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

One of the main concerns in reusing software is to optimize the

process of finding suitable components for a given need and providing

enough information for the proper and efficient use of these

components. It is useful for the analyst to have well structured

descriptions related to the asset in the repository, when the

components candidate to be reused are analyzed. Moreover, the task

of tracking the reusable assets from a legacy applications portfolio, as

they are consolidated and populated into digital libraries across

environments, is highly dependable on supporting tools.

Approach goals (SQ1)

Provide automatic identification of software components in order to

help companies in their reuse and SOA initiatives anticipating the

ROI (Return on Investment), and bring to light what companies have

already developed by applying reuse indicators with sophisticated

mechanisms to identify artifacts that can be considered as reusable

assets.

Visualizations’ reuse-specific goals

(SQ1)

Evaluate the candidates to become components, i.e., help to inspect a

group of applications, configure and trigger the identification

mechanisms, tune and reapply them in the analysis process.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Software development with reuse (development / software

components that can be reused in the development of new

applications)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Discovering and evaluating potentially reusable assets (evaluate the

candidates to become components, inspecting a group of applications)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Analyst (analyst)

155

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Component / Asset and related information (software assets

(components, services, procedures, etc.), assets recommended for

reuse, assets’ artifacts, components suggested as reusable / module

dependency, assets’ relationships)

 Source code and related information (relationships within the

classes, knowledge base [structure of the source code])

Source of visualized items/data
(TQ3.1)

Existing applications selected for the analysis / Scanned source-code.

Collection procedure/method of

visualized items/data (TQ3.2)

The approach uses an API to obtain the identified cluster (which are

considered as reusable components). The graph is derived as follows:

(i) Detect the application roots in the dependencies graph and obtain

reachable sub-graphs that will become the entry point for the

dominance analysis process; (ii) Obtain a dominance tree (or a list of

immediate dominators); (iii) Apply grouping heuristics; (iv) The

suggested components and the consisting artifacts are presented and

registered in the repository. A matrix representation and algorithms

for sort and identification of cycles in DSM are also indicators to

automatically find reusable components, as follows: (i) Get a “plain”

representation of the packages structure (not considering the

hierarchy) and the interdependencies found statically; (ii) Execute the

partitioning algorithms using the Reachability Matrix Method and the

algorithm of identification and grouping of cycles Path Searching in a

DSM data structure; (iii) Some interpretations are considered for

grouping (dependencies in series, in parallel and cycles); (iv) The

suggested components and the constituting artifacts are presented and

registered in the repository. The tool scans existing applications,

executes a code analyzer to extract static information from source

code (artifacts and relationships), and applies a series of indicators to

obtain a group of artifacts with reuse potential, as follows: (i)

Scanning the existing applications selected for the analysis; (ii)

Creation of a knowledge base starting from the analysis, with the

identification of internal and external references in addition to the

internal architecture; (iii) Execution of the indicators (can be done

repeatedly based on the reconfiguration of the indicators); (iv)

Harvesting, when a group of artifacts suggested as reusable assets is

presented, and the analyst decides for the relevance of this suggestion

capturing the components and exporting them as a RAS package.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Network / Graph (graphic-based visualization, graphs)

Data-to-visualization mapping

(input/output) (TQ4.1)
N/A

Visualization strategies and

techniques (TQ4.2)

 Selection (interactive user graphical interface that enables the tuning

of selected indicators)

 Browsing / Navigation (navigation)

 Clustering (hierarchical clustering allowing various grouping

granularities)

 Filtering / Highlighting/Mitigation (highlighting related classes)

 Filtering / Inclusion/Removal (an interface offers the option of

ignoring a group of assets)

 Filtering / Tuning/Tweaking (tuning of selected indicators / an

interface offers the option of modifying or importing a group of

assets)

156

 Field Information to be extracted
M

ed
iu

m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

The Reusable Asset Specification (RAS) model, Bunch and Prefuse.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods
(SQ7)

1) Practical use [probably by the authors themselves] (tests for proof

of value)

2) Practical use (tests executing the tool)

Application scenarios of the

visualizations (TQ7.1)

1) Typical web applications, including component-based solutions as

well as legacy applications with little architectural planning in terms

of modularization.

2) Tests were conducted in partnership with an outsourcing software

development company, using J2EE applications with more than 1000

Java classes. [commercial]

Evaluated aspects (TQ7.2)
1) Not specified

2) Not specified

Visualization evaluation

results/outcomes (TQ 7.3)

1) Results were more successful in architecturally consistent

applications. In the case of chaotic architecture applications the tool

pointed quality features and some suggestions to improve its design

before identifying reusable components.

2) The executions enabled the extraction of reusable assets and its

inclusion in tools for governance.

157

Table 44. Gilligan [Holmes2007100]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Task-specific source code dependency investigation

Authors Holmes, R., Walker, R. J.

Publication date (year/month) June, 2007

Publication type Conference

Source
Proceedings of the 4th IEEE International Workshop on Visualizing

Software for Understanding and Analysis (VISSOFT 2007)

Volume and Edition (for journals) N/A

Place (for conferences) Banff, Canada

Pages pp. 100-107

Link (if applicable) http://dx.doi.org/10.1109/VISSOF.2007.4290707

Abstract

We present a simple, visual approach to help developers view and

navigate structural dependency information, aimed specifically at

pragmatic reuse tasks. Our visual approach, implemented as the

Gilligan tool, uses standard GUI widgets (such as lists and editors)

that developers are familiar with. Gilligan represents complex

dependency data in a simplified format, appropriate for investigating

reuse tasks. We present a small-scale, semi-controlled experiment that

indicates that the approach permits more accurate identification of

relevant structural dependencies with a lower time investment, as

compared to traditional manual approaches. Last, we discuss the

potential for the approach to aid in other specific software

understanding tasks.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Gilligan

Screenshot

158

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Developers often wish to reuse source code in ways that it has not

been designed to be reused. As a given project supports functionality

similar to what the developer wants to provide, she investigates this

project to see if she can reuse any of its source code; while such

project was not designed for reuse, it still may offer functionality she

can benefit from. Developers undertaking such pragmatic reuse tasks

can benefit from tool support to quickly and accurately identify the

structural dependencies (e.g., classes and methods that they reference)

of any source code fragments they are considering reusing. In this

sense, Integrated development environments (IDEs) facilitate the

navigation of the structural dependencies of source code.

Understanding the scope of a source fragment’s dependencies is

essential for a developer to make an informed decision about whether

to reuse the fragment or to reimplement its functionality. A source

code entity need be investigated only if it is reachable transitively

through other entities that are to be reused. If the referenced entity is

of no use to the developer, she then has to consider whether the

dependency can be dead-ended (i.e., the method call or field reference

will be eliminated), or remapped to a different entity in her target

system. Ultimately, she wants to minimize the unwanted functionality

that will be incorporated into her system.

While using a general graph-based visualization seems like a natural

fit for this task, such visualizations fail to adequately support

propagational navigation, quickly disorienting the developer with a

proliferation of relationships and entities. Developers would follow

paths just to check some fact, but would have trouble getting back to

their starting point. Given that features of interest are often not well-

encapsulated, an intricate and inexact decision-making process is still

needed to draw the boundary between the feature and the rest of the

system.

Approach goals (SQ1)

Help developers view and navigate structural dependency

information, aimed specifically at pragmatic reuse tasks, and allow

developers to record their decisions as they investigate individual

dependencies.

Visualizations’ reuse-specific goals
(SQ1)

Reduce the cognitive effort required of the developer while

investigating the structural dependencies for a source code fragment,

and quickly identify and triage both the direct and indirect structural

dependencies of any source code fragment.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Software development with reuse (reuse source code)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Understanding assets’ structure / asset information / repository

(reduce the cognitive effort required while investigating, identifying

and triaging direct and indirect structural dependencies for a source

code fragment)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer with reuse (developers who are investigating and planning

pragmatic reuse tasks)

159

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)
Source code and related information (source code dependency)

Source of visualized items/data

(TQ3.1)
A system to be investigated for reuse.

Collection procedure/method of

visualized items/data (TQ3.2)

The developer selects the system to be investigated for reuse, as well

as a target system within which code reuse is intended. Then, the

developer identifies at least one source code entity of interest (to

him/her) from the source system. This is added to the leftmost (core

concern) pane. The direct dependencies for any node that is selected

in the core concern pane are shown in the central pane. The indirect

dependencies of any selection in the direct dependency view are

shown in the rightmost pane.

160

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)

 Hierarchy (tree lists)

 Geometric forms (coloured rectangle)

Data-to-visualization mapping

(input/output) (TQ4.1)

There are three columns in each of the tree panes. The leftmost

column corresponds to the element’s name, and provides a descriptive

icon. This icon indicates the type of the node (package,

class/interface, method, or field). The icon can also be decorated to

provide extra information. Dependencies on types that are solely

present as binaries (i.e., class files) are annotated with a slash through

their icon; if a class has sub- or supertypes, a down- or up-arrow

(respectively) is overlain on the icon. The second column is a

coloured rectangle corresponding to the decision annotation the

developer has placed on the node. The third column enumerates the

number of direct dependencies of a node, while the fourth enumerates

the number of dependencies in the transitive closure of the node’s

dependencies.

Nodes are also annotated to show if they have been visited before;

nodes that have not been visited are shown in lighter text than those

that have.

Green annotations correspond to dependencies on code that the

developer wants to reuse. Red annotations correspond to code that she

does not want to reuse. Blue annotations indicate code that performs

functionality already provided within the developer’s target system,

but with a different interface. These three annotations are manually

chosen by the developer according to her decisions as to how to triage

dependencies. Yellow annotations are automatically generated by the

system; these correspond to dependencies that are already provided

within the target system.

Visualization strategies and

techniques (TQ4.2)

 Selection (dependencies are automatically displayed based upon

their selection)

 Browsing / Navigation (nodes only appear in the direct dependency

pane as a result of the developer's selections within the concern pane

/ navigable / propagational navigation / dependencies are

automatically displayed based upon their selection)

 Details on demand / Drill-down (visualization at any level between

the package level to the detailed source code / view the system at

varying degrees of detail)

 Details on demand / Labeling (annotations can be added to any node

in the visualization to allow the developer to tag nodes with

different decisions they have made)

 Filtering (filter the list)

 Filtering / Collapse/Expand (expanded or contracted as required)

 Presentation / Simultaneous (a three interdependent tree-list panes

for abstractly representing source code dependencies; and an editor

view for displaying source code itself)

 Focus + context (nodes are always shown with some form of

context, that is, their package and containing class is always visible)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, in an Integrated Development Environment (Eclipse

IDE)

Resources used for interacting with

the visualizations (TQ5.1)

 Mouse

 Keyboard

161

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)
Hardware and software

requirements/dependencies (SQ6)

 SW: Eclipse IDE.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Implemented in Java as an Eclipse plug-in.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
Semi-controlled experiment

Application scenarios of the

visualizations (TQ7.1)

Six developers (all of them software engineering graduate students)

acted as subjects, analyzing four different source code fragments

using either the proposed tool or standard IDE tools (“manually”).

[academic]

Evaluated aspects (TQ7.2)
The tool effectiveness, measured by the developers’ ability to

determine the structural dependencies.

Visualization evaluation

results/outcomes (TQ 7.3)

Developers were able to more completely identify structural

relationships in less time using the proposed tool than with a manual

approach.

Table 45. Stollberg & Kerrigan’s approach [Stollberg2007236]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Goal-based visualization and browsing for semantic Web services

Authors Stollberg, M., Kerrigan, M.

Publication date (year/month) ??, 2007

Publication type Article (Journal)

Source Lecture Notes in Computer Science

Volume and Edition (for journals) v. 4832 LNCS

Place (for conferences) N/A

Pages pp. 236-247

Link (if applicable) http://dx.doi.org/10.1007/978-3-540-77010-7_23

Abstract

We present a goal-based approach for visualizing and browsing the

search space of available Web services. A goal describes an objective

that a client wants to solve by using Web services, abstracting from

the technical details. Our visualization technique is based on a graph

structure that organizes goal templates – i.e. generic and reusable

objective descriptions – with respect to their semantic similarity, and

keeps the relevant knowledge on the available Web services for

solving them. This graph is generated automatically from the results

of semantically enabled Web service discovery. In contrast to existing

tools that categorize the available Web services on the basis of certain

description elements, our tool allows clients to browse available Web

services on the level of problems that can be solved by them and

therewith to better understand the structure as well as the available

resources in a domain. This paper explains the theoretic foundations

of the approach and presents the prototypical implementation within

the Web Service Modeling Toolkit WSMT, an Integrated

Development Environment for Semantic Web services.

162

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) N/A

Screenshot

T
a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

The provision of suitable search facilities for Web services is one of

the major challenges for realizing sophisticated SOA technologies,

which requires support for the search and inspection of potential

candidate services for a specific problem.

Approach goals (SQ1)

Browse and understand the available Web services on the level of the

problems that can be solved by them, in terms of the structure as well

as the available resources in a domain.

Visualizations’ reuse-specific goals

(SQ1)

Aid clients in the goal instance formulation process and allow them to

better understand the available resources (Web services) as well as the

problems that can be solved by them.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Analysis / Specification / Requirements engineering (goal-based /

focus on the problem to be solved, abstracting from technical details)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ structure / asset information / repository

(better understand available resources (Web services))

 Searching and retrieving reusable assets (aid in the goal instance

formulation process / better understand the problems that can be

solved by Web services)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer with reuse (web service application developers / clients)

163

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Requirements/Analysis artifacts and related information (goal

templates (generic and reusable descriptions of objectives that

clients want to achieve by using Web services))

 Web services and related information (available Web services,

usability of Web services in a problem domain with respect to the

goals that can be solved by them)

Source of visualized items/data
(TQ3.1)

Semantically enabled Web service discovery.

Collection procedure/method of

visualized items/data (TQ3.2)

The graph structure is organized in terms of the semantic similarity,

calculated from Web service discovery runs/results. The semantic

matchmaking on the goal template and the goal instance level is based

on rich functional descriptions, i.e., sufficiently rich formal

descriptions of goals and Web services. The Semantic Discovery

Caching (SDC) graph is automatically generated from the results of

design time Web service discovery on goal templates. It organizes

goal templates in a subsumption hierarchy with respect to their

semantic similarity, which constitutes the indexing structure of the

available Web services. The usability cache, in it turn, is generated

from the results of Web service discovery on the goal template level

that is performed at design time. The discovery operations use this

knowledge structure by inference rules. The functional usability of a

Web service W for a goal template G by the matchmaking degrees.

164

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)
Network / Graph (directed graph structure)

Data-to-visualization mapping

(input/output) (TQ4.1)

The upper layer of the Semantic Discovery Caching graph is the goal

graph that defines the subsumption hierarchy of goal templates by

directed arcs. The lower layer is the usability cache that explicates the

usability of each available Web service by directed arcs that are

annotated with the usability degree.

Leaf nodes represent the available Web services that are functionally

usable for solving the goal templates; such suitability for solving goal

templates is explicated by directed arcs.

Disconnected subgraphs indicate that there are two goal templates that

do not have any common solution.

Visualization strategies and

techniques (TQ4.2)

 Selection (by double-clicking on a goal template in the SDC graph,

the user can step down to the next level)

 Browsing / Navigation (browsing facilities / browse / navigate /

multi-leveled browsing facilities / presenting all relevant

information to the user in a browsable fashion)

 Details on demand / Drill-down (by double-clicking on a goal

template in the SDC graph, the user can step down to the next level)

 Details on demand / Labeling (directed arcs annotated with the

usability degree)

 Filtering / Inclusion/Removal (filtering / redundant arcs are omitted)

 Overview + detail (complete overview / more detailed perspectives /

from the complete overview of the search space down to detailed

views on individual resources)

 Layout (layout algorithms / employs a simple vertical-tree layout;

however, a spring-layout algorithm where the nodes in the graph

repel each other while the edges between nodes draw them back

together can be employed to display larger and more complex SDC

graphs)

 Zooming / Geometric (zoom)

 Panning / Drag-and-drop (dragging and dropping nodes)

 Hierarchical visualization (hierarchy)

 Rotating (rotate)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, in an Integrated Development Environment (Web

Service Modeling Toolkit WSMT, an Integrated Development

Environment implemented in the Eclipse framework)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: Web Service Modelling Toolkit WSMT, an IDE for the

Semantic Web service technology based on the Eclipse framework.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

The SDC graph visualization is implemented as a plug-in for the Web

Service Modeling Toolkit (WSMT). The WSMT Visualizer (that

provides a graph-based editor and browser for ontologies) was

extended. The JPowerGraph graphing library and other WSMO

framework elements in WSMT are also used.

165

 Field Information to be extracted
E

v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

Table 46. BARRIO [Dietrich200891]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Cluster analysis of Java dependency graphs

Authors Dietrich, J., Yakovlev, V., McCartin, C., Jenson, G., Duchrow, M.

Publication date (year/month) September, 2008

Publication type Conference

Source
Proceedings of the 4th ACM Symposium on Software Visualization

(SOFTVIS 2008)

Volume and Edition (for journals) N/A

Place (for conferences) Ammersee, Germany

Pages pp. 91-94

Link (if applicable) http://dx.doi.org/10.1145/1409720.1409735

Abstract

We present a novel approach to the analysis of dependency graphs of

object-oriented programs. We propose to use the Girvan-Newman

clustering algorithm to compute the modular structure of programs.

This is useful in assisting software engineers to redraw component

boundaries in software, in order to improve the level of reuse and

maintainability. The results of this analysis can be used as a starting

point for refactoring the software. We present BARRIO, an Eclipse

plugin that can detect and visualise clusters in dependency graphs

extracted from Java programs by means of source code and byte code

analysis. These clusters are then compared with the modular structure

of the analysed programs defined by package and container

specifications. Two metrics are introduced to measure the degree of

overlap between the defined and the computed modular structure.

Some empirical results obtained from analysing non-trivial software

packages are presented.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) BARRIO

Screenshot

166

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

The question arises of how existing, monolithic programs can be

refactored into component models. Since the edges that lie between

clusters are expected to be those with highest betweenness (a

centrality measure for edges in a graph), it is possible to find a good

separation of the graph into clusters by removing them recursively.

Unfortunately, byte code analysis cannot discover all relationships.

Source code analysis, in its turn, obviously requires the availability of

source code. To some extent, the different dependency graphs that can

be extracted with byte code and source code analysis reflect different

aspects of dependency analysis related to design time and runtime

modularity of software. Design time and runtime modules do often

overlap, but not always. Therefore, dependency analysis from source

code or byte code sometimes serves different purposes: modular

organisation of source code to optimise development, and modular

organisation of runtime artefacts to facilitate deployment and

maintenance.

Approach goals (SQ1)

Detect and visualise clusters in dependency graphs, and produce a list

of refactorings that can be used to transform programs into a more

modular structure, one that is easier to customise and to maintain.

Visualizations’ reuse-specific goals
(SQ1)

Assist software engineers to redraw component boundaries in

software, in order to improve the level of reuse and maintainability.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Software maintenance (refactoring the software / optimise

development / facilitate deployment and maintenance)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Restructuring assets for reuse (assist to redraw component boundaries

in software, in order to improve the level of reuse and maintainability)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Software engineer (software engineers)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Source code and related information (clusters of source code and byte

code based on their dependencies)

Source of visualized items/data

(TQ3.1)
Java programs (source code and byte code).

Collection procedure/method of

visualized items/data (TQ3.2)

Information is extracted from Java programs by means of source code

and byte code analysis. The betweenness (a centrality measure for

edges in a graph) is defined as the number of shortest paths between

all pairs of nodes in the graph passing through that edge. The steps are

as follows: (1) Calculate the betweenness value for each of the edges;

(2) Remove the edge(s) having the highest value; (3) Repeat the

analysis on the resulting graph until a suitable separation of the graph

into clusters has been achieved.

167

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)
Network / Graph (graph)

Data-to-visualization mapping

(input/output) (TQ4.1)

The nodes in the dependency graph are types, while the edges

represent relationships between those types.

The nodes in the generated graph represent Java types. They have

annotations defining their classification (class, interface, annotation,

etc.), visibility, abstractness, and whether they are final. Every node

also contains a list of one way relationships (dependencies) with the

full name of the class (packageName.className) referenced and a

dependency classification annotation (uses, extends or implements).

The nodes are displayed with labels that contain the name of the class,

the namespace, the name of the container that the class belongs to, and

an icon that reflects class properties.

The relationships between classes are represented as directed edges

with labels describing the type of relationship (extends, implements or

uses).

Visualization strategies and

techniques (TQ4.2)

 Selection (the visibility of aggregates is an optional selection by the

user)

 Details on demand / Labeling (annotations attached to nodes and

edges / the nodes are displayed with labels / edges with labels

describing the type of relationship)

 Clustering (to display groups of nodes, the visualisation uses

elements called aggregates / an aggregate draws a border around a

group of nodes that contain the same value for a particular property)

 Filtering / Highlighting/Mitigation (highlighting occurs upon user

action / highlighting paints an edge and its end nodes with a darker

colour and brings end nodes to the front)

 Filtering / Inclusion/Removal (edges that have the maximum

betweenness value are removed from the graph / the annotations

attached to nodes and edges can be used to define filters / filters can

be applied to edges and nodes)

 Layout (force directed layout is used to position visual elements of

the graph, and is replaced by a static radial tree layout for graphs

that contain over 1200 nodes)

 Zooming / Geometric (zoom in or out on parts of the graph / zoom)

 Panning (pan)

 Panning / Drag-and-drop (visual element drag / on user request any

visual node can be moved to any position on the screen)

 Animation (smooth animated zoom and pan which helps the user to

preserve a sense of position and context)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, in an Integrated Development Environment (Eclipse

IDE)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: Eclipse IDE.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Implemented in Java as an Eclipse plugin. It uses the Object

Dependency Exploration Model (ODEM) – a tool and platform

independent XML vocabulary –, the Class Dependency Analyzer

(CDA) tool, the Eclipse AST (Abstract Syntax Tree) API and the

Prefuse visualisation toolkit. The JUNG implementation of the

Girvan-Newman algorithm is also used.

168

 Field Information to be extracted
E

v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)

Practical use [probably by the authors themselves] (we have analysed

a number of programs, including some popular open source programs)

Application scenarios of the

visualizations (TQ7.1)

A PC with a Intel Core 2 6600@2.4 GHz processor and 2 GB of

memory, analyzing a number of programs, including a product

supplied by a New Zealand company providing software solutions for

the packaging industry, and some popular open source programs such

as Xerces, Xalan, Commons-collections, and the MySQL ConnectorJ

JDBC driver. [commercial] [open source]

Evaluated aspects (TQ7.2) Scaleability of the tool

Visualization evaluation

results/outcomes (TQ 7.3)

Calculating the connected components of the initial graph took only

25s. Cluster analysis with the separation level set to ten, i.e the

clustering algorithm cycled through ten iterations, took 3min 10s. In

none of the programs analysed did increasing the separation level

have a big impact. This is interpreted as an indication that these

programs already have a well defined modular structure.

Table 47. MUDRIK [Ali200950]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Cognitive support through visualization and focus specification for

understanding large class libraries

Authors Ali, J.

Publication date (year/month) ??, 2009

Publication type Article (Journal)

Source Journal of Visual Languages and Computing

Volume and Edition (for journals) v. 20, n. 1

Place (for conferences) N/A

Pages pp. 50-59

Link (if applicable) http://dx.doi.org/10.1016/j.jvlc.2008.02.001

Abstract

Effective object-oriented (OO) programming requires understanding

class libraries. This paper presents our approach to design and build a

cognitive tool that supports a programmer to understand OO class

libraries. The MUDRIK system provides (1) three-dimensional

visualization mechanisms for representing class structures and

relationships from a variety of views and (2) flexible focus

specification mechanisms that allow users to adapt a space of

components to be displayed according to the task at hand. Interactive

views of MUDRIK enable programmers to examine components’

detail while maintaining a global representation of the rest of the

library. The paper describes why understanding class library is critical

in OO programming, presents a cognitive framework of our approach

and design rationale behind the system design, and provides a detailed

description of the system followed by a discussion on our approach.

169

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) MUDRIK

Screenshot

170

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

OO programmers who are not familiar with a class library have hard

time finding reusable classes/objects because (1) they do not

understand the structure of the library, (2) they do not know what

keywords to use to retrieve relevant objects and (3) they do not know

what to look for because they do not know what functionality is

available in the class library. For successfully reusing objects

provided in libraries, understanding their structure and functionality is

a prerequisite. However, without adequate system support in the

programming process, it is difficult to locate and understand

appropriate objects. The richer the library is, the more expensive to

access it in terms of both computational and cognitive costs. As open-

source development style increases and more and more not-well-

organized programming projects contribute their products as OO

libraries, more and more class libraries are released without proper

documentation and source code. Understanding class libraries with the

traditional means, such as reading textual documentation or source

code, is a difficult and time-consuming task. It is often impossible to

keep track of all complex codependences among components of a

library acquired through reading them. Some Integrated Development

Environments help programmers to see class-subclass relationships or

internal details of a particular class. However, the mechanism is not

enough for helping a programmer who downloads a class library that

contains several hundred classes. The value of the growing number of

available class libraries depends on programmers’ ability to reuse

them. Reusing class libraries requires understanding their structure

and functionality. Understanding a class requires a programmer to

understand the context where the class is used. The meaning of the

whole is determined by its components while the meaning of each

component can only be understood in terms of the whole.

Approach goals (SQ1)

Support the understanding of a potentially large class library (i.e.,

existing OO systems/class libraries) in a relatively short span of time,

allowing programmers to find useful information in the library by

helping them understand what is important and relevant.

Visualizations’ reuse-specific goals
(SQ1)

Locate and understand appropriate objects.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Programming / Coding (OO programming)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ structure / asset information / repository

(understand appropriate objects)

 Searching and retrieving reusable assets (locate appropriate objects)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer / programmer (Java programmers)

171

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Component / Asset and related information (class libraries, the

library as a whole / objects contained in the library, all referential

relationships among classes of the library (which occurs when class

A uses class B as the type of its instance variable(s), parameter(s) or

method(s) returned value), inheritance tree of all the classes)

 Source code and related information (class structures / for a given

(target) class: its super and subclass names, member fields and

methods, and all its referential relationships with other classes, all

the classes that are referenced by the target class, all the classes

referencing the target class, subclasses of a class, all the

superclasses of the target class, all the interfaces implemented by

the target class directly or via one of its ancestor class, and members

(constructors, fields and methods) of the target class)

Source of visualized items/data

(TQ3.1)
Java libraries/systems (in the form of Java class files or JAR files).

Collection procedure/method of

visualized items/data (TQ3.2)

MUDRIK uses one or more Java libraries/systems in the form of Java

class files or JAR files as its input. By opening a new library and

specifying the files or directories that contain the library, the system

loads all the classes, interfaces and packages stored in the library.

Then the system analyzes the loaded entities of the library and collects

detailed information about them.

172

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)
Hierarchy (tree structure, interactive cone trees)

Data-to-visualization mapping

(input/output) (TQ4.1)

All the classes/interfaces are shown in a tree structure based on the

packages of the library. A number of 3D icons are defined to represent

various entities in a library, such as classes, interfaces and packages.

The parts and colors of an icon represent different properties of the

corresponding entity. For example, the top of the icon for an abstract

class is yellow while that of a final class is red. The layout of icons in

a view depends on the underlying relationships among the

corresponding entities. Different colors are used to distinguish

between private, protected or public members of a class. Positions and

colors are used to represent all types of relationships.

All the classes that are referencing other classes are placed along the

X-axis, and all the classes that are referenced are placed along the Y-

axis. This makes a grid like structure where each crossing represents a

relationship between the two classes lying perpendicular to the

crossing. The red, blue and yellow bars on the grid crossing show the

existence of referential relationships by instance variables, parameters

and methods returned types, respectively. The heights of these bars

(along the positive Z-axis) represent the number of instance variables,

parameters or methods that are linking the two classes.

Both the referencing and the referenced classes are sorted based on

their reference values. The reference values are graphically shown as

vertical bars along the negative Z-axis. The bars in cyan color

represent reference values for referencing classes and those in green

color represent the reference values for referenced classes.

Visualization strategies and

techniques (TQ4.2)

 Selection (an item is clicked on in any view)

 Filtering (flexible focus specification mechanisms that allow users

to adapt a space of components to be displayed / filter out unneeded

classes / filters)

 Filtering / Highlighting/Mitigation (highlighting objects of

“interest”)

 Overview + detail (examine components’ detail while maintaining a

global representation of the rest of the library / give a feeling of

“what's there” without overwhelming detail preciseness / access

detailed accurate information if needed / transitions from one view

to another maintaining the current context / overview + detail)

 Layout (show large amount of information in a limited space and

avoid overlapping representations in displaying complex structures)

 Layout / 3D (3D visualization)

 Zooming / Geometric (zoomed in/out)

 Rotating (rotated around any axis)

 Presentation (multiple visualizations)

 Overlap / Flipping (the programmer can go back and forth between

the high-level abstract context and low-level detailed information of

the library without interfering his/her cognitive processes (i.e., with

minimum cognitive load) / smooth transitions from one view to

another, maintaining the current context by integrating views with

consistent interaction styles)

 Linking (whenever an item is clicked on in any view, the item is

selected in both of the views / all the views are integrated)

173

 Field Information to be extracted
M

ed
iu

m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (an

interactive environment / window)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: It runs in Windows 95/98/NT/2000/XP, and requires OpenGL

and Jun for Java.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Implemented in Java, it uses the Java reflection mechanism. It also

uses OpenGL and Jun.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

Table 48. Damaševičius’s approach [Damaeviius2009507]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Analysis of components for generalization using multidimensional

scaling

Authors Damaševičius, R.

Publication date (year/month) ??, 2009

Publication type Article (Journal)

Source Fundamenta Informaticae

Volume and Edition (for journals) v. 91, n. 3-4

Place (for conferences) N/A

Pages pp. 507-522

Link (if applicable) http://dx.doi.org/10.3233/FI-2009-0054

Abstract

To achieve better software quality, to shorten software development

time and to lower development costs, software engineers are adopting

generative reuse as a software design process. The usage of generic

components allows increasing reuse and design productivity in

software engineering. Generic component design requires systematic

domain analysis to identify similar components as candidates for

generalization. However, component feature analysis and

identification of components for generalization usually is done ad hoc.

In this paper, we propose to apply a data visualization method, called

Multidimensional Scaling (MDS), to analyze software components in

the multidimensional feature space. Multidimensional data that

represent syntactical and semantic features of source code components

are mapped to 2D space. The results of MDS are used to partition an

initial set of components into groups of similar source code

components that can be further used as candidates for generalization.

STRESS value is used to estimate the generalizability of a given set of

components. Case studies for Java Buffer and Geom class libraries are

presented.

174

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) N/A

Screenshot

175

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

Reuse cannot be achieved without some form of generalization.

Generic component design requires systematic domain analysis to

identify similar components as candidates for generalization.

However, component feature analysis and identification of

components for generalization usually is done ad hoc. Unsuccessful

partitioning may lead to unsuccessful generalization and un-usable

(un-reusable) generic components. Separation and identification of

common and variable concerns in the domain is a step towards

achieving generalization. The components may have different feature

dimensions, e.g., syntactical (based on component source code

properties) or semantic (based on functionality of the components).

Discovering and understanding program similarity allows for efficient

development of new component architectures and systems and for

well-organized maintenance of existing systems. There is still lack of

understanding among software developers that all these aspects of

program similarity are related and must be managed explicitly.

Approach goals (SQ1)

Analyze software components in the multidimensional feature space,

partitioning an initial set of components into groups of similar source

code components that can be further used as candidates for

generalization (generalization is mainly used for developing reusable

software components and reuse libraries).

Visualizations’ reuse-specific goals
(SQ1)

Visualize multidimensional software component feature space and

identify clusters of similar components as candidates for

generalization (the more there are similarities between the generalized

components, the better generalization can be achieved, which

ultimately allows for better component reuse, library scaling and

maintenance).

Software engineering activities

addressed by the visualizations
(TQ1.1)

 Software development for reuse (development of new component

architectures and systems)

 Software maintenance (maintenance of existing systems)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Discovering and evaluating potentially reusable assets (identifying

clusters of similar components as candidates for generalization)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer / programmer (software developers)

176

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Component / Asset and related information (component classes on

their feature space)

Source of visualized items/data

(TQ3.1)

Component source code, feature models or domain business models

(ontology, thesaurus).

Collection procedure/method of

visualized items/data (TQ3.2)

(1) Identify a set of components C available for generalization; (2)

Identify a set of features F of each component, which may be

extracted from component source code, feature models or domain

business models (ontology, thesaurus) using visual inspection, domain

analysis tools (e.g., parsers) and may include syntactical features that

characterize the source code of components or semantic features that

characterize the functionality (behavior) of a component; (3) Build a

component feature matrix M (component × feature). The feature

matrix must include at least 6 features. It represents a set of points in a

multidimensional feature space; (4) Digitize a feature matrix. The

numerical values for natural language descriptions of features, if any,

must be provided; (5) Select a distance metric (see Eq. 9) to measure

the dissimilarity between components in component feature space; (6)

Select a stress criterion (see Eq. 4, 5 or 6) that estimates the error of

the mapping between the multidimensional feature space and its 2D

image; (7) Perform MDS on a feature matrix to obtain its 2D

projection and a stress value; (8) Identify clusters in the 2D projection.

Identification is usually performed by visual inspection of the 2D

projection; (9) Use clusters of components to build generic

components. The number of identified clusters determines the number

of generic components; (10) Evaluate generalizability using stress

value.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Map (points in a 2D space)

Data-to-visualization mapping

(input/output) (TQ4.1)

Each object is represented by a point, and the distances between

points resemble the original similarity information; i.e., the larger the

dissimilarity between two objects, the farther apart they should be in

the lower dimensional (usually 2D) space. Distances between objects

in multidimensional space are related to their dissimilarities linearly.

A component can be represented as a point in a n-dimensional feature

space. The similarity between two components is defined as a distance

between two points in a multidimensional feature space, and its

calculation is made in terms of their features (a feature is a

computable metric of a given component). A cluster of components is

a group of similar components separated by a small distance. The

classes that are more similar are located closer to each other.

Visualization strategies and

techniques (TQ4.2)

Clustering (MDS maps the high-dimensional data into a lower-

dimensional space / this geometrical configuration of points reflects

the hidden structure of the data and may help to make it easier to

understand)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

177

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)
Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

N/A

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)
Practical use [probably by the authors themselves] (case studies)

36

Application scenarios of the

visualizations (TQ7.1)

Java Buffer and Geom class libraries, with stress criterion. [open

source]

Evaluated aspects (TQ7.2) Measurement of MDS, Euclidean distance metrics.

Visualization evaluation

results/outcomes (TQ 7.3)

No clusters could be identified with MDS of Buffer classes using

syntactic features. However, by partitioning the Buffer library based

on the MDS of Buffer classes using semantic features, 6 different

generic components can be developed.

After analysis of the MDS of Geom classes using syntactic features, 7

different clusters can be identified, which can be implemented as

generic components.

36

 Section 4.8 discusses the adequacy of the “case study” denomination, based on the experimental software

engineering literature.

178

Table 49. Ontology-Driven Visualization (ODV) [DeBoer200951]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Ontology-driven visualization of architectural design decisions

Authors De Boer, R. C., Lago, P., Telea, A., Van Vliet, H.

Publication date (year/month) September, 2009

Publication type Conference

Source

Proceedings of the 2009 Joint Working IEEE/IFIP Conference on

Software Architecture and European Conference on Software

Architecture (WICSA/ECSA 2009)

Volume and Edition (for journals) N/A

Place (for conferences) Cambridge, UK

Pages pp. 51-60

Link (if applicable) http://dx.doi.org/10.1109/WICSA.2009.5290791

Abstract

There is a gradual increase of interest to use ontologies to capture

architectural knowledge, in particular architectural design decisions.

While ontologies seem a viable approach to codification, the

application of such codified knowledge to everyday practice may be

non-trivial. In particular, browsing and searching an architectural

knowledge repository for effective reuse can be cumbersome. In this

paper, we present how ontology-driven visualization of architectural

design decisions can be used to assist software product audits, in

which independent auditors perform an assessment of a product’s

quality. Our visualization combines the simplicity of tabular

information representation with the power of on-the-fly ontological

inference of decision attributes typically used by auditors. In this way,

we are able to support the auditors in effectively reusing their know-

how, and to actively assist the core aspects of their decision making

process, namely trade-off analysis, impact analysis, and if-then

scenarios. We demonstrate our visualization with examples from a

real-world application.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Ontology-Driven Visualization (ODV)

Screenshot

179

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Browsing and searching an architectural knowledge repository for

effective reuse can be cumbersome. It can be hard to explore and

search an architectural knowledge repository so that previously

captured knowledge can be reused. Decision tables are the most often

used type of visualization for browsing. Yet, such a view has several

drawbacks. Most notably, a list or table is not very effective in

showing relationships. As such, it ignores much of the added value of

using an ontology. A decision-structure visualization, which seems to

be the most natural visualization for a decision ontology, has

drawbacks too. While it accurately represents decisions and their

relationships, the resulting graph can become cluttered and thus

incomprehensible for all but the smallest data sets. When performing

several software product audits, some quality criteria may be reused.

It is assumed that the audit organization has used QuOnt to codify

quality criteria from previous audits.

Approach goals (SQ1)

Support the auditors in effectively reusing their know-how and assist

the core aspects of their decision making process, namely trade-off

analysis, impact analysis, and if-then scenarios.

Visualizations’ reuse-specific goals
(SQ1)

Allow to perform a trade-off analysis for determining which quality

criteria to include in an audit, select and prioritize the quality

attributes to be used in such audit and support the auditor in deciding

which quality criteria to use.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Quality assurance / Testing / Debugging / Profiling (software product

audits / assessment of a product’s quality)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Searching and retrieving reusable assets (determining which quality

criteria to include in an audit, select and prioritize the quality

attributes to be used in his audit and support the auditor in deciding

which quality criteria to use)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Auditor (independent auditors)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Architecture / Design artifacts and related information (quality

attributes of interest / hierarchy of quality attributes, quality criteria

relevant to the current audit, relations between quality criteria)

Source of visualized items/data

(TQ3.1)
A knowledge base.

Collection procedure/method of

visualized items/data (TQ3.2)

The QuOnt ontology is used to codify quality criteria for reuse, and

forms the basis of the ontology-driven visual analysis.

180

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)

 Hierarchy (tree)

 Matrix / Matrix-like (matrix, 2D matrix)

Data-to-visualization mapping

(input/output) (TQ4.1)

The ‘Quality attribute tree’ shows the hierarchy of quality attributes

according to a particular quality model.

The ‘Quality attributes of interest’ area shows the quality attributes of

interest, which capture the customer’s idea of ‘quality’.

The ‘Effect matrix’ shows the quality criteria relevant to the current

audit.

The ‘Criteria matrix’ shows the relations between quality criteria.

2D matrix layouts are used for showing relations. A color scheme is

used for representing criteria relations.

Visualization strategies and

techniques (TQ4.2)

 Selection (interactive selection)

 Details on demand / Labeling / Tooltip (tooltips with details on the

relations)

 Filtering / Highlighting/Mitigation (visual highlighting / a small set

of contrasting colors, which is effective in attracting the user's

attention to salient events / brushing with the mouse over the matrix

cells)

 Panning / Drag-and-drop (drag-and-drop)

 Presentation / Simultaneous (two tabular views that show design

decisions and their mutual relations, respectively)

 Linking (linked views)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: It is assumed that the audit organization has used QuOnt to

codify quality criteria from previous audits.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

The QuOnt ontology.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods
(SQ7)

Practical use [by others]

Application scenarios of the

visualizations (TQ7.1)
Assessed by auditors of DNV-CIBIT. [commercial]

Evaluated aspects (TQ7.2) Not specified

Visualization evaluation

results/outcomes (TQ 7.3)

The auditors reacted very positively. Especially the easy selection of

quality criteria and the way the tool invites the user to ‘play around’

and consider ‘what if’ scenarios were cited as the tool's main benefits.

181

Table 50. NFRs and Design Rationale (NDR) Ontology / Toeska/Review tool [López20091198]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Visualization and comparison of architecture rationale with semantic

web technologies

Authors López, C., Inostroza, P., Cysneiros, L. M., Astudillo, H.

Publication date (year/month) ??, 2009

Publication type Article (Journal)

Source Journal of Systems and Software

Volume and Edition (for journals) v. 82, n. 8

Place (for conferences) N/A

Pages pp. 1198-1210

Link (if applicable) http://dx.doi.org/10.1016/j.jss.2009.03.085

Abstract

Deciding how to operationalize non-functional requirements (NFR) is

a complex task, and several formalisms have been proposed to

represent design decisions and their rationale. Unfortunately, these

models can become complex (even unreadable) for designs with many

alternatives and/or a well-documented rationale, which makes very

hard to review and compare rationale. This paper introduces a

Semantic Web-based technique to visualize and compare architecture

rationale, combining Softgoal Interdependency Graphs (SIGs) with

ontologies reified as named graphs. Reuse of rationale is thus

facilitated by allowing architects to understand rationale of previous

decisions and/or projects, though automated reuse remains unfeasible

until extensive automated capture rationale happens. The approach is

illustrated with a case study of Contexta, a museum integration

project, using Toeska/Review, a Semantic Web-based tool.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ)
NFRs and Design Rationale (NDR) Ontology

Toeska/Review tool
37

Screenshot

37

 The Toeska/Review tool has been built to allow visualization and comparison of SIGs represented with the NDR

Ontology

182

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Most representations of software architecture focus on the system

structure and hide the decision making process, discarded alternatives,

tradeoff analysis and rationale behind the finally adopted choices.

Softgoal Interdependency Graphs (SIGs) can become quite difficult to

read, and their complexity hampers their broader use by practicing

architects. Most non-trivial projects can produce quite large and

complex design graphs, which also complicates recovering

alternatives, tradeoff and rationale information in SIGs. Recording

and collecting past architectural decisions and their rationale is

required to review, compare and eventually reuse prior knowledge.

Approach goals (SQ1)

Describe SIGs through an ontology and represent them as named

graphs, enabling their view-based exploration and comparison of

decisions and rationales.

Visualizations’ reuse-specific goals

(SQ1)

Facilitate reuse of rationale by allowing architects to understand

rationale of previous decisions and/or projects, supporting, for

example, the selection between reuse candidates by identifying

domain constraints or contexts that are more similar to the problem at

hand.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Software design (architecture design)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ structure / asset information / repository

(understand rationale of previous decisions and/or projects)

 Integrating reusable assets (supporting the selection between reuse

candidates by identifying domain constraints or contexts that are

more similar to the problem at hand)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Software architect/designer (architects)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Architecture / Design artifacts and related informatio (architecture

rationale / Softgoal Interdependency Graphs (SIGs) [used to represent

quality attributes])

Source of visualized items/data
(TQ3.1)

Semantic descriptions (as NDR instances) in SIGs.

Collection procedure/method of

visualized items/data (TQ3.2)

Rationale information is recorded in a SIG using claims and

argumentations; hence, a rationale view can be operationalized by

querying claims and argumentations instances of a named graph that

represents a SIG. SIG comparison and rationale visualization tools

process SIGs information by reading their semantic descriptions (as

NDR instances).

R
ep

re
se

n
ta

ti
o

n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Network / Graph (graphs)

Data-to-visualization mapping

(input/output) (TQ4.1)
Each kind of softgoal has visually different icons that identify them.

Visualization strategies and

techniques (TQ4.2)

 Details on demand / Labeling (labeling each softgoal)

 Filtering / Highlighting/Mitigation (highlights differences)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, in a web environment (web application)

Resources used for interacting with

the visualizations (TQ5.1)
Keyboard (assumed)

183

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)
Hardware and software

requirements/dependencies (SQ6)

 SW: Protégé (or similar) and the OWL language (for describing the

SIG).

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Implemented as a Web application that uses the SPARQL query

language to recover NFR knowledge embedded into NDR instances,

and uses Softgoal Interdependency Graphs (SIGs). The NDR

Ontology is written in OWL.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods
(SQ7)

Practical use [probably by the authors themselves] (the approach is

illustrated with a case study
38

)

Application scenarios of the

visualizations (TQ7.1)

Evaluated by architects of project Contexta, a museum integration

project, to review its design rationale and to compare their decisions

about extensibility with those of another project, Tutelkan.

[commercial]

Evaluated aspects (TQ7.2) Not specified

Visualization evaluation

results/outcomes (TQ 7.3)

The architects were able to clearly identify the divergence points of

the two decision processes. Although the visualization and

comparison tool did help to speed up the comparison of design

rationales, the comparison itself of evaluation and interdependencies

remained hard to visualize in the graphs. The architects also reported

that change impact and tradeoff analysis would still require a deep

problem understanding.

38

 Section 4.8 discusses the adequacy of the “case study” denomination, based on the experimental software

engineering literature.

184

Table 51. AMPLE Traceability Framework (ATF) [Anquetil2010427]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title A model-driven traceability framework for software product lines

Authors
Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.-C.,

Rummler, A., Sousa, A.

Publication date (year/month) ??, 2010

Publication type Article (Journal)

Source Software and Systems Modeling

Volume and Edition (for journals) v. 9, n. 4

Place (for conferences) N/A

Pages pp. 427-451

Link (if applicable) http://dx.doi.org/10.1007/s10270-009-0120-9

Abstract

Software product line (SPL) engineering is a recent approach to

software development where a set of software products are derived for

a well defined target application domain, from a common set of core

assets using analogous means of production (for instance, through

Model Driven Engineering). Therefore, such family of products are

built from reuse, instead of developed individually from scratch. SPL

promise to lower the costs of development, increase the quality of

software, give clients more flexibility and reduce time to market.

These benefits come with a set of new problems and turn some older

problems possibly more complex. One of these problems is

traceability management. In the European AMPLE project we are

creating a common traceability framework across the various

activities of the SPL development. We identified four orthogonal

traceability dimensions in SPL development, one of which is an

extension of what is often considered as “traceability of variability”.

This constitutes one of the two contributions of this paper. The second

contribution is the specification of a metamodel for a repository of

traceability links in the context of SPL and the implementation of a

respective traceability framework. This framework enables

fundamental traceability management operations, such as trace import

and export, modification, query and visualization. The power of our

framework is highlighted with an example scenario.

185

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) AMPLE Traceability Framework (ATF)

Screenshot

T
a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

The use of traceability is considered a factor of success for software

engineering projects. However, traceability can be impaired by

various factors ranging from social, to economical, and to technical.

None of the investigated tools has built-in support for Software

Product Line (SPL) development, and a vast majority of them are

closed, so they cannot be adapted to deal with the issues raised by

SPL. None of them provides a clear and comprehensive view of the

trace links in a SPL development. A thorough analysis of the

dimension in SPL is needed, with specific emphasis on variability and

versioning. Visualizing traceability links is important, but getting a

useful view is a non trivial task. However, more advanced support is

the responsibility of the information and visualization community.

Approach goals (SQ1)

Solve complex traceability problems, by allowing the definition of

hierarchical artefact and link types as well as constraints between

these types.

Visualizations’ reuse-specific goals

(SQ1)

Observe the structure of the feature model and the evolution of the

realization of the features, and compare the refinement sets of

different versions.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Software product line engineering (software product line engineering)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ structure / asset information / repository

(observe the structure of the feature model)

 Understanding assets’ evolution (observe the evolution of the

realization of the features, and compare the refinement sets of

different versions)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer / programmer (developer)

186

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Feature model / Product line artifacts and related information (trace

information, trace set, artefacts created and the refinement links

between them from domain and application engineering, the

properties (name, type, identifier) of each link/artefact, time links

related to a product, versions of artefacts which have evolved)

Source of visualized items/data
(TQ3.1)

A data base repository to store trace information (trace repository).

Collection procedure/method of

visualized items/data (TQ3.2)

Trace information must be recovered from certain information sources

by trace extractors. A trace query provides means to perform specific

(advanced) queries on a set of trace links and artefacts.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)

 Network / Graph (bipartite graph)

 Hierarchy (textual hierarchical representation, tree view, graphical

hierarchical representation)

Data-to-visualization mapping

(input/output) (TQ4.1)

The large nodes represent the artefacts and the small ones represent

the links.

Links stemming from a selected artefact are in light red, and the target

artefacts of these links are pink colored (nodes in darker grey).

Changed artefacts are placed in the center of a semi-circle with the

related artefacts arranged in a semi-circle around it. The links that

stem from this artefact and the artefacts that are target of these links

are colored in red (dark grey).

When comparing refinement sets, green nodes (or links) are common

to both products.

Visualization strategies and

techniques (TQ4.2)

 Selection (links and artefacts are selectable)

 Browsing / Navigation (navigate)

 Details on demand / Drill-down (user demand / when an item is

selected, its properties (name, type, identifier) appear in the top part

of the graph)

 Details on demand / Labeling (all elements of the trace graph may

be annotated with additional information)

 Filtering / Highlighting/Mitigation (the color is propagated

recursively to the targets of the targets)

 Layout (“radial view”)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, in an Integrated Development Environment (Eclipse

IDE)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: Eclipse IDE.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Implemented in Java, it utilizes Prefuse and Ecore, a metamodel from

Eclipse Modeling Framework (EMF) designed in MOF 2.0.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods
(SQ7)

N/A

Application scenarios of the

visualizations (TQ7.1)
N/A

Evaluated aspects (TQ7.2) N/A

Visualization evaluation

results/outcomes (TQ 7.3)
N/A

187

Table 52. Interface Descriptions Management System (IDMS) [Areeprayolkij2010208]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
IDMS: A system to verify component interface completeness and

compatibility for product integration

Authors Areeprayolkij, W., Limpiyakorn, Y., Gansawat, D.

Publication date (year/month) ??, 2010

Publication type Article (Journal)

Source Communications in Computer and Information Science

Volume and Edition (for journals) v. 117 CCIS

Place (for conferences) N/A

Pages pp. 208-217

Link (if applicable) http://dx.doi.org/10.1007/978-3-642-17578-7_21

Abstract

The growing approach of Component-Based software Development

has had a great impact on today system architectural design. However,

the design of subsystems that lacks interoperability and reusability can

cause problems during product integration. At worst, this may result

in project failure. In literature, it is suggested that the verification of

interface descriptions and management of interface changes are

factors essential to the success of product integration process. This

paper thus presents an automation approach to facilitate reviewing

component interfaces for completeness and compatibility. The

Interface Descriptions Management System (IDMS) has been

implemented to ease and fasten the interface review activities using

UML component diagrams as input. The method of verifying interface

compatibility is accomplished by traversing the component

dependency graph called Component Compatibility Graph (CCG).

CCG is the visualization of which each node represents a component,

and each edge represents communications between associated

components. Three case studies were studied to subjectively evaluate

the correctness and usefulness of IDMS.

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Interface Descriptions Management System (IDMS)

Screenshot

188

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

The verification of interface descriptions and management of interface

changes are factors essential to the success of product integration

process. Project delay problems often occur in the component

integration process. Many software applications encounter similar

difficulties to effectively integrate the implemented component

subsystems.

Approach goals (SQ1)
Facilitate reviewing component interfaces for completeness and

compatibility.

Visualizations’ reuse-specific goals

(SQ1)

Verify interface compatibility and help clustering the components for

ordering the sequences of integration plan.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Software development with reuse (product integration)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Integrating reusable assets (verify interface compatibility and help

clustering the components for ordering the sequences of integration

plan)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

User (user)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Component / Asset and related information (component /

communications between associated components)

Source of visualized items/data

(TQ3.1)
Input components.

Collection procedure/method of

visualized items/data (TQ3.2)

The input components’ interface descriptions and their compatibility

with associated components are extracted automatically. The extracted

interface descriptions can then be used in the static review process.

Detailed format of UML component diagram is needed for the

construction of the Component Compatibility Graph. The automation

of the verification of component interface compatibility is then carried

out by graph traversal. The next steps are: (1) Extraction of Interface

Descriptions; (2) Construction of Component Dependency Graph; and

(3) Verification of Interface Compatibility of Components Once the

user has imported a component diagram in XML file format, the

system read this file as input, and then XML tags and values are

contained in the DOM tree table window.

R
ep

re
se

n
ta

ti
o

n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Network / Graph (graph)

Data-to-visualization mapping

(input/output) (TQ4.1)

Each node represents a component, and each edge represents

communications between associated components.

Visualization strategies and

techniques (TQ4.2)
Clustering (cluster)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

189

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)
Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Implemented in Java, it uses the UML component diagram, i.e. white

box view, the DOMParser and Grappa.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)

Practical use [probably by the authors themselves] (three case

studies
39

 were studied)

Application scenarios of the

visualizations (TQ7.1)

IDMS itself, a simple ordering product system, and Computed

Tomography (CT) scan image visualization system. [commercial]

Evaluated aspects (TQ7.2) Subjective evaluation of the correctness and usefulness of IDMS

Visualization evaluation

results/outcomes (TQ 7.3)

The preliminary results were satisfactory to the architectural designer

by examining the outputs of the system.

Table 53. FEATUREVISU [Apel2011421]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title Feature cohesion in software product lines: An exploratory study

Authors Apel, S., Beyer, D.

Publication date (year/month) May, 2011

Publication type Conference

Source
Proceedings of the 33rd International Conference on Software

Engineering (ICSE 2011)

Volume and Edition (for journals) N/A

Place (for conferences) Honolulu, Hawaii

Pages pp. 421-430

Link (if applicable) http://dx.doi.org/10.1145/1985793.1985851

Abstract

Software product lines gain momentum in research and industry.

Many product-line approaches use features as a central abstraction

mechanism. Feature-oriented software development aims at

encapsulating features in cohesive units to support program

comprehension, variability, and reuse. Surprisingly, not much is

known about the characteristics of cohesion in feature-oriented

product lines, although proper cohesion is of special interest in

product-line engineering due to its focus on variability and reuse. To

fill this gap, we conduct an exploratory study on forty software

product lines of different sizes and domains. A distinguishing

property of our approach is that we use both classic software measures

and novel measures that are based on distances in clustering layouts,

which can be used also for visual exploration of product-line

architectures. This way, we can draw a holistic picture of feature

cohesion. In our exploratory study, we found several interesting

correlations (e.g., between development process and feature cohesion)

and we discuss insights and perspectives of investigating feature

cohesion (e.g., regarding feature interfaces and programming style).

39

 Section 4.8 discusses the adequacy of the “case study” denomination, based on the experimental software

engineering literature.

190

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) FEATUREVISU

Screenshot

T
a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

A misalignment of features and system structure can outweigh the

benefits of feature decomposition. Little is known on how product

lines are structured and how a product line’s structure aligns with its

features. It has been shown that visual clustering can aid program

comprehension by visualizing the software design based on distances

in the clustering layout. A layout-based clustering can provide

additional insights into the structure of software product lines and, in

particular, into feature cohesion. Layout-based clustering also

provides a holistic view on feature structure. However, only

displaying the layouts of product lines is not sufficient to understand

and compare feature cohesion systematically. Hence, a quantitative

approach is needed in addition.

Approach goals (SQ1) Visually relate the structural elements of a product line to its features.

Visualizations’ reuse-specific goals
(SQ1)

Visually explore the structure of product lines, especially with regard

to feature cohesion, and explore the reasons for a particular clustering,

for example, to get insights into why a feature is not cohesive and

how to change that.

Software engineering activities

addressed by the visualizations
(TQ1.1)

Software product line engineering (software product-line engineering)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ structure / asset information / repository

(explore the structure of product lines, especially with regard to

feature cohesion)

 Restructuring assets for reuse (explore the reasons for a particular

clustering, for example, to get insights into why a feature is not

cohesive and how to change that)

191

 Field Information to be extracted
A

u
d

ie
n

ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Developer / programmer (developers)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Feature model / Product line artifacts and related information

(elements of features and their dependency relation)

Source of visualized items/data
(TQ3.1)

A clustering layout (which provides information to build the

dependency graph of a software product line, which is also an input)

and a mapping between element nodes and features.

Collection procedure/method of

visualized items/data (TQ3.2)

Feature-cohesion-based measures consider the number of references

between program elements and their distances in a clustering layout.

Classic measures and distance-based measures. For assessing feature

structure, the number of dependencies between elements inside a

feature (internal dependencies) can be related to the number of

dependencies to elements outside that feature (external dependencies).

Another option is to relate the number of dependencies inside a

feature to the overall number of elements of that feature. Information

obtained from a clustering layout is used to explore and assess feature

cohesion. The distances computed by a layout-based clustering

algorithm are used to assess feature structure in software product

lines, complementary to classic indicators for structure. The tool

receives as input the dependency graph of a software product line and

a mapping between element nodes and features. The tool optimizes

the layout of the dependency graph iteratively by grouping element

nodes that depend on each other. The dependency graph spans a

nontrivial network, in which many forces take effect simultaneously.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Network / Graph (graph)

Data-to-visualization mapping

(input/output) (TQ4.1)

Calls, usage, inheritance, etc. are depicted as edges in the graph. The

software system is decomposed according to the dependencies in the

graph. Distances between elements are presented in a two-

dimensional space, in which related elements have close positions and

unrelated elements have distant positions. A feature has a higher

cohesion than coupling if its elements are close to each other, because

then they are connected by many internal edges. If the elements that a

feature introduces are scattered across the entire layout, then the

cohesion of the feature is lower than its coupling to other features.

The discs (nodes of the graph) represent the fields and methods of the

system. The area of a disc for a node is proportional to the node’s

edge degree. If the discs form clusters, then the corresponding

fields/methods heavily depend on each other. Initially, the color of all

nodes is light gray.

Visualization strategies and

techniques (TQ4.2)

 Details on demand / Labeling / Tooltip (tool tips)

 Clustering (layout based clustering (a.k.a. visual clustering) /

cohesive elements are drawn closely together in such layouts, long-

distance references do not witness cohesion / highly connected

nodes shall be in the same cluster)

 Filtering / Tuning/Tweaking (node coloring and displaying edges)

 Layout (force-directed graph drawing)

 Zooming / Geometric (zooming)

 Panning / Drag-and-drop (drag & drop)

192

 Field Information to be extracted
M

ed
iu

m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

CCVISU, a visual-clustering tool, was extended.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods
(SQ7)

Practical use [probably by the authors themselves] (exploratory study)

Application scenarios of the

visualizations (TQ7.1)

Forty sample software product lines of different sizes and domains,

developed by refactoring or from scratch, all made available on the

web. [academic] [open source]

Evaluated aspects (TQ7.2)
Differences between individual features and individual product lines

with regard to feature cohesion

Visualization evaluation

results/outcomes (TQ 7.3)

(1) Considerable differences were found between individual features

and entire product lines (effectively, covering the entire spectrum of

possible values of the measures). (2) There is room for refactoring

features into smaller pieces. (3) Distance-based measures draw a

similar picture as their classic counterparts (they correlate strongly).

But in certain cases, they provide more information than the classic

measures. (4) There are correlations between feature cohesion, and

feature and system size. (5) The features of product lines developed

by refactoring have significantly higher cohesion values (for all

measures) than the features of product lines developed from scratch.

193

Table 54. Variant Analysis [Duszynski2011303 / Duszynski201237]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title

Analyzing the source code of multiple software variants for reuse

potential [Duszynski2011303]

Recovering variability information from the source code of similar

software products [Duszynski201237]

Authors
Duszynski, S., Knodel, J., Becker, M. [Duszynski2011303]

Duszynski, S., Becker, M. [Duszynski201237]

Publication date (year/month)
October, 2011 [Duszynski2011303]

June, 2012 [Duszynski201237]

Publication type
Conference [Duszynski2011303]

Conference [Duszynski201237]

Source

Proceedings of the 18th Working Conference on Reverse Engineering

(WCRE 2011) [Duszynski2011303]

Proceedings of the 3rd International Workshop on Product LinE

Approaches in Software Engineering (PLEASE 2012)

[Duszynski201237]

Volume and Edition (for journals)
N/A [Duszynski2011303]

N/A [Duszynski201237]

Place (for conferences)
Limerick, Ireland [Duszynski2011303]

Zürich, Switzerland [Duszynski201237]

Pages
pp. 303-307 [Duszynski2011303]

pp. 37-40 [Duszynski201237]

Link (if applicable)
http://dx.doi.org/10.1109/WCRE.2011.44 [Duszynski2011303]

http://dx.doi.org/10.1109/PLEASE.2012.6229768 [Duszynski201237]

194

 Field Information to be extracted

Abstract

Software reuse approaches, such as software product lines, can help to

achieve considerable effort and cost savings when developing families

of software systems with a significant overlap in functionality. In

practice, however, the need for strategic reuse often becomes apparent

only after a number of product variants have already been delivered.

Hence, a reuse approach has to be introduced afterwards. To plan for

such a reuse introduction, it is crucial to have precise information

about the distribution of commonality and variability in the source

code of each system variant. However, this information is often not

available because each variant has evolved independently over time

and the source code does not exhibit explicit variation points. In this

paper, we present Variant Analysis, a scalable reverse engineering

technique that aims at delivering exactly this information. It supports

simultaneous analysis of multiple source code variants and enables

easy interpretation of the analysis results. We demonstrate the

technique by applying it to a large industrial software system with

four variants. [Duszynski2011303]

We developed a reverse engineering technique, named Variant

Analysis, aimed for recovering and visualizing information about

commonalities and differences that exist in the source code of

multiple similar software systems. The delivered information is

available on any level of system hierarchy, from single lines of code

up to whole software systems. The technique scales well for many

compared system variants and for large software systems. We think

Variant Analysis could be useful for practitioners who need to

identify source-level similarities between many potentially unknown

software systems – either with the primary goal of understanding the

variability in the systems, or with a further motivation such as

preparation for an extractive introduction of the product line approach.

[Duszynski201237]

V
is

u
a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) Variant Analysis

Screenshot

195

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

An introduction of a systematic reuse approach is an appealing idea,

as improvements in maintenance effort and product quality can be

expected. But the need for strategic reuse often becomes apparent

only after a number of product variants have already been delivered,

i.e., proactive planning of reuse happens rather seldom. Instead of

developing reusable components with defined variation points, reuse

opportunities are only explored after multiple variants have been

developed and have to be evolved in parallel. Hence, a reuse approach

has to be introduced afterwards. However, turning multiple similar but

slightly different implementations into a single code base composed

of reusable, generic components is not trivial – especially if detailed

information on common and variable code parts has not been tracked

during the parallel evolution of the products and is therefore lost.

Thus, to plan for such a reuse introduction, it is crucial to have precise

information about the distribution of commonality and variability in

the source code of each system variant. However, this information is

often not available because each variant has evolved independently

over time and the source code does not exhibit explicit variation

points. The comparison of many similar systems is usually performed

pair-wise, with each of the variants compared to each other. However,

presenting comparison results of three or more variants in a pair-wise

way hides important information, such as the size of common parts

shared by all analyzed variants.

Approach goals (SQ1)

Recover and visualize information about commonalities and

differences that exist in the source code of multiple similar software

systems (delivering quantitative information about similarity across

system variants) for identifying system parts suitable for

transformation into reusable assets and planning necessary

implementation steps (i.e., supporting the reuse potential assessment

and the migration to systematic software reuse), besides providing an

overview of commonality distribution in the whole analyzed system

family, allowing for detailed goal-driven refinement of the analysis

results.

Visualizations’ reuse-specific goals
(SQ1)

Deliver precise quantitative information about the similarity across the

analyzed system variants through an abstracted result presentation in

order to assess reuse potential.

Software engineering activities

addressed by the visualizations

(TQ1.1)

 Software maintenance (maintenance)

 Software product line engineering (product line development /

migration towards a product line / preparation for an extractive

introduction of the product line approach)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Discovering and evaluating potentially reusable assets (deliver

quantitative information about the similarity across the analyzed

system variants in order to assess reuse potential)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

User (users)

196

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

Source code and related information (lines of text in source code files

/ commonalities and variabilities in the source code of multiple

software systems)

Source of visualized items/data
(TQ3.1)

Compilation Unit objects.

Collection procedure/method of

visualized items/data (TQ3.2)

Occurrence matrices are used for organizing variability information.

An Occurrence Matrix is created for each Compilation Unit object.

N+1 bars are created, one for each occurrence matrix. They are

constructed as follows: (1) Each variant is represented as a set of

distinct atomic elements. (2) A matrix is created for each variant: the

rows of the matrix represent the atomic elements of the variant, and

the columns represent all the analyzed variants. (3) A union matrix is

created for the union of all sets. Its rows represent all the elements

existing in any of the sets. (4) Each matrix cell has a value of “1” if

the element represented by the field’s row belongs to the variant

represented by the field’s column, or a value of “0” if not. (5) Each

matrix has an additional summary column, which counts the number

of variants the given element belongs to.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)
Geometric forms (bar diagrams)

Data-to-visualization mapping

(input/output) (TQ4.1)

Subsystems represent directories and the Compilation Units represent

code files. Code Elements correspond to text lines. The length of each

bar equals the number of rows in the respective matrix. Each bar is

divided into three parts, representing core, shared, and unique Code

Elements in each matrix, with lengths equal to the number of

respective elements. The calculation result can be visualized as a

colored bar in the bar diagram and by coloring the single elements in

the detailed result visualization.

Visualization strategies and

techniques (TQ4.2)
Clustering (hierarchical aggregation)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment (assumed)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: Eclipse IDE.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Implemented in Java, based on Eclipse.

197

 Field Information to be extracted
E

v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)

1) Practical use [probably by the authors themselves]

2) Practical use [probably by the authors themselves]

([in both:] we applied the Variant Analysis technique)

Application scenarios of the

visualizations (TQ7.1)

1) Applied to four variants of a C++ software system developed by an

industrial customer. Performance and scalability results were

measured on the following configuration: Intel Core2 Duo 2.53 GHz,

3 GB RAM, Win XP 32bit.

2) Applied to the source code folder (/usr/src/) of four large software

systems from the BSD Unix family. To estimate the relative similarity

of NetBSD 1.0 to the other analyzed variants, a subset calculation was

performed. [commercial] [open source]

Evaluated aspects (TQ7.2)
1) Performance, response times, and scalability.

2) Relative similarity of NetBSD 1.0 to the other analyzed variants.

Visualization evaluation

results/outcomes (TQ 7.3)

1) Performance, response times, and scalability of the solution are

good.

2) OpenBSD 2.0 is the most similar, and BSD 4.4 lite is the least

similar to NetBSD 1.0. The calculation result was computed in 1.1

second.

Table 55. API-Dependence Visualization [Bauer2012435]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Understanding API usage to support informed decision making in

software maintenance

Authors Bauer, V., Heinemann, L.

Publication date (year/month) March, 2012

Publication type Conference

Source
Proceedings of the 16th European Conference on Software

Maintenance and Reengineering (CSMR 2012)

Volume and Edition (for journals) N/A

Place (for conferences) Szeged, Hungary

Pages pp. 435-440

Link (if applicable) http://dx.doi.org/10.1109/CSMR.2012.55

Abstract

Reuse of third-party libraries promises significant productivity

improvements in software development. However, dependencies on

external libraries and their APIs also introduce risks to a project and

impact strategic decisions during development and maintenance.

Informed decision making therefore requires a thorough

understanding of the extent and nature of dependencies on external

APIs. As realistically sized applications are often heavily entangled

with various external APIs, gaining this understanding is infeasible

with manual inspections only. To address this, we present an

automated approach to analyze the dependencies of software projects

on external APIs. The approach is supported by a static analysis tool

featuring a visualization of the analysis results. We evaluate the

approach as well as the tooling on multiple open source Java systems.

198

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) API-Dependence Visualization

40

Screenshot

T
a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Reuse of third-party libraries promises significant productivity

improvements in software development. Informed decision making

therefore requires a thorough understanding of the extent and nature

of dependencies on external APIs. It is necessary to understand the

complexity of the dependencies to external APIs in detail. Without

this knowledge, the effort required for many maintenance scenarios is

hard to estimate. However, for realistically sized software systems, it

is not feasible to assess API dependencies manually.

Approach goals (SQ1)

Analyze the dependencies of software projects on external APIs,

enabling quick insight into how external libraries are used by a project

and how complex the dependencies are, besides aiding in decision

making regarding library migration scenarios and determining the

degree of dependence to its included libraries.

Visualizations’ reuse-specific goals
(SQ1)

Gain a quick overview of the library dependencies and understand to

which extent a package is dependent on APIs and also how the

dependencies of a certain API span over the system architecture.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Software maintenance (software maintenance)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Understanding assets’ structure / asset information / repository (gain a

quick overview of the library dependencies / understand to which

extent a package is dependent on APIs and how the dependencies of a

certain API span over the system architecture)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

Maintainer (maintainers)

40

 This is not an official name, but one of the screenshots refers to the tool by using this name.

199

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Component / Asset and related information (information about

library usage)

 Software project and related information (hierarchical composition

of the software project)

Source of visualized items/data
(TQ3.1)

From the source code of a project.

Collection procedure/method of

visualized items/data (TQ3.2)

The source code of a project is statically analyzed to determine the

dependencies and use the extracted information to produce a

visualization. To determine the degree of API dependence and

complexity, the total number of all method calls to external APIs is

determined. Secondly, the number of distinct method calls is extracted

for each external API. Thirdly, the visualization encodes the

proportion of each distinct method call with respect to all method

calls. The abstract syntax tree (AST) for Java code is obtained and

traversed to extract the API references of the source code of software

projects. The degree of dependence to an API approximated with the

number of API method calls. For each class, the total number of API

calls, the number of distinct API methods called for each included

library as well as their proportion are determined, and the data

hierarchically along the package structure are aggregated. Every Java

Archive File (JAR) contained in the project is considered as included

library.

R
ep

re
se

n
ta

ti
o
n

(h
o
w

)

Visualization metaphors used (how

it is visualized) (SQ4)

 Hierarchy (tree table)

 Matrix / Matrix-like (interactive table)

 Geometric forms (colored bars)

Data-to-visualization mapping

(input/output) (TQ4.1)

Characteristics of source code are mapped into colored bars. The

columns [of the output table with the analysis results] list all external

APIs to which the project has dependencies. They are ordered

decreasingly by the number of overall API calls from left to right. The

table rows contain an interactive tree that reflects the package

structure of the analyzed system. The table cells show the

(aggregated) total number of method calls, #total, from a system

package to a certain API, as well as the number of distinct method

calls, #dist. The width of the colored bars visualizes the total number

of API calls, #total. Each color corresponds to a distinct API method

and the width of the colored stripe (PDist) encodes proportionally

how often it was called compared to the other API methods.

Visualization strategies and

techniques (TQ4.2)

 Details on demand / Drill-down (expanding the tree reveals how

packages of the system use the APIs / drill-down)

 Filtering / Collapse/Expand (expanding the tree)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, in a web environment (HTML output)

Resources used for interacting with

the visualizations (TQ5.1)
Mouse (assumed)

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

Implemented in Java, it uses the Eclipse Java Compiler and ConQAT,

an open source software quality assessment toolkit.

200

 Field Information to be extracted
E

v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)

Practical use [probably by the authors themselves] (qualitatively

evaluate by answering questions typically raised in the use case

scenarios)

Application scenarios of the

visualizations (TQ7.1)

Three open source Java projects, which use external libraries. [open

source]

Evaluated aspects (TQ7.2) Not specified

Visualization evaluation

results/outcomes (TQ 7.3)

The evaluation shows that the central questions raised during the

identified usage scenarios can be answered by the approach.

Table 56. FeatureCommander [Feigenspan20121]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Do background colors improve program comprehension in the #ifdef

hell?

Authors
Feigenspan, J., Kästner, C., Apel, S., Liebig, J., Schulze, M.,

Dachselt, R., Papendieck, M., Leich, T., Saake, G.

Publication date (year/month) ??, 2013
41

Publication type Article (Journal)

Source Empirical Software Engineering

Volume and Edition (for journals) v. 18, n. 4

Place (for conferences) N/A

Pages pp. 699-745

Link (if applicable) http://dx.doi.org/10.1007/s10664-012-9208-x

Abstract

Software-product-line engineering aims at the development of

variable and reusable software systems. In practice, software product

lines are often implemented with preprocessors. Preprocessor

directives are easy to use, and many mature tools are available for

practitioners. However, preprocessor directives have been heavily

criticized in academia and even referred to as “#ifdef hell”, because

they introduce threats to program comprehension and correctness.

There are many voices that suggest to use other implementation

techniques instead, but these voices ignore the fact that a transition

from preprocessors to other languages and tools is tedious, erroneous,

and expensive in practice. Instead, we and others propose to increase

the readability of preprocessor directives by using background colors

to highlight source code annotated with ifdef directives. In three

controlled experiments with over 70 subjects in total, we evaluate

whether and how background colors improve program comprehension

in preprocessor-based implementations. Our results demonstrate that

background colors have the potential to improve program

comprehension, independently of size and programming language of

the underlying product. Additionally, we found that subjects generally

favor background colors. We integrate these and other findings in a

tool called FeatureCommander, which facilitates program

comprehension in practice and which can serve as a basis for further

research.

41

 Although it is cited as 2013, it was retrieved from the search engine in 2012 when it was accepted for publication.

201

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) FeatureCommander

Screenshot

T
a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

In practice, companies implement SPLs mostly with conditional

compilation using preprocessor directives, which are used to annotate

feature code and are removed before compilation. However, the

flexibility and expressiveness can lead to complex and obfuscated

code that is inherently difficult to understand and can lead to high

maintenance costs. Hence, preprocessor usage potentially threatens

program comprehension. It is imperative to consider

comprehensibility of source code, because understanding is a crucial

part in maintenance: Maintenance programmers spend most of their

time with understanding code. By ensuring easy-to-understand source

code, software development costs can be reduced. So far, little is

known about the influence of background colors on program

comprehension used in source-code editors.

Approach goals (SQ1)
Allow a programmer to identify feature code at first sight and

distinguish code of different features.

Visualizations’ reuse-specific goals

(SQ1)
Help distinguish feature code from base code.

Software engineering activities

addressed by the visualizations

(TQ1.1)

 Software maintenance (software maintenance)

 Software product line engineering (software-product-line

engineering)

Reuse-related tasks supported by

the visualizations (TQ1.2)

Understanding assets’ structure / asset information / repository (help

distinguish feature code from base code)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

 Developer with reuse (programmer / developer)

 Maintainer (maintenance programmers)

T
a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Source code and related information (feature code, percentage of

each feature that occurs in the represented file or folder)

 Feature model / Product line artifacts and related information

(feature model)

Source of visualized items/data
(TQ3.1)

Structures are extracted from the source code.

Collection procedure/method of

visualized items/data (TQ3.2)
N/A

202

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)
Geometric forms (bars)

Data-to-visualization mapping

(input/output) (TQ4.1)

Horizontal bars for each folder and file indicate whether and how

much feature code a folder or file contains. Features are visualized as

bars, ordered by the nesting hierarchy. There is a default setting, in

which two shades of gray are assigned to features. Code of features

located nearby in the source-code file has a different shade of gray,

such that a developer can distinguish them. Colors can be then

mapped to features.

Visualization strategies and

techniques (TQ4.2)

 Selection (clicking them immediately shows the according code

fragment)

 Details on demand / Drill-down (clicking them immediately shows

the according code fragment)

 Filtering / Highlighting/Mitigation (highlighting technique that

supports users in finding relevant information / feature code is

displayed with a background color that distinguishes feature code

from code of other features and base code / consistent usage of

colors throughout all visualizations / the automatic color assignment

chooses colors such that they are as different as possible in the hue

value of the HSV color model / if a code fragment is assigned to

multiple features, only the background color of the innermost

feature is shown))

 Filtering / Tuning/Tweaking (users can assign colors to features /

users can automatically assign a palette of colors to multiple

features / users can adjust the opacity of the background color)

 Filtering / Collapse/Expand (overview / features that are currently

not of interest can be collapsed)

 Overview + detail (overview / features that are currently not of

interest can be collapsed)

 Hierarchical visualization (hierarchy of features / tree

representations)

 Sorting (two tree representations of the project ordered according to

the file structure, the other ordered by features)

 Presentation / Simultaneous (multiple visualizations / two tree

representations of the project)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment

Resources used for interacting with

the visualizations (TQ5.1)
Mouse

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: N/A

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

The CIDE tool.

203

 Field Information to be extracted
E

v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods

(SQ7)

1) Experiment

2) Experiment

3) Experiment

Application scenarios of the

visualizations (TQ7.1)

1) 52 students from the University of Passau, with a medium-sized

Java-based SPL with four optional features (computers with Linux,

19’’ TFT screens).

2) Students at the University of Magdeburg (computers with Windows

XP, 17’’ TFT screens).

3) 9 master’s and 5 PhD students from the University of Magdeburg,

with a a large real-time extension for Linux implemented in C

(computers with Windows XP, 17’’ TFT screens). [academic] [open

source]

Evaluated aspects (TQ7.2)

1) The effect of background colors on program comprehension in

preprocessor-based SPLs compared to ifdef directives, based on

correctness of answers, response time and opinion of subjects.

2) Whether developers would switch between background colors and

ifdef directives, based on performance (= how subjects switched

between the annotation styles).

3) Scalability of colors, based on response times, correctness of tasks

and opinion of subjects.

Visualization evaluation

results/outcomes (TQ 7.3)

It cannot be stated that background colors are always helpful in every

situation in which preprocessors are used to implement variability.

1) For locating feature code, background colors significantly speed up

the comprehension process (probably due to the preattentive color

perception, compared to attentive text perception), but unsuitable

background colors can slow down program comprehension. Subjects

of the color group have to look only for a color, not read text to solve

tasks. Colors can also negatively affect program comprehension if not

chosen carefully (i.e., if they are too bright and saturated).

2) Subjects preferred background colors, even if they slow them

down, and did not necessarily recognize the disturbing effect of the

background color.

3) There was an improvement (in some static tasks) of program

comprehension for locating feature code when using background

colors. In large SPLs, background colors have a potentially positive

impact on program comprehension in preprocessor-based SPLs in

terms of locating feature code.

204

Table 57. FlowTracker [Yazdanshenas2012143]

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title
Tracking and visualizing information flow in component-based

systems

Authors Yazdanshenas, A. R., Moonen, L.

Publication date (year/month) June, 2012

Publication type Conference

Source
Proceedings of the 20th IEEE International Conference on Program

Comprehension (ICPC 2012)

Volume and Edition (for journals) N/A

Place (for conferences) Passau, Germany

Pages pp. 143-152

Link (if applicable) http://dx.doi.org/10.1109/ICPC.2012.6240482

Abstract

Component-based software engineering is aimed at managing the

complexity of large-scale software development by composing

systems from reusable parts. In order to understand or validate the

behavior of a given system, one needs to acquire understanding of the

components involved in combination with understanding how these

components are instantiated, initialized and interconnected in the

particular system. In practice, this task is often hindered by the

heterogeneous nature of source and configuration artifacts and there is

little to no tool support to help software engineers with such a system-

wide analysis. This paper contributes a method to track and visualize

information flow in a component-based system at various levels of

abstraction. We propose a hierarchy of 5 interconnected views to

support the comprehension needs of both safety domain experts and

developers from our industrial partner. We discuss the implementation

of our approach in a prototype tool, and present an initial qualitative

evaluation of the effectiveness and usability of the proposed views for

software development and software certification. The prototype was

already found to be very useful and a number of directions for further

improvement were suggested. We conclude by discussing these

improvements and lessons learned.

205

 Field Information to be extracted
V

is
u

a
li

za
ti

o
n

m
et

a
d

a
ta

Approach/tool name (PQ) FlowTracker

Screenshot

206

 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions

(SQ1)

Various studies have shown that program comprehension accounts for

a significant part of the development and maintenance efforts and with

today’s rapid growth in system size and complexity, software

engineers are faced with tremendous comprehension challenges. Even

though component-based design supports comprehension by lowering

coupling and increasing the cohesion of components, the overall

comprehension of component-based systems can be prohibitively

complicated. In order to understand a system’s behavior, one needs to

understand how control and data flow are interlaced through its

combination of component and configuration artifacts. However, there

is little support for system-wide analysis of component-based systems.

There is extensive literature on the visualization of non-source

artifacts to support domain experts, but there is considerably less

information on the visualization of source code related information for

non-developers. Safety domain experts need to see the system’s

source artifacts represented in a context that is relevant to them – not

just what the code does, but what it means. Dynamic analysis (tracing)

during real-life operation is not an option due to safety hazards. Thus,

any reverse engineered views on the system need to be goal-driven, at

a suitable level of abstraction, and based on relevant knowledge of the

application domain. Dependence graphs, and slices through

dependence graphs, are complex, often even more complex than the

original source artifacts. These models reflect all relevant program

points and dependencies from a compiler’s perspective, which is an

intrinsic characteristic that makes them well-suited for detailed

program analysis, but it makes them less suited for directly supporting

comprehension or visualization.

Approach goals (SQ1)

Track and visualize information flow in a component-based system at

various levels of abstraction, provide source-based evidence that

signals from the system’s sensors trigger the appropriate actuators,

and provide source-based evidence to support software certification.

Visualizations’ reuse-specific goals

(SQ1)

Improve the comprehensibility of configuration and composition of

the components, by understanding how control and data flow are

interlaced through its combination of component and configuration

artifacts.

Software engineering activities

addressed by the visualizations

(TQ1.1)

Software development with reuse (component-based software

engineering)

Reuse-related tasks supported by

the visualizations (TQ1.2)

 Understanding assets’ behavior (understand how control and data

flow are interlaced through its combination of component and

configuration artifacts / improve the comprehensibility)

 Integrating reusable assets (configuration and composition of the

components)

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

 Developer / programmer (developers)

 Others / non-related to software development (non-developer safety

domain experts)

207

 Field Information to be extracted
T

a
rg

et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

 Component / Asset and related information (implementation

artifacts of component-based systems / actuator and all related

sensors, component instances, and inter-component connections,

dependencies between a component’s input and output ports,

dependencies between all system-level inputs (sensors) and outputs

(actuators), intercomponent information flow from all sensors that

can affect a given actuator, intra-component information flow from

all input ports that can affect that output port, all conditions that

control the information flow towards the selected output port)
42

 Source code and related information (pretty-printed source code)

Source of visualized items/data
(TQ3.1)

Component source code.

Collection procedure/method of

visualized items/data (TQ3.2)

Program slicing is used to leave out all parts of the program that are

not relevant to a given point of interest. For each component in the

system, a component dependence graph (CDG) is built by following

the method for constructing inter-procedural dependence graphs and

taking the component source code as “system source”. The system’s

configuration artifacts are analyzed to build an inter-component

dependence graph (ICDG). This graph captures the externally visible

interfaces and interconnections of the component instances. The

system-wide dependence graph (SDG) is constructed by integrating

the system's ICDG with the CDGs for the individual components. The

ICDG is taken and each “component instance node” is substituted

with a sub-graph formed by the CDG for the given component. Views

are constructed from the system-wide dependence model via a

combination of slicing, transformation and visualization.

42

 The components are implemented in MISRA C [Yazdanshenas2012143].

208

 Field Information to be extracted
R

ep
re

se
n

ta
ti

o
n

(h
o
w

)
Visualization metaphors used (how

it is visualized) (SQ4)

 Network / Graph (graph)

 Diagrams ([box and line / data flow] diagram)

 Matrix / Matrix-like (matrix)

Data-to-visualization mapping

(input/output) (TQ4.1)

Dependencies between all system-level inputs (sensors) and outputs

(actuators) are shown in one single matrix, with sensors and actuators

are represented as rows and columns, respectively. A filled cell of

such matrix indicates that there is at least one path along which

information can flow from that sensor to that actuator.

When analyzing component dependencies, there is one dependency

matrix for each component. Input and output ports are represented as

rows and columns, respectively, and the dependencies between a

component’s input and output ports are represented by using filled

cells.

For analyzing the information flow of a given component, there is a

diagram for each output port of the component.

Visualization strategies and

techniques (TQ4.2)

 Selection (a user can click on a component instance to zoom in on a

single component, or click outside the diagram to return to a higher

level of abstraction)

 Browsing / Navigation (hyperlinks to enable easy navigation /

hypertext navigation facilities, e.g. cross-referencing of program

entities with their definition)

 Details on demand / Drill-down (embedding hyperlinks to

corresponding views on the next abstraction level / a user can click

on a component instance to zoom in on a single component, or click

outside the diagram to return to a higher level of abstraction / higher

level views provide links into the source code)

 Details on demand / Labeling (aggregate node is labelled based on

the conditions it represents)

 Clustering (shows which input ports can affect which output ports

but hides all details on how the information flow is realized /

combine sequences of conditions into aggregated conditions

wherever possible to reduce cognitive overhead)

 Filtering / Highlighting/Mitigation (highlights)

 Filtering / Collapse/Expand (collapsable subgraphs to represent

conditional clusters and their aggregate representation)

 Hierarchical visualization (hierarchical views / hierarchy of views

that represent system-wide information flows at various levels of

abstraction)

 Presentation (hierarchy of views that represent system-wide

information flows at various levels of abstraction)

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

Computer screen, standalone or in the own environment

Resources used for interacting with

the visualizations (TQ5.1)
Mouse

209

 Field Information to be extracted
R

eq
u

ir
em

en
ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

 SW: The work builds on an earlier tool for reverse engineering a

fine-grained system-wide model of the control and data

dependencies in the system from source artifacts, creating system-

wide dependence graphs (SDGs). The aiSee graph layout software is

also necessary.

 HW: N/A

Programming languages, APIs and

frameworks used for building the

visualization (TQ6.1)

The following frameworks are used: CodeSurfer and its API, the

OMG Knowledge Discovery Metamodel (KDM) and its API, a Java

Native Interface (to drive KDM constructors in the Eclipse Modeling

Framework), Xalan-J, a simple slicing tool in Java (created as part of

earlier work), HTML and Doxygen.

E
v
id

en
ce

(w
o
rt

h
w

h
il

e)

Visualization evaluation methods
(SQ7)

Practical use [by others] (preliminary qualitative study, exploratory,

followed by a structured interview which was guided by a

questionnaire)

Application scenarios of the

visualizations (TQ7.1)

Performed by a group of six subjects (before the tool can be adopted

by an industry partner), being three senior engineers in Kongsberg

Maritime (KM) and three colleagues in the final stages of their PhD

studies at Simula Research Laboratory. [commercial] [academic]

Evaluated aspects (TQ7.2)

Effectiveness and usability of the proposed views for software

development and software certification, their fitness for the needs of

an industrial partner, and other tasks where FlowTracker could be

helpful.

Visualization evaluation

results/outcomes (TQ 7.3)

(1) System Dependence Survey: Subjects indicated that they found its

presentation of information to be intuitive, and that the goal of

summarizing system-wide information flow was adequately achieved.

(2) System Information Flow: Subjects were generally satisfied with

its functionality; two subjects had some reservations with respect to

the amount of information shown; the way information is presented

was received as intuitive. (3) Component Dependence Survey: the

subjects agreed that it adequately summarizes the dependencies

between input and output terminals. (4) Component Information

Flow: Five of the subjects agreed that conditions can have a

significant effect on the intra-component information flows and

should be highlighted and put in perspective to improve

comprehension. A subject stated that one might need to see the

assignment statements in the diagram as well to understand the

information flows, and would like to see the outgoing edges of

condition nodes labelled to indicate which edge would be used if the

condition would be evaluated during actual execution. There were

concerns about the intuitiveness of the diagrams when they grow in

size. The subjects would like to see more interactive facilities,

especially some measures to better deal with the larger diagrams. (5)

Implementation View: Subjects reported that it helped them to relate

more easily to higher level views since it “helps to remove the gap

between visualizations and the source code”. They considered the

hyperlinks from conditions in the Component Information Flow

diagram to the respective locations in the source code beneficial for

comprehension and traceability. (6) Overall Experience: Subjects

were positive about the intuitiveness of the tool, but would like to see

it closer integrated into their IDEs. (7) Other tasks where FlowTracker

could be helpful include source code maintenance, track ripple effects

of modified source code, track ripple effects of modified configuration

files, configuring a new system, debug individual modules, auditing

projects, and training new project members.

210

Appendix C – Visualization strategies and techniques

Table 58 relates the visualization strategies and techniques to the publications/approaches

in which they were identified (TQ4.2). The strategies and techniques are organized as a

Visualization Feature Model [Vasconcelos et al. 2014].

Table 58. Visualization strategies and techniques by publication/approach (TQ4.2)

Visualization

strategy/technique

of

approaches
Approaches

Selection 16

[Constantopoulos19951]

[Lange1995342]

[Alonso1998483]

[Biddle199992 / Marshall2001 /

Marshall2001103]

[Ye2000266]

[Charters2002765]

[Wahid2004414]

[Gonçalves2007872 / Oliveira2007461]

[Holmes2007100]

[Stollberg2007236]

[Dietrich200891]

[Ali200950]

[DeBoer200951]

[Anquetil2010427]

[Feigenspan20121]

[Yazdanshenas2012143]

Browsing / Navigation 14

[Mancoridis199374]

[Constantopoulos19951]

[Lange1995342]

[Alonso1998483]

[Ye2000266]

[Marshall2001103 / Anslow2004]

[Charters2002765]

[Wahid2004414]

[McGavin2006153]

[Gonçalves2007872 / Oliveira2007461]

[Holmes2007100]

[Stollberg2007236]

[Anquetil2010427]

[Yazdanshenas2012143]

Browsing / Querying 3

[Constantopoulos19951]

[Ye2000266]

[Kelleher200550]

211

Visualization

strategy/technique

of

approaches
Approaches

Details on demand / Drill-down 13

[Mancoridis199374]

[Alonso1998483]

[Ye2000266]

[Mittermeir200195]

[Charters2002765]

[Wahid2004414]

[McGavin2006153]

[Holmes2007100]

[Stollberg2007236]

[Anquetil2010427]

[Bauer2012435]

[Feigenspan20121]

[Yazdanshenas2012143]

Details on demand / Labeling 9

[Mancoridis199374]

[Constantopoulos19951]

[Ye2000266]

[Holmes2007100]

[Stollberg2007236]

[Dietrich200891]

 [López20091198]

[Anquetil2010427]

 [Yazdanshenas2012143]

Details on demand / Labeling /

Tooltip
2

[DeBoer200951]

[Apel2011421]

Clustering 12

[Helfman199631]

[Ye2000266]

[Charters2002765]

[Kelleher200550]

[Tangsripairoj2006283]

[Gonçalves2007872 / Oliveira2007461]

[Dietrich200891]

[Damaeviius2009507]

[Areeprayolkij2010208]

[Apel2011421]

[Duszynski2011303 / Duszynski201237]

[Yazdanshenas2012143]

Filtering 7

[Constantopoulos19951]

[Biddle199992]

[Biddle199992 / Marshall2001 /

Marshall2001103]

[Wahid2004414]

[Kelleher200550]

[Holmes2007100]

[Ali200950]

212

Visualization

strategy/technique

of

approaches
Approaches

Filtering /

Highlighting/Mitigation
13

[Mancoridis199374]

[Alonso1998483]

[Ye2000266]

[Marshall2001103 / Anslow2004]

[Mittermeir200195]

[Gonçalves2007872 / Oliveira2007461]

[Dietrich200891]

[Ali200950]

[DeBoer200951]

[López20091198]

[Anquetil2010427]

[Feigenspan20121]

[Yazdanshenas2012143]

Filtering / Tuning/Tweaking 8

[Biddle199992]

[Biddle199992 / Marshall2001 /

Marshall2001103]

[Marshall2001103]

[Marshall2001103 / Anslow2004]

[McGavin2006153]

[Gonçalves2007872 / Oliveira2007461]

[Apel2011421]

[Feigenspan20121]

Filtering / Inclusion/Removal 7

[Mancoridis199374]

[Marshall2001103]

[Anslow2004 / Marshall200435]

[McGavin2006153]

[Gonçalves2007872 / Oliveira2007461]

[Stollberg2007236]

[Dietrich200891]

Filtering / Collapse/Expand 7

[Lange1995342]

[Biddle199992]

[Marshall2001103 / Anslow2004]

[Holmes2007100]

[Bauer2012435]

[Feigenspan20121]

[Yazdanshenas2012143]

213

Visualization

strategy/technique

of

approaches
Approaches

Overview + detail 9

[Mancoridis199374]

[Helfman199631]

[Ye2000266]

[Charters2002765]

[McGavin2006153]

[Tangsripairoj2006283]

[Stollberg2007236]

[Ali200950]

[Feigenspan20121]

Layout 8

[Biddle199992]

[Mittermeir200195]

[Charters2002765]

[Stollberg2007236]

[Dietrich200891]

[Ali200950]

[Anquetil2010427]

[Apel2011421]

Layout / 3D 2
[Washizaki20061222]

[Ali200950]

Zooming / Geometric 6

[Marshall2001103 / Anslow2004]

[Washizaki20061222]

[Stollberg2007236]

[Dietrich200891]

[Ali200950]

[Apel2011421]

Zooming / Semantic 1 [McGavin2006153]

Panning 1 [Dietrich200891]

Panning / Drag-and-drop 6

[Alonso1998483]

[Marshall2001103]

[Stollberg2007236]

[Dietrich200891]

[DeBoer200951]

[Apel2011421]

Hierarchical visualization 4

[Tangsripairoj2006283]

[Stollberg2007236]

[Feigenspan20121]

[Yazdanshenas2012143]

Animation 5

[Biddle199992]

[Biddle199992 / Marshall2001 /

Marshall2001103]

[Marshall2001103]

[Mittermeir200195]

[Dietrich200891]

214

Visualization

strategy/technique

of

approaches
Approaches

Sorting 4

[Helfman199631]

[Biddle199992]

[Kelleher200550]

[Feigenspan20121]

Rotating 3

[Washizaki20061222]

[Stollberg2007236]

[Ali200950]

Presentation 3

[Mittermeir200195]

[Ali200950]

[Yazdanshenas2012143]

Presentation / Simultaneous 8

[Lange1995342]

[Biddle199992]

[Biddle199992 / Marshall2001 /

Marshall2001103]

[Marshall2001103]

[McGavin2006153]

[Holmes2007100]

[DeBoer200951]

[Feigenspan20121]

Overlap / Flipping 3

[Alonso1998483]

[McGavin2006153]

[Ali200950]

Overlap / Transparency 1 [Biddle199992]

Linking 3

[Biddle199992 / Marshall2001 /

Marshall2001103]

[Ali200950]

[DeBoer200951]

Focus + context 2
[Alonso1998483]

[Holmes2007100]

N/A 1 [Marshall200381]

