
EXPLORING PRODUCT LINE CONCEPTS IN VIDEOGAME BUILDING

Diego Cardoso Borda Castro

Exame de Qualificação de Doutorado
apresentado ao Programa de Pós-graduação
em Engenharia de Sistemas e Computação,
COPPE, da Universidade Federal do Rio de
Janeiro, como parte dos requisitos necessários
à obtenção do título de Doutor em Engenharia
de Sistemas e Computação.

Advisor: Cláudia Maria Lima Werner

Rio de Janeiro
Novembro de 2022

Abstract of Qualifying Exam presented to COPPE/UFRJ as a partial fulfillment of
the requirements for the degree of Doutor of Science (D.Sc.)

EXPLORING PRODUCT LINE CONCEPTS IN VIDEOGAME BUILDING

Diego Cardoso Borda Castro

November/2022

Advisor: Cláudia Maria Lima Werner

Department: Engenharia de Sistemas e Computação

The gaming industry is one of the world’s most influential, attracting fans of
all ages, genres, and tastes. However, game development can be a lengthy process,
with some titles taking years to reach store shelves. With such a large community of
enthusiasts, some consumers cannot wait this long time for the game to be released.
As a result, they end up creating their own versions of the game, which is known as
mod. This term refers to modifying a game through a player’s expression. However,
another term that is very similar to this is the modifier term, which seeks to produce
games by modifying the original game. A study was conducted, and it was possible to
perceive their strong similarity between the term modifiers and the Reuse of Oppor-
tunistic Software, as well as some difficulties in this process, with a focus on the lack
of tools that support the development and evolution of videogames. A study con-
ducted revealed a clear connection between the term modifiers and the Reuse of Op-
portunistic Software as well as some difficulties in this process, including the lack of
suitable tools and the difficulty in the development and evolution of the game. Based
on this, the current work conducted a study on Software Reuse and game / mods
development and proposes the EngageSPL platform, having characterístics such as:
feature tree, evolution by through modifiers and development pattern verification.
With the use of this platform, it is expected that the development of mods will be
improved, saving time, money, and effort.

ii

Resumo do Exame de Qualificação apresentado à COPPE/UFRJ como parte dos
requisitos necessários para a obtenção do grau de Doctor em Ciências (D.Sc.)

EXPLORANDO CONCEITOS DE LINHA DE PRODUTO NA CONSTRUÇÃO
DE JOGOS

Diego Cardoso Borda Castro

Novembro/2022

Orientador: Cláudia Maria Lima Werner

Programa: Systems Engineering and Computer Science

A indústria de jogos é uma das mais influentes do mundo, atraindo entusiastas
de todas as idades, gêneros e gostos. No entanto, o processo de desenvolvimento de
um jogo pode ser muito demorado, tendo títulos que demoram anos para chegar nas
prateleiras. Com uma comunidade de entusiastas tão grande, alguns consumidores
não conseguem esperar tanto tempo até o lançamento do jogo. Devido a isso, acabam
criando suas próprias versões do jogo, sendo essa atividade denominada de mod.
Esse termo se refere a modifião de um jogador. No entanto, outro termo bem semel-
hante a este o termo modificador que busca produzir jogos por meio de alter-
de um estudo realizado, foi pos perceber sua grande semelhante do termo modifi-

cadores e da Reutião de Software oportunista, além de algumas dificuldades nesse
processo, com destaque para a falta de ferramentas que apoiem no desenvolvimento
e Reutilização de Software e desenvolvimento de videogames e propoe a plataforma
EngageSPL que integra os conceitos de Linha de Produto, do framework MDA e
de videogames, possuindo funcionalidades, como: o de caracter ísticas, ão por meio
de mods e verificação de padrão de desenvolvimento. Espera-se que com o uso
dessa plataforma o desenvolvimento de mods seja melhorado, diminuindo o tempo
de desenvolvimento, dinheiro e esforço.

iii

Contents

List of Figures vi

List of Tables viii

List of Abbreviations 1

1 Introduction 2
1.1 Motivation and Context . 2
1.2 Objective . 5
1.3 Methodology . 6
1.4 Text organization . 9

2 Theoretical foundation 10
2.1 Games . 10

2.1.1 Mods and Modifiers . 12
2.2 Software Reuse . 13

2.2.1 Components . 13
2.2.2 Software Product line . 14
2.2.3 Model Driven Development 15

2.3 Final considerations . 16

3 Literature Review 18
3.1 Search protocol . 18
3.2 Viability Study . 21

3.2.1 Results . 27
3.2.2 Summary of findings . 30
3.2.3 Conclusion . 42

3.3 Main Study . 44
3.3.1 Results . 51
3.3.2 Summary of findings . 53
3.3.3 Conclusion . 63

iv

4 Exploratory Studies 64
4.1 Problem discussion . 64
4.2 Proof of concept . 69

4.2.1 Initial exploration . 69
4.2.2 Developing a product line . 71
4.2.3 Dynamic Tetrad Game . 74
4.2.4 Classic Tetrad Game . 77

4.3 Evaluation . 81
4.3.1 Planning . 81
4.3.2 Participants sample . 82
4.3.3 Procedure . 82
4.3.4 Results . 83

4.4 Conclusion . 91

5 EngageSPL Platform 93
5.1 Overview . 93
5.2 Schedule of activities . 97

References 100

A TAM + MEEGA Questionnaire (English version) 111
A.1 Job description . 111
A.2 Characterization questionnaire . 112
A.3 Evaluation questionnaire . 113

B TAM + MEEGA Questionnaire (Portuguese version) 116
B.1 Descrição do trabalho . 116
B.2 Questionário de caracterização . 117
B.3 Questionário de avaliação . 118

v

List of Figures

1.1 Research methodology, adapted from (LACERDA et al., 2013) 7

2.1 Development flow. 12
2.2 Component-based development illustration. 14
2.3 Feature Oriented Domain illustration (SCACCHI, 2011a,b). 15
2.4 Model Driven Development illustration (WADA and SUZUKI, 2005). 17

3.1 Search flow of research on mutators and games. 23
3.2 Number of papers found in the search on mutators and games grouped

by search base. 28
3.3 Number of questions answered per paper (Research on mutators and

games). 28
3.4 Number of papers found in the search on mutators and games grouped

by year. 29
3.5 Number of papers found in the search on mutators and games grouped

by country. 29
3.6 Search flow of research on games and reuse approaches. 45
3.7 Number of papers found in the search on games and reuse approaches

grouped by search base. 52
3.8 Number of papers found in the search on games and reuse approaches

grouped by year. 52
3.10 Number of papers found in the search on games and reuse approaches

grouped by country. 52
3.9 Number of questions answered per paper (Search on games and reuse

approaches). 53

4.1 Illustration of a feature derivation tree. 68
4.2 Configuration JSON example. 70
4.3 Games created from the prototype. 71
4.4 Tetrad Generation Game (CASTRO and WERNER, 2021; GOUWS

et al., 2013). 72
4.5 Elemental tetrad Generation Game (CASTRO and WERNER, 2021). 75

vi

4.6 Configuration panel (CASTRO and WERNER, 2021). 75
4.7 Elemental tetrad Feature tree (CASTRO and WERNER, 2021). . . . 77
4.8 Levels generated by the game. 78
4.9 Game feature selection trees, grouped according to the elemental tetrad. 78
4.10 Game characteristics selection trees. 79
4.11 Tetrad SPL Classic game feature tree. 79
4.12 Characterization of specialists. Source: from the author. 84
4.13 Experience of specialists. Source: from the author. 85
4.14 Characterization of students. Source: from the author. 85
4.15 Experience of students. Source: from the author. 86
4.16 Characterization of community. Source: from the author. 86
4.17 Experience of community. Source: from the author. 87
4.18 Meega / TAM Questionnaire with Specialists Response. Source: from

the author. 88
4.19 Meega / TAM Questionnaire with Students Response. Source: from

the author. 89
4.20 Meega / TAM Questionnaire with Community Response. Source:

from the author. 90
4.21 Progression in terms of difficulty in building the SPL platform. 91

5.1 Example of feature trees. 95
5.2 Platform idea wireframe . 96
5.3 Schedule of activities. 97
5.4 Schedule of development activities. 97

vii

List of Tables

3.1 Search string of mutator and games. 21
3.2 Analysis of the papers about mutators and games. 24
3.3 Traceability matrix of mutators and games. 25
3.4 Derivation of game characteristics . 34
3.5 Advantages and disadvantages of using mods. 40
3.6 Search String of games and reuse approaches. 45
3.7 Analysis of the papers about games and reuse approaches. 47
3.8 Traceability matrix of games and reuse approaches. 48
3.9 SR methods used for game development 55
3.10 Advantages associated with the use of reuse techniques. 58
3.11 Tools used for game development. 62

4.1 Lightbot and Codeboy characterized according to the MDA framework. 73
4.2 Changeable game features; . 76
4.3 Game mechanics, dynamics and aesthetics. 76

5.1 EngageSPL features VS mod development problems. 93

viii

List of Abbreviations

CBD .. COMPONENT BASED DEVELOPMENT

CIM ... COMPUTATIONAL INDEPENDENT MODEL

DSPL .. DYNAMIC SOFTWARE PRODUCT LINE

ENGAGESPL ENGINE FOR GAME GENERATION THROUGH
SOFTWARE PRODUCT LINE

MDD .. MODEL DRIVEN DEVELOPMENT

PIM ... PLATFORM INDEPENDENT MODEL

PSM ... PLATFORM SPECIFIC MODEL

OMG ... OBJECT MANAGEMENT GROUP

SE .. SOFTWARE ENGINEERING

SR ... SOFTWARE REUSE

SLR ... SYSTEMATIC LITERATURE REVIEW

MR .. MULTIVOCAL REVIEW

SPL ... SOFTWARE PRODUCT LINE

TAM .. TECHNOLOGY ACCEPTANCE MODEL

1

Chapter 1

Introduction

This chapter aims to present the context, motivation, and problems addressed
by this work. In addition, the objectives, and the methodology adopted to achieve
them are also presented, as well as the organization of the text.

1.1 Motivation and Context

According to experts, there are about 2.2 billion gamers worldwide (PASHKOV,
2021). Games have grown to be one of the most popular forms of entertainment,
attracting fans of all genders, ages, and tastes, as well as being a showcase of the
industrial environment, amassing billions over the years, being compared even with
the movie industry. To have a representation of this growth, in 2017, League of
Legends collected 2.1 billion dollars in just one year (JARRETT, 2021); 400 million
dollars were collected in 24 hours at the launch of the game Call of Duty: Modern
Warfare 3 in 2011 (MARCHAND and HENNIG-THURAU, 2013) and this was over
11 years ago. The game industry is still growing. In 2020, 2021 and 2022, as a
result of the quarantine imposed by COVID-19, the video game industry experienced
massive growth, raising around $159.3, $175.8 and $196 billion, which is a steady
annual growth rate of 9.3, 10.2 and 11.4 percent since 2019 (PASHKOV, 2021;
WIDJMAN, 2021). The gaming industry has even been compared to the movie
industry due to the amount of investments and income generated throughout the
year, being estimated that it may even be higher one day. Experts predict that the
gaming industry will reach $260 billion annually by 2025, just three years from now
(BEATTIE, 2020).

Regardless of the amount of money generated/invested and the size of the user
community, the process of developing a game, from planning to release, may be
rather expensive, time-consuming, and involve multiple specialists, with some games
taking years to complete. It’s worth noting that some of these games take years
to develop and, even then, they either never launch or are delivered with several

2

problems, resulting in significant expenditures for the developer (BILIŃSKA et al.,
2020). Along with the issues mentioned above, there are several additional factors
that might effect the creation of a game, such as the difficulty of producing some-
thing new/innovative, meeting client expectations, and ensuring the game’s quality
(BILIŃSKA et al., 2020). Cyberpunk 2077 is a possible example of a game that did
not follow the ideal flow of success. Despite seven years of development, hundreds of
millions of dollars invested, multiple launch delays, and high expectations, numerous
errors were discovered in the release, prompting the company to fix the bugs and
compensate some users (POLITOWSKI et al., 2021).

However, with such a big community of followers, some of these users cannot
wait such long time for a game to be released or become frustrated with the game’s
numerous bugs, resulting in discontent and anxiety for some of them. As a result,
some people modify current games in order to develop their own versions (UNGER,
2012). This process of using already created games to generate new ones is known as
mod. When discussing mods, one of the most frequently mentioned topics is the use
of modifiers,that can be understood as changes made to games in order to expand
the same (NETO and TAYLOR; UNGER, 2012).

Modifiers is very similar to opportunistic Software Reuse (SR). SR is the process
of reusing existing systems rather than constructing new ones. It is the process of
using existing software artifacts and expertise in order to create something new, sav-
ing time and money on development (KRUEGER, 1992). Keeping this in mind, a
literature review was carried out to identify ways of building video games and which
SR approaches were being used for game development and evolution. As described
in chapter 3, four methods were identified: clone-and-own, software components,
Model-Driven-Development (MDD), and Software Product Line (SPL). The first
method is still the most used today, being very similar to opportunistic reuse and
not recommended for large projects due to not having a development systemati-
zation. Componentization has also been used, being available in the main known
game engines. The last two are still in the testing phase, with few platforms to
help with this kind of development. In particular, for the SPL approach, only one
development platform was identified, and this was specific to a type of game. It is
worth remembering that these platforms are focused on game development and not
specifically for modifiers, not having specific features for video game evolution.

One of the main points highlighted by the review was the lack of appropriate
tools for video game evolution. Some companies even provide SDKs that allow the
modification of some parts of the game or the creation of video games, but often in a
very limited way, and there are still few companies that provide this opportunity to
allow minor changes in the game. Due to this limited availability of tools to facilitate
game extension, a user or programmer who wishes to create a extended game must

3

comprehend the source code, which requires a significant amount of programming or
even starting from scratch. Due to the aforementioned efforts, developing extended
video game can be a challenging, time-consuming, and expensive hobby / process.

The study carried out in this work also demonstrated the advantages, disadvan-
tages, contexts of use, and motivation for using each of the identified approaches.
On the basis of this information, it was determined that the SPL approach would
be the most recommended one for game evolution and video game development due
to its numerous benefits, such as the separation of software features, the easy visu-
alization of the product building tree, and the rapid evolution of existing features,
which permits the creation of N versions of a single game.

Although the software product line alone can facilitate in the evolution of video
games, it does not provide tools for the evolution of existing features, only allowing
to choose or remove existing features. As previously mentioned, a extended game
is a game that received a modifier that change some of its characteristics (NETO
and TAYLOR; UNGER, 2012). Therefore, thinking of new ways to evolve / derive
video games, this concept of modifiers can be utilized associated with the product
line to add this functionality to change existing characteristics. In this way, the SPL
would be responsible for separating the game’s features into a tree model (feature
tree) and modifiers would have the role of modifying the leaves of these trees that
represent the features of the games.

The elemental tetrad (SCHELL, 2008) will be the last new concept added to the
video game evolution concept. There are numerous ways to represent a game and
its features, and with these frameworks, any game can be characterized according
to its mechanics, aesthetics tecnology and story. The proposal is to represent the
game using tetrad, and each component of this framework having its own feature
tree. Thus, each game would have three trees, and any mod’s mechanics, aesthetics
tecnology and story could evolve / derive based on the SPL and mutator concepts
described above.

According to what has been discussed thus far, the purpose of this research is to
combine SPL, modifiers and tetrad in order to propose a video game development
platform that reduces players’ anxiety and dissatisfaction by assisting in the evolu-
tion of video games. In this way, a game would only need to be developed once, and
N versions of it could be generated quickly, easily, and at low cost. That way, if a
game were built by the platform, any user who wanted to create their version of the
game could have this development facilitated.

This work originated from a dissertation (CASTRO, 2020) in which the goal was
to teach SR through serious games. The production of games based on existing
games was investigated in this dissertation, as well as the adaption of games for
diverse settings, which is very similar to opportunistic reuse or what is already

4

being done in the games community. The dissertation examined the use of games
to teach SR. However, in this case, the intention has changed, having SR assisting
in the development of games this time.

Continuing with the video game constructed in the dissertation, its design was
revised, resulting in the creation of a game product line that demonstrates how
the game expanded until the mod. From this manual product line, this idea was
improved providing two new games that simulated an SPL, following the idea of
building the game development platform. These games were evaluated and showed
great potential to aid in game development, thus enabling the creation of a platform
to assist in the development of games through product lines. The platform was
called EngageSPL and aims to enable the development of a game once and create
N versions of it using modifiers and SPL.

1.2 Objective

To aid in video games extension the current research recommends the use of
SPL combined with the tetrad framework and the modifier concepts to shorten
development time, boost the potential of extending video games, lower investment
costs and simplify the process.

With the general objective of improving the video game development process,
it is proposed to build a vide game development platform through SPL, modifiers
and tetrad techniques with the aim of obtaining the advantages offered by these ap-
proaches, such as cost reduction, more quality, increased possibility of expanding the
software and reduced development time. This general objective can be decomposed
down into specific goals:

• Characterize state-of-the-art on the derivation of games and modifiers.

• Characterize the state of the art of using software reuse approaches for game
development.

• Create simple games to validate game development through Software Reuse
approaches.

• Develop a platform to support game development through Product Line, mod-
ifiers and tetrad. From the platform it will be possible to create and develop
a game once and generate N versions from it through the use of modifiers and
SPL. (To be performed).

• Conduct a platform evaluation study to validate the ease and agility of devel-
oping vide games through product lines. (To be performed).

5

1.3 Methodology

The technique used in this research was inspired by the Design Science Research
(DSR) model (LACERDA et al., 2013), but was adjusted according to the work need.
Each stage contributed to and strengthened the work proposal’s construction. The
viability study provided a general context, demonstrating that the theme was still
important and that the process of extending video games still happened in an ad-hoc
way, but that it could be improved and systematized using reuse approaches. The
literature review corroborated by demonstrating which reuse techniques were already
in use and which would be the best for creating video games and expanding / deriving
games, laying the groundwork for the plan to create a game development platform
that could be used across product lines, modifiers and the tetrad framework. Finally,
prototyping demonstrated that the platform proposal was sound and that further
development was possible.

Figure 1.1 presents the methodology used, which is divided into three major
parts: Awareness and Search that are initial activities and artifacts which demon-
strated the initial ideas of the work; Validation of ideas, information, and artifacts
that were generated from the Search activities; Proposal, development of the work
proposal. Some artifacts and links have been omitted from the image to make it
easier to understand.

The method stated in Figure 1.1 may be interpreted in two ways: each line details
how each activity was designed, while each column details all activities performed
(first column), their associated artifacts (second column), and their associated objec-
tives (third column). Orange and green colors represent exploratory and conclusive
efforts, respectively. Exploratory activities may be defined as those that involve the
validation or analysis of early data. Conclusive activities are those that seek to ex-
plore deeper into the work overarching issue, which is to investigate reuse strategies
for improving the game development process. Each of the activities presented in
Figure 1.1 is described in more detail below.

• Awareness and Search: Seeks to identify the problem to be solved. Performs
two reviews to understand what has already been produced within the area of
games and Software Reuse.

– Problem Awareness: Elaborate an initial study to have a first contact
with the researched area. Seeking to understand how video games are
being extended currently.

6

Figure 1.1: Research methodology, adapted from (LACERDA et al., 2013)

7

∗ Objective: Identify the problem to be solved with the proposal.
Identify what problems exist in video games extension.

– Viability Study: Conduct a preliminary study to find out what has
already been produced on game modification development.

∗ Artifact: Analysis of the results of the preliminary review.

∗ Objectives: Define state of the art and provide practice on game
modification and development. The viability for carrying out the
study.

– Main Study: Develop a study to find out what has already been pro-
duced on game development and Software Reuse.

∗ Artifact: Analysis of the results of the main review.

∗ Objectives: Define state of the art and provide practice on using
SR for game development.

• Validation of ideas: Activities to generate a practical basis.

– Prototyping: Develop one (or more) game(s) based on previous studies
in order to validate SR approaches to game development.

∗ Artifact: Games that was developed.

∗ Objectives: Validate some SR approaches to the game development
process.

– Prototype Evaluation: Carry out a viability study to evaluate the
game created in the previous phase.

∗ Artifact: Game evaluation.

∗ Objectives: Evaluate the games from a development perspective.
Evaluate whether the developed games indicate ease of construction
and whether such a method may aid in game development.

– Surveys with specialists: Check with specialists about the validity /
viability of the idea.

∗ Artifact: Analysis of Survey results.

∗ Objectives: Determine from the opinions of the specialists whether
the platform’s development is valid, a good idea, and viable.

• Proposal: Based on the information collected in the previous activities, it
aims to find a solution to the problem demonstrated.

– Platform Development: Create the EngageSPL platform, which aims
to support in the creation of games via Product Line.

8

∗ Artifact: Platform that was developed.

∗ Objectives: Develop the platform that aims to solve the problem
found in the research phase. Develop a game development platform
by selecting a reuse approach.

– Platform Evaluation: Carry out a viability study to evaluate the game
platform in the previous phase.

∗ Artifact: Platform evaluation.

∗ Objectives: Evaluate the developed platform to verify if it may help
in the development of games more quickly and easily.

– Platform Improvement: Improve EngageSPL Platform.

∗ Artifact: Platform with identified improvements.

∗ Objectives: Develop the improvements found in the platform eval-
uation.

1.4 Text organization

This work is organized into five chapters. In this chapter, the context, as well as
the motivation and problem of this research was presented.

Chapter 2 presents the theoretical foundation on some subjects that help in
understanding the other chapters. Topics such as games, mods, modifiers, software
reuse, product lines, model-based development, and software components will be
presented.

Chapter 3 presents the two literature review studies that supported this work.
This chapter demonstrates the state of the art about mods/modifiers and game
development based on Software Reuse approaches.

Chapter 4 presents a discussion about the problem to be addressed in this work,
demonstrating what is intended to be built to solve the problem. Demonstrates the
steps taken to validate the idea for solving the problem.

Chapter 5 concludes the qualifying exam by proposing a schedule of future ac-
tivities to carry out the thesis proposal.

9

Chapter 2

Theoretical foundation

This chapter aims to provide the theoretical foundation essential to compre-
hending the research conducted, which may be unfamiliar to the reader. In this
sense, some basic concepts about mutators, modifications, video games, and Soft-
ware Reuse are described in the following.

2.1 Games

Numerous definitions of games are found in the literature. The majority of
them, however, center around the following definition: Games may be characterized
as activities that make use of an abstract environment in which decisions, actions,
and rules are established with the purpose of achieving a leisure activity, such as
fun or enjoyment (EHRMANN et al., 1968; HUNICKE et al., 2004).

Numerous characteristics may be found in games. The complexity of a game can
increase in proportion to the number of elements. As a result, methods for arranging
game concepts are required. There are several ways to arrange ideas for creating a
game, including flow models (DORMANS, 2011), gameplay (GUARDIOLA, 2016),
and features (XEXÉO et al., 2013). Elemental tetrad (SCHELL, 2008) is a well-
known model in the gaming industry. It divides the properties of games into four
categories, which are (SCHELL, 2008):

• Mechanics: can be interpreted as the rules and activities that may occur
during the course of the game.

• Second level mechanics: although the second level mechanics are not part
of the elemental Tetrad, they will be added in this work to describe mechanics
that are generated from the combination of primary mechanics. This addition
was made to bring more dynamism to the proposed modification of the games
to be built (SCHELL, 2008).

10

• Story: describe the narrative aspect of the game. In this work the story will
be modified through the direct modification of the aesthetics.

• Aesthetics: are the emotions experienced by the player. Sensation, Fantasy,
Narrative, Challenge, Fellowship, Discovery, Expression, and Submission are
the most common emotions.

• Technology: refers to the tools and the systems used to implement the game-
play. In this work, this category will not be modified due to the technology
used for all games being the same, always using Unity for mobile game devel-
opment.

.
Along with methods for organizing game concepts, there are various cycles of

game creation described in the literature; nonetheless, they may be classified into
four primary stages (RAMADAN and WIDYANI, 2013). Each of them is highlighted
as follows:

• Pre-production: aims to define and improve the game’s original concepts;
this is the stage during which documentation, such as the Game Design Doc-
ument (GDD), concept art, and game design, is created. Certain procedures
begin with a phase called Pitch, which is responsible for the game’s idea and
basic design.

• Production: some processes divide this stage into development and refine-
ment. However, it may be viewed as a continuous cycle process centered on the
creation of assets and source code. Finally, the entire technique is validated
internally.

• Testing: intends to evaluate the usability, playability, and balancing charac-
teristics of the game. This process is typically followed by two releases (alpha
and beta), depending on the game’s integrity.

• Release: final stage of production of the game, it is ready to be released to the
public. The release process comprises product launch, project documentation,
and game maintenance and expansion planning.

Figure 2.1 is a simplified flow chart illustrating the many stages that might occur
during game development. The dotted steps are optional and may be skipped.

11

Figure 2.1: Development flow.

As a result of the procedure outlined above, it is reasonable to deduce that
developing games may be quite difficult and time-consuming. As a result, some
members of the community utilize already created games to build new ones. This is
referred to as the Mods method (MCARTHUR and TEATHER, 2015).

2.1.1 Mods and Modifiers

What qualifies a game as "new"? Recognizing what makes a new game is not as
simple as it may appear. By defining the games outlined in the preceding section,
it is possible to observe various aspects that distinguish them, such as new rules,
actions, and player decisions. It is not essential to edit each of these items in order
to create a new game. Modification occurs in phases. When these modifications are
done by members of the community, they are referred to as mods. Modifications are
described as the process of creating tweaks 1, additions 2, or adaptations to a game
(SCACCHI, 2011b). In general, mods are modified games that work differently from
the original version.

Historically, the term mod derives from hacking, which occurs when gamers
alter game code without the permission of the developer. This act was motivated
by a number of factors. Among the most notable ones are the following: providing
new experiences, arousing curiosity, and financial considerations, to name a few
(BILIŃSKA et al., 2020). Mods are an enticing and durable form of player and
content creation that have existed for more than a decade. This technique has
become so popular that some firms have even developed platforms that allow for the
modification of certain games. Another manifestation of this renown is the presence
of instances in which the modified game achieved greater popularity than the original
one, as it was the case with the Counter-Striker mod, a game derived from Half-life.
In a nutshell, they are digital artifacts created by players when fiddling with their
preferred games. Video games extesions are made using modifiers, which may be

1Tweaks: minor modifications that do not change the main rules of the game (SCACCHI,
2011a,b).

2Additions: works as an extension of the game, like adding new maps or objects (SCACCHI,
2011a,b).

12

thought of as changes to games (NETO and TAYLOR; UNGER, 2012). There are
several granularities of mutators/modifiers that may be applied to games, ranging
from modest modifications to the game’s map to entire rebuilds (SOTAMAA, 2010).
In Chapter 3, each mod will be described in more detail.

As previously stated, mods are a form of player expression; however, within the
field of game development, another term very similar to it is modifiers, which can be
understood as changes made to games, as well as mods, but this time only aimed at
extending the original game by adding new features and not as a form of expression,
this being the focus of this work.

2.2 Software Reuse

Reuse is effectively used in a variety of industries, including manufacturing, vehi-
cles, and electronics. The term Software Reuse (SR) was coined in 1968 at a NATO
conference (RANDELL, 1979) and is one of the disciplines of Software Engineering
(SE). It is defined as the process of developing systems from one or more existing
ones rather than starting from scratch; that is, it is the process of utilizing existing
software artifacts and knowledge to create something new (KRUEGER, 1992). NIU
et al. define reuse as a simple vision of “not reinventing the wheel”.

SR concerns crosscut several Knowledge Areas (KAs) of the Software Engineer-
ing Body of Knowledge (SWEBOK) (BOURQUE and FAIRLEY, 2014), namely the
Software Design KAs (e.g., component-based design, software product lines), Soft-
ware Construction KAs (e.g., construction for reuse and construction with reuse),
Software Testing KAs (e.g., test reuse and test patterns), and Software Engineering
Process KAs (e.g., reuse processes).

The primary objective of this research is to create games using SR techniques.
On the basis of the SWEBOK (BOURQUE and FAIRLEY, 2014) KAs, it is possible
to identify certain areas that may be used for this purpose, including Construction
for and with Reuse, Software Product Lines, Component-Based Design, and Model-
Driven Development. The first two elements stated are crucial to the Reuse process
as a whole. For instance, when you construct a component for reuse and then use
it, you are developing with reuse.

2.2.1 Components

A software component may be thought of as a self-contained, replaceable bit of
code that performs a certain purpose and is reused when creating a new program. It
is anticipated that by implementing this approach, several benefits would be realized,
including function unification, encapsulation, increased code quality, and more agile

13

development (SAMETINGER, 1997).
Software development through components can be understood as a series of steps

for selecting, composing, modifying, and using artifacts. This type of development
can be divided into two stages: development for components and development of
components. Development with components can be understood as the process of
building software from pre-produced components. Development for components can
be understood as building components for future use (BLOIS, 2006). Figure 2.2
demonstrates the development flow with components.

For some time, the gaming community has made use of the concept of software
components. Nowadays, libraries containing a variety of pre-produced components
are available to assist developers in creating games more efficiently. The game
engines themselves already provide libraries for component availability, with the
unity asset store serving as one example (KYAW, 2013).

Figure 2.2: Component-based development illustration.

2.2.2 Software Product line

The term Software Product Line (SPL) refers to a collection of strategies, tech-
niques, and tools for the methodical development of comparable systems that have
a common core but exhibit distinct characteristics. The utilization of these subjects
is predicted to result in a decrease in development time, simpler maintenance and
evolution of systems, enhanced programmers satisfaction, and a higher quality of
code (KRUEGER, 1992).

14

SPL divides its approach into two stages: domain engineering, which involves the
creation of common assets, and application engineering, which involves the reuse of
common elements and the addition of unique elements. SPL is distinct from other
forms of reuse in that it contrasts predictive and opportunistic methods. Instead
of storing generic software components in a library in the expectation of reusing
them, SPL requires the development of software artifacts (i.e., assets) only when
their reuse in one or more products is anticipated (KRUEGER, 1992).

Finally, a product line is composed of four sorts of elements: required that
are present in all applications and constituting the heart of SLP (demonstrated by
filled balls); alternative that are restrictive characteristics; an application may have
one or more of these features (demonstrated by unfilled circle); optional that are
features that specific applications may or may not have (demonstrated by unfilled
balls); and exclusions that when only one of these characteristics can be used
(demonstrated by filled circle). Based on these elements, it is possible to derive
each of the game’s features from the product line, thus building a feature tree for
each game (SCACCHI, 2011a,b). Figure 2.4 demonstrates these elements based on
Feature Oriented Domain Analysis (FODA) (KANG et al., 1990).

Figure 2.3: Feature Oriented Domain illustration (SCACCHI, 2011a,b).

2.2.3 Model Driven Development

The OMG (Object Management Group) has created standards that enable the
establishment of platform-independent development methodologies. This set of stan-
dards is referred to as Model Driven Development (MDD) and is intended to decou-
ple feature design from implementation specification. MDD-based techniques enable
the creation of software by modeling and applying models of its implementations.

15

The purpose of MDD is to enable developers to focus exclusively on the application’s
business requirements, rather than on the platform on which they will be executed
(MAIA et al., 2007).

MDD’s basic premise is that modeling languages should be used as program-
ming languages, not merely as design languages. As a result, software models cease
to be the only documentation artifacts and instead become critical components of
the software development process. Prior to MDD, models were created to aid in
communication between developers and drafters on a software development project.
With MDD, models must now be more precise in order to become a natural part of
the software development process. That is, these models serve as input artifacts for
the system’s construction via transformation execution.

In general, MDD is built on updated and described models (a simplified repre-
sentation of some concept). It is based on two models: the Platform Independent
Model (PIM), which provides an overview of the system independent of the plat-
form, and the Platform Specific Model (PSM) that is a view of the system from a
specific perspective for a platform or technology. MDD is a technique that entails
developing a PIM using a modeling language and then transforming it to generate
a PSM, which generates the software implementation in the selected programming
language (MAIA et al., 2007). Figure 2.4 demonstrates the process of building
software through MDD.

Comparing the MDD model and the development of Mods, it is possible to
propose an integration between them. Mods, in general, are games that receive
transformations and generate adaptations of the original games. Games can be
decomposed according to their characteristics as mentioned in Section 2.1 and these
can be present in the PIM model, thus creating an abstraction of the game. As
mentioned, there are several types of modifiers that can be applied to games. These
modifiers could be the transformations that are involved in the PIM model. After
a series of transformations and the use of a game-specific programming language, a
PSM would be generated that could be considered as the final mod.

2.3 Final considerations

This Chapter intended to bring out the main points that the reader needs to
know before reading the following chapters. The whole context of games, mods, and
Software Reuse techniques has been illustrated so that the rest of the work can be
read comprehensively.

It is noticeable from this contextualization chapter that the game production

16

Figure 2.4: Model Driven Development illustration (WADA and SUZUKI, 2005).

process is extremely complex, time-consuming, costly and requires numerous steps
and expertise. As a result, many people in the gaming community end up creat-
ing game mods out of frustration and dissatisfaction. The motivation, methods of
development, and types of mods will be discussed in greater depth in the following
chapters.

The definition of the tetrad framework, which is referenced in other parts of the
text and even as a foundation for the final proposal of the work, is another piece of
information that requires the reader’s attention.

Finally, this chapter also demonstrates some SR techniques in a little more detail.
These strategies will be explored in the next chapters of the work, according to the
scope of game production.

17

Chapter 3

Literature Review

This chapter seeks to show the study that was done in this research in order to
find out what has already been established in terms of video extension / derivation
using software reuse techniques. A key point to remember for a thorough under-
standing of this work is that little information on game extension via modifiers was
found in the literature. Although game companies are thought to use game chang-
ing techniques as well as Software Reuse, little evidence has been discovered. As a
result of the similarity of the terms, mods were researched in the literature. Thus,
two searches were made: one on general mod construction and the other on game
development using reuse techniques.

It is important to note that the purpose of these two studies was to provide
information for the final proposal of this work. It was attempted to conduct a single
study on mod derivation; however, few relevant works were discovered and therefore
the research was divided in two parts.

3.1 Search protocol

The study described in this chapter took place between October 2021 and March
2022 with the goal of identifying previous work in the areas of games, mutators, and
reuse.

Two distinct search strategies were utilized in this study (one for each review),
referred to as Systematic Literature Review (SLR) and Multivocal Review (MR).
The Viability Study employed the MR technique in order to gather as much infor-
mation as possible and to take advantage of the gaming community’s huge blog and
website presence. SLR was used for the main review of the work (review of reuse
approaches to game development), and this choice was made because, in the viabil-
ity study, a search in gray literature was conducted, and the result was not highly
relevant in comparison to the effort spent, returning information that had already
been discovered in the white literature.

18

• SLR: is a systematic methodological review of research that investigates and
categorizes studies in a specific field of study and presents an overview of a
certain subject systematically (i.e., using an organized and repeatable process
or procedure) (KITCHENHAM et al., 2009).

• MR: is a more complete examination of the literature that aims to elicit as
much information as possible about a specific subject; hence, it incorporates
data from both white (academic papers, books, etc) and gray (blogs, websites,
videos, etc) sources. This strategy is typically utilized when there is substantial
community support for the study subject and it is necessary to verify practical
knowledge on a particular subject (GAROUSI et al., 2019). A MR may be
separated into two stages: the first stage involves the search for academic
knowledge (in this case, an SLR was used), and the second stage involves the
search for gray literature.

All revisions carried out in this work followed the stages of the protocol proposed
by (KITCHENHAM et al., 2009). The search string was executed on the main
search engines, Scopus3, ScienceDirect34, IEEEXplore5, and El Compendex6, as
recommended by (CUSKER, 2013) and (KITCHENHAM et al., 2009).

To make this study possible, a core search string was constructed utilizing the
PICOC structure (Population, Intervention, Comparison, Outcome, and Context)
at four levels (ARAÚJO et al., 2022; PETTICREW and ROBERTS, 2008). The
search string was constructed by combining related domain-specific keywords using
the logical operator "OR" and fields using the logical operator "AND". This string
was utilized throughout the studies. To validate the search string, two control papers
were used to create and run the string in the Scopus database, which was the first
database where the string was applied. This validation technique aims to ensure
the search string’s quality by ensuring that it returns relevant articles and author
knowledge (MORAES and SOUZA, 2011).

According to (MOTTA et al., 2016) and (MATALONGA et al., 2017), snow-
balling processes can compensate for the absence of other search engines and supple-
ment the approach by doing research via the references and citations of the papers.
Therefore, to minimize the loss of some papers and increase the search range, the
forward7 and backward8 (one-level) snowballing procedure was used, which checks

3https://www.scopus.com
4https://www.sciencedirect.com
5https://ieeexplore.ieee.org/
6https://www.engineeringvillage.com/home.url
7Snowballing Forward: refers to the identification of new papers based on the works that

referenced the paper that was analyzed (WOHLIN, 2014)
8Snowballing Backward: refers to the identification of new papers based on the works that were

19

the references and citations of articles seeking relevance (WOHLIN, 2014). The pro-
cedures, inclusion and exclusion criteria and quality criteria will be described below.
The research questions of each of the reviews will be described in the following
sections.

Implementation procedure

1. Execute the search string;

(a) For searches in gray literature, it was searched for each search string up
to page 10 of google. The search strings were formed by combining the
keywords of population and intervention;

2. Apply the inclusion / exclusion criteria based on the title;

3. Apply the inclusion / exclusion criteria based on the abstract;

4. Apply the inclusion / exclusion criteria based on the full text;

5. Apply the quality criteria;

6. Apply snowballing backward; and

7. Apply snowballing forward

(a) For searches in gray literature, the snowballing was performed on site
references, on links contained within the site.

Inclusion criteria

1. Viability Study: The article must be in the context of Mods;

2. Main Study: The article must be in the context of Games and Software Reuse;

3. The paper must provide data to answer at least one of the research questions;

4. The paper must be written in English.

Exclusion Criteria

1. Conference call;

2. Studies that can not be fully accessed;

3. Studies that are not in the area of Computer Science or Engineering.

Quality Criteria

referenced in the paper that was analyzed (WOHLIN, 2014)

20

1. Is the publishing organization reputable?

2. Has the author published another work in the area?

3. Does the author have expertise in the area?

4. Is the article clear?

5. Are the references documented?

6. Does this enrich the research?

3.2 Viability Study

The research method demonstrated in this section was divided into two stages.
The first intended to elicit information from white literature (academic papers),
whereas the second functioned as a complementary study, eliciting information from
gray literature (websites, blogs, etc) (GAROUSI et al., 2019). The protocol used
in this research was demonstrated in the previous section. In the following, the
research questions will be demonstrated.

Table 3.1: Search string of mutator and games.

P *Game*
I Mutator, variant, mods, modification, conversion, add-on, tweak,

modding
C Not applicable
O Tools, approach*, method*, ideas, framework*, mechanics, inter-

pretation*
C Creation, production, development, elaboration, generation, prac-

tice*
TITLE-ABS-KEY ((*game*) AND (mutator OR variant OR mods OR
modification OR conversion OR add-on OR tweak OR modding) AND
(tools OR approach* OR method* OR ideas OR framework* OR mechan-
ics OR interpretation*) AND (creation OR production OR development
OR elaboration OR generation OR practice)) AND (LIMIT-TO (SUB-
JAREA, "COMP") OR LIMIT-TO (SUBJAREA , "ENGI"))
Control
papers

1 - Modding as part of game culture UNGER (2012)
2 - Serious mods: A case for modding in serious games pedagogy
MCARTHUR and TEATHER (2015)

21

Research Questions

• Q1: What modifiers are used to create games from others?

• Q2: What characteristics are needed to derive a game?

• Q3: What are the advantages and difficulties of creating games from others?

• Q4: What tools strategy or frameworks support these changes?

The first stage returned a total of 923 papers. When the publications were
examined using the inclusion and exclusion criteria, this number was reduced to 14.
From these studies, the snowballing process was carried out, and a total of 245 more
papers were evaluated. After this approach, 9 more papers were included, totaling
23 papers read and assessed. Tables 3.1 and 3.2 show the papers’ analysis and the
generation of the search string. Figure 3.1 demonstrates the steps that were taken
when performing the search.

With a quick search on the internet, thousands of customized games are available
in various databases, demonstrating that the community has already engaged in the
practice of game modification (UNGER, 2012).

Based on the first stage, it was determined that the gaming community is quite
active when it comes to game creation, enhancements, and changes. As a result,
an additional stage was added to the study. A search of the gray literature was
conducted in addition to the primary study.

The gray literature search covered up to page 10 of Google for each of the search
keywords, yielding 700 links that needed to be validated. After visiting each link,
the inclusion and exclusion criteria were applied, resulting in the selection of 21 links
for the quality criteria step. The following quality criteria were used to identify and
approve these links, where 10 links were selected and approved. The snowballing
process was accomplished through the use of backlinks (website reference links). As a
result, the entire procedure was restarted for those connections that were authorized,
and an additional 335 links were validated. Additionally, 4 other links were included
to the search. Finally, 14 more documents were added to the search.

The papers that were chosen for this research are listed in Table 3.2, along with
the questions that each document may answer. Column S denotes the kind of study;
S denotes the Scopus database, I denotes IEEEXplorer, EI denotes El Compendex,
SD is Science Direct, and B denotes Backward and F denotes Forward snowballing.

It is worth noting that just 4 of the second stage’s documents are links. The
remaining 10 documents are copies of documents discovered during the search. As
previously mentioned, one of the primary objectives of multivocal is to illustrate the

22

practical side of a subject, taking into consideration the fact that gray literature
(websites, blogs) demonstrates more practical actions. This can be seen in Table
3.3, where the majority of the documents identified in step two address topic four,
with an emphasis on the practical side. The green and red colors were used to show
whether a paper answered a question or not.

Figure 3.1: Search flow of research on mutators and games.

23

Ta
bl

e
3.

2:
A

na
ly

si
s

of
th

e
pa

pe
rs

ab
ou

t
m

ut
at

or
s

an
d

ga
m

es
.

S
co

p
u
s

S
ci

en
ce

D
ir

ec
t

IE
E
E
X

p
lo

re
E
l
C

om
p
en

d
ex

S
n
ow

b
al

li
n
g

B
ac

kw
ar

d
S
n
ow

b
al

li
n
g

Fo
rw

ar
d

A
ct

iv
it
y

R
es

u
lt

N
u
m

b
er

of
p
ap

er
R

es
u
lt

N
u
m

b
er

of
p
ap

er
R

es
u
lt

N
u
m

b
er

of
p
ap

er
R

es
u
lt

N
u
m

b
er

of
p
ap

er
R

es
u
lt

N
u
m

b
er

of
p
ap

er
R

es
u
lt

N
u
m

b
er

of
p
ap

er
F
ir

st
E
xe

cu
ti

on
51

2
ad

de
d

51
2

10
1

ad
de

d
10

1
18

3
ad

de
d

18
3

12
7

ad
de

d
12

7
38

1
ad

de
d

38
1

13
6

ad
de

d
13

6

N
u
m

b
er

of
p
ap

er
s

14
40

p
ap

er
s

R
ep

ea
te

d
P
ap

er
s

51
w

it
hd

ra
w

46
1

7
w

it
hd

ra
w

94
23

w
it

hd
ra

w
16

0
0

w
it

hd
ra

w
12

7
14

1
w

it
hd

ra
w

24
0

20
w

it
hd

ra
w

11
6

R
em

ov
e

co
n
fe

re
n
ce

48
w

it
hd

ra
w

41
3

7
w

it
hd

ra
w

87
0

w
it

hd
ra

w
16

0
0

w
it

hd
ra

w
12

7
0

w
it

hd
ra

w
24

0
0

w
it

hd
ra

w
11

6

P
ap

er
s

in
an

ot
h
er

la
n
gu

ag
e

10
w

it
hd

ra
w

40
3

0
w

it
hd

ra
w

87
0

w
it

hd
ra

w
16

0
0

w
it

hd
ra

w
12

7
4

w
it

hd
ra

w
23

4
3

w
it

hd
ra

w
11

3

N
u
m

b
er

of
p
ap

er
s

11
10

p
ap

er
s

R
em

ov
e

by
ti

tl
e

32
4

w
it

hd
ra

w
78

77
w

it
hd

ra
w

10
13

9
w

it
hd

ra
w

21
96

w
it

hd
ra

w
36

17
2

w
it

hd
ra

w
62

86
w

it
hd

ra
w

27

N
u
m

b
er

of
p
ap

er
s

20
7

p
ap

er
s

R
em

ov
e

by
ab

st
ra

ct
59

w
it

hd
ra

w
14

10
w

it
hd

ra
w

0
18

w
it

hd
ra

w
3

20
w

it
hd

ra
w

16
40

w
it

hd
ra

w
22

18
w

it
hd

ra
w

9

N
u
m

b
er

of
p
ap

er
s

56
p
ap

er
s

P
ap

er
s

n
ot

fo
u
n
d

0
w

it
hd

ra
w

14
0

w
it

hd
ra

w
0

0
w

it
hd

ra
w

3
0

w
it

hd
ra

w
16

0
w

it
hd

ra
w

22
0

w
it

hd
ra

w
9

R
em

ov
e

by
qu

al
it
y

cr
it

er
ia

2
w

it
hd

ra
w

12
0

w
it

hd
ra

w
0

0
w

it
hd

ra
w

3
6

w
it

hd
ra

w
10

7
w

it
hd

ra
w

15
0

w
it

hd
ra

w
9

R
em

ov
e

by
fu

ll
p
ap

er
0

w
it

hd
ra

w
12

0
w

it
hd

ra
w

0
1

w
it

hd
ra

w
2

10
w

it
hd

ra
w

0
11

w
it

hd
ra

w
4

4
w

it
hd

ra
w

5

E
xt

ra
ct

ed
P
ap

er
s

23
p
ap

er
s

24

Table 3.3: Traceability matrix of mutators and games.

Title Year Q1 Q2 Q3 Q4 S
First Stage

Building the Perfect Game – An Empirical
Study of Game Modifications LEE et al.

2020 X X X X S

To mod or not to mod—an empirical study on
game modding as customer value co-creation
BILIŃSKA et al.

2020 X X F

Modding tabletop games for education AB-
BOTT

2019 X X X X S

Migrating Java-based apo-games into a
composition-based software product line DEB-
BICHE et al.

2019 X X X F

Product line architecture recovery with outlier
filtering in software families: the Apo-Games
case study LIMA et al.

2019 X X F

Apo-games-a case study for reverse engi-
neering variability from cloned Java variants
KRÜGER et al.

2018 X X S

Multi-objective optimization for reverse engi-
neering of apo-games feature models MEN-
DONÇA et al.

2018 X X X S

Visual and computational modelling of minor-
ity games DAMAŠEVIČIUS and AŠERIŠKIS

2017 X X X S

Placing value on community co-creations: A
study of a video game ’modding’ community
PORETSKI and ARAZY

2017 X X X B

Analysis of popularity of game mods: A case
study DEY et al.

2016 X X S

Serious mods: A case for modding in se-
rious games pedagogy MCARTHUR and
TEATHER

2016 X X I

Design of a math learning game using a
Minecraft mod AL-WASHMI et al.

2014 X X X X S

25

Applying exception handling patterns for
user interface customization in software
games modification TENGTRIRAT and
PROMPOON

2013 X X X X F

An environment to support collaborative
learning by modding GEORGE et al.

2014 X X X F

Reporting about the Mod software process
ZUPPIROLI et al.

2012 X X B

A Role-Playing Game for a Software Engineer-
ing Lab: Developing a Product Line ZUP-
PIROLI et al.

2012 X X I

Remix and play: Lessons from rul ts in texas
hold’em and halo 2 CHEUNG and HUANG

2012 X X X S

Modding as part of game culture UNGER 2012 X X X S
Utilizing a 3D game engine to develop a vir-
tual design review system SHIRATUDDIN
and THABET

2011 X X X S

Modding as an open source approach to ex-
tending computer game systems SCACCHI

2011 X X X S

When the game is not enough: Motivations
and practices among computer game modding
culture SOTAMAA

2010 X X X B

Modding as a basis for developing game sys-
tems SCACCHI

2011 X X X S

Of mods and modders: Chasing down the
value of fan-based digital game modifications
POSTIGO

2009 X X X B

Am I Mod or Not? - an Analysis of First Per-
son Shooter Modification Culture NIEBORG

2005 X X X X B

Second Stage
Unofficial patch KOLBERT 2021 X X X B
Mod (video gaming) PATTERSON 2021 X X G
Appropriation & Motivation in Game Modifi-
cation WEEKE

2020 X X X G

Video game conversion MAGIOLADITIS 2020 X G

26

Players as Content Creators the Benefits of
Game Modding According to Polish Users.
HOFMAN-KOHLMEYER

2019 X X X B

Mod (video games) CLELAND 2018 X X X X G
Understanding Game Modding through
Phases of Mod Development AGARWAL and
SEETHARAMAN

2015 X X X G

Does game modding require programming?
RAMADAN

2015 X X B

Computer game modders’ motivations and
sense of community: A mixed-methods ap-
proach POOR

2014 X X B

Game Mods: Design, Theory and Criticism
CHAMPION

2013 X X G

Computer game mods, modders, modding,
and the mod scene WALT

2010 X X X X G

On modder labour, commodification of play,
and mod competitions RAMADAN

2007 X X X X G

Am I Mod or Not? - An analysis of First Per-
son Shooter modification culture. NIEBORG

2005 X X X X G

3.2.1 Results

The rise of the mod trend is closely related to increased accessibility to personal
computers and the expansion of the internet, which is disseminating an increasing
amount of content (SOTAMAA, 2007). The community and academy are increas-
ingly generating game adaptations, assisting game producers in a variety of ways,
including recruiting new players, extending the life of a game, providing new views
for the game, and resolving bugs. Modifications, in general, are referred to as mods
and may be thought of as modifications to an original game (SCACCHI, 2011b).

Modifications to products in the gaming industry done by gamers are now often
referred to as modding. Modders employ a variety of strategies in their creations,
ranging from basic rearranging of game world parts to complete conversions that can
be somewhat independent of the original game (SOTAMAA, 2007). This section will
discuss the many sorts of modifiers discovered, their benefits and drawbacks, and
lastly, the essential criteria for constructing an adapted game, as well as if there are
tools available to aid in this process.

27

In this research, several studies were identified from different years and countries.
Below, these findings will be demonstrated in more detail through graphics. Figure
3.3 shows how many studies answered each of the questions proposed in the study.
Figure 3.5 shows the countries of origin of the documents found. Figure 3.4 shows
studies grouped by year, while Figure 3.2 shows papers divided by search bases.
In this figure, two Veen diagrams are shown, the first that demonstrates the search
bases of the study and the second that uses these articles (main study) and compares
them with the papers of the snowballing process. It is worth remembering that this
diagram only shows information from the white literature.

Figure 3.2: Number of papers found in the search on mutators and games grouped
by search base.

Figure 3.3: Number of questions answered per paper (Research on mutators and
games).

28

Figure 3.4: Number of papers found in the search on mutators and games grouped
by year.

Figure 3.5: Number of papers found in the search on mutators and games grouped
by country.

29

3.2.2 Summary of findings

Q1: What modifiers are used to create games from others?

Mods are as varied as computer games themselves. They vary in size and com-
plexity and can make modest tweaks to the original game or entirely transform its
appearance (NIEBORG, 2005a). Modding is the technique and process of modifying
or adapting video games. It is often a "Do It Yourself" (DIY) strategy that teaches
social and technical skills associated with innovation through the reuse of an existing
game’s concept. Numerous aspects of the game may be modified, including the UI,
game items, problem patches, characters, and rules (LEE et al., 2020). For example:
changing the rules of a game produces a variant, allowing players to create a unique
gaming experience (CHEUNG and HUANG, 2012).

Mods may be developed by applying mutators to a game. A mutator may be
thought of as a change that is made to an existing game; for example, applying
a mutator M to a game G results in the creation of a new game named G [M]
(CLAUDE CHAUNIER). A game can be classified in a variety of ways depend-
ing on the amount of mutators employed. Numerous adaptations and modifica-
tions exist, each with a distinct function (LEE et al., 2020; SCACCHI, 2011b,b).
Each of them will be described in more detail in the following (BILIŃSKA et al.,
2020; CHAMPION, 2013; CLELAND; DACONCEICAO et al., 2013; HOFMAN-
KOHLMEYER, 2019; KOLBERT; MCARTHUR and TEATHER, 2015; PATTER-
SON; POOR, 2014; RAMADAN; SCACCHI, 2011a,b; SOTAMAA, 2010; UNGER,
2012; WALT, 2010; WEEKE, 2020).

• Interface customization: The interfaces are designed to emphasize the
visual component of the game in order to enhance the experience. This cus-
tomization entails making changes to the visual element, such as remodeling
the accessories, skin, shader, or animation of a character or a game map, alter-
ing the game’s colors, altering the information displayed on the screen, which
is frequently used by players looking to maximize their enjoyment of the game,
and displaying some additional information.

• Conversions: Conversions are by far the most prevalent type of alteration.
They are aimed at changing something already existing or adding new features
and can be classified as total or partial.

– Partial: Add a map, a character, and an item; enhance the game’s speed;
incorporate little mechanisms, bots, and rules. Partial modifiers can still

30

be classified according to the modifications performed.

∗ Mutators/tweaks: Modify or add restricted features that do not
affect gameplay or mechanics. They can be minor adjustments like
changing the game’s theme song, boosting the game’s speed, or al-
tering some graphic components and minor rules.

∗ Add-ons: They work as an extension to the game, such as adding
additional maps or objects. The game’s original principles, scenery,
and gameplay have been significantly updated or expanded.

∗ Mods: They may be thought of as the intersection of the preceding
two, as they retain the ability to modify rules and configurations.

– Total: Certain alterations go so far as to result in the creation of totally
new games. For instance, a well-known conversion is the CounterStrike
mod, which was a Half-Life adaption. In general, the amount of modifiers
employed distinguishes a partial conversion from a whole conversion. A
complete conversion occurs when a large number of modifiers are applied
to the point where something new is created.

• Machinima: It may be thought of as the result of modifications that affect
the visual replay of game usage sessions. Games are utilized for other goals
in this sort of modification, such as conveying a story, creating a movie, or
recreating a gaming experience.

• Hacking: Concentrates on enhancing the competitive edge in games by broad-
ening the range of experiences in which players may participate via alternative
technologies.

• Patch: They often focus on resolving unsolved issues and implementing tech-
nical improvements. When a community creates this modification, it is referred
to as an unofficial or fan patch.

Mods have been classified into several categories depending on the modifiers in-
troduced. On the other hand, they can still be classified according to the standpoint
from which they were created. Each of these areas is briefly discussed in further de-
tail below (MAGIOLADITIS).

• Direct conversions: the original game’s source code is used with just minor
alterations;

• Imitations/clones: fundamentally, the game remains unchanged. However,
the title, images, and audio are frequently altered in order to avoid legal com-
plications;

31

• Remakes: rebuild the game on a new technology;

• Retro/Emulation: design an emulator that allows the original game to be
played on a different platform.

Mods, according to some students, do not include the cheats, hacks, or fixes
(NIEBORG, 2005a). The primary question, though, is what are mods? Mods are
defined in this work as a change to a game, which can have several levels, as pre-
viously stated. As a result, this work treats the terms above as modifications. It
is worth noting that many games, even commercial ones, can be considered mod-
ifications. Numerous commercial game developers license an existing engine and
customize it to their own requirements (NIEBORG, 2005a). In addition, several
games started out as mods. For example, Counter-Strike, League of Legends and
PUBG are some of the most famous ones (CLELAND).

Q2: What characteristics are needed to derive a game?

A game is a subcategory of software development in which designers, developers,
and software engineers collaborate to create an experience that players may live
through the game (PORETSKI and ARAZY, 2017). Once the game is out, the
contributors devote their time for making updates and adding material to the main
game; Modifications may include new game models, textures, audio, and mecha-
nisms, as well as entire reimaginings (PORETSKI and ARAZY, 2017).

There are two main ways to mod development. The first occurs when a spe-
cific game demands expansion through the inclusion of additional components, and
the second occurs when looking for games with comparable concepts to the one a
gamer is building is discovered and cloned, with specific elements modified to fit the
necessary scope (ABBOTT, 2018). Both need the same characteristics.

The development flow of a mod is followed by a sequence of activities. Below,
this flow is described (CHEUNG and HUANG, 2012; CIGNONI, 2001).

Development flow of a mod

• Inception: Have an idea. Create a rough draft outlining the game’s minimal
needs. Create an early illustration for the game.

• Experimentation: Make sure the game is viable. Look for similar games.
Search for games with similar characteristics to the game you want to build.

• Design: Define the mod’s implementation strategy, including which files
should be updated.

32

• Development: Modify the files selected in the previous step to meet one of
the required specifications.

• Test: Install the mod on your computer and test the game.

• Persist: Building a mod occurs in an interactive way, where a new feature is
modified to achieve a goal. Therefore, the test and development steps occur
in development loops.

Thus far, the most conventional methods for mod construction have been dis-
cussed. Other models and frameworks, on the other hand, can aid in its develop-
ment. Reverse engineering is a prevalent method for software creation, and this
approach is also used to create modifications. It is based on the characteristics of a
previously generated game and is frequently utilized when access to the source code
is unavailable (MENDONÇA et al., 2018). Another method is to use the UAREI
model (User, Action, Rule, Entities, and Interface), which was developed with the
goal of expressing and showing the game’s mechanics graphically. This model in-
cludes several graphic components that have the role of illustrating the interactions
that might occur while playing (DAMAŠEVIČIUS and AŠERIŠKIS, 2017). Another
model that bears a strong resemblance to UAREI is LM-GM, which may be thought
of as a visual model for executing and testing a gameplay. LM-GM combines game-
play loops, allowing execution points to be identified. Through its activities, it is
possible to observe the game in action. This considerably simplifies and strengthens
the game design process, particularly for modders who may not already possess a
high degree of game literacy (ABBOTT, 2018).

A game is composed of a collection of components that work together to create
the final product. By defining games, the required qualities for their building may
be specified. Games may be characterized as activities that take place in an abstract
environment where decisions, actions, and rules are created with the goal of achieving
a leisure activity in the form of distraction or fun (XEXÉO et al., 2013). On this
basis, it is feasible to identify the following features that must be determined prior to
the formation of any game: rules, actions, behaviors, objective, game loop, difficulty,
and rewards (ABBOTT, 2018; EHRMANN et al., 1968).

Table 3.4 shows each of the characteristics necessary for the interpretation and
evolution of a game (ABBOTT, 2018; BILIŃSKA et al., 2020; DACONCEICAO
et al., 2013; DAMAŠEVIČIUS and AŠERIŠKIS, 2017; SOTAMAA, 2010; WALT,
2010; WEEKE, 2020). These characteristics were classified into four broad categories
that capture the games’ properties at a higher level of abstraction. It is worth noting
that game mechanics were formerly split into actions and behaviors.

33

Table 3.4: Derivation of game characteristics

Operation
rules

Rules about the player. E.g.: the
player can only carry one weapon
at a time.

AL-WASHMI et al. (2014);
BILIŃSKA et al. (2020);
CHEUNG and HUANG
(2012); CIGNONI (2001);
LEE et al. (2020); LIMA
et al. (2019); PORETSKI
and ARAZY (2017)

Transition
rules/states

Understanding the character’s
state transitions. E.g .: the player
can only shoot if he/she has a
weapon in his/her hand.

ABBOTT (2018); AL-
WASHMI et al. (2014);
BILIŃSKA et al. (2020);
LIMA et al. (2019); MEN-
DONÇA et al. (2018);
ZUPPIROLI et al. (2012)

Actions Commands that can be executed
by the character. E.g.: shooting
and walking.

AL-WASHMI et al. (2014);
BILIŃSKA et al. (2020);
DAMAŠEVIČIUS and
AŠERIŠKIS (2017); LEE
et al. (2020); LIMA et al.
(2019); ZUPPIROLI et al.
(2012)

Game world
Levels The game’s stages. Strongly in-

fluenced by the gameplay that
can change from one stage to the
next.

ABBOTT (2018); AL-
WASHMI et al. (2014);
BILIŃSKA et al. (2020);
LIMA et al. (2019); MEN-
DONÇA et al. (2018);
SHIRATUDDIN and THA-
BET (2011); ZUPPIROLI
et al. (2012)

Rules of
objects

Rules of the objects contained in
the world. Eg .: when an object
must be locked or unlocked.

ABBOTT (2018);
ÅKESSON et al. (2019);
BILIŃSKA et al. (2020);
DAMAŠEVIČIUS and
AŠERIŠKIS (2017); LEE
et al. (2020); LIMA et al.
(2019)

34

Behavioral
rules

Rules of behavior that the world
can exhibit. Eg .: if the player
collects a specific item it can start
to rain.

ABBOTT (2018);
CIGNONI (2001);
DAMAŠEVIČIUS and
AŠERIŠKIS (2017); LIMA
et al. (2019); PORETSKI
and ARAZY (2017); SHI-
RATUDDIN and THABET
(2011)

Temporal
states

It works like a state machine, de-
pending on the world’s state, it
can only go to a specific one. E.g
.: if the player is in phase 2 he/she
can only go to phase 3.

ABBOTT (2018);
CIGNONI (2001); LEE
et al. (2020); LIMA et al.
(2019,?); SHIRATUDDIN
and THABET (2011)

Mission What you want to
achieve/complete.

ABBOTT (2018); AL-
WASHMI et al. (2014);
BILIŃSKA et al. (2020);
LEE et al. (2020); LIMA
et al. (2019); PORETSKI
and ARAZY (2017); SHI-
RATUDDIN and THABET
(2011)

Obstacles What you want to
achieve/complete.

BILIŃSKA et al. (2020);
CIGNONI (2001); LIMA
et al. (2019); MCARTHUR
and TEATHER (2015);
PORETSKI and ARAZY
(2017); SHIRATUDDIN
and THABET (2011);
ZUPPIROLI et al. (2012)

Game Play
Winning
and losing
conditions

Conditions to win or lose the
game.

ABBOTT (2018); BIL-
IŃSKA et al. (2020);
CIGNONI (2001); LIMA
et al. (2019); MCARTHUR
and TEATHER (2015);
NIEBORG (2005b)

35

Strategic
dilemmas

Strategies that can be used in the
game. E.g .: combo attacks.

ABBOTT (2018); BIL-
IŃSKA et al. (2020);
CIGNONI (2001); LIMA
et al. (2019); MCARTHUR
and TEATHER (2015);
NIEBORG (2005b)

Chains of
actions

Chain of actions that can be com-
bined. Eg .: player action with a
map action.

ABBOTT (2018,?); BIL-
IŃSKA et al. (2020);
CIGNONI (2001); ZUP-
PIROLI et al. (2012)

General features
Rules Encapsulates the logic inside the

system.
ABBOTT (2018); BIL-
IŃSKA et al. (2020);
CHEUNG and HUANG
(2012); DAMAŠEVIČIUS
and AŠERIŠKIS (2017);
GEORGE et al. (2013);
LEE et al. (2020); LIMA
et al. (2019); MENDONÇA
et al. (2018)

Score The points obtained by the player
throughout the game.

ABBOTT (2018); BIL-
IŃSKA et al. (2020);
CIGNONI (2001); LIMA
et al. (2019); MENDONÇA
et al. (2018); ZUPPIROLI
et al. (2012)

Behaviors Commands that are executed by
the system.

ABBOTT (2018); BIL-
IŃSKA et al. (2020);
CIGNONI (2001); LEE
et al. (2020); LIMA et al.
(2019); MENDONÇA et al.
(2018)

36

Goal What you want to
achieve/complete.

ABBOTT (2018); AL-
WASHMI et al. (2014);
BILIŃSKA et al. (2020);
LEE et al. (2020); LIMA
et al. (2019); SHIRATUD-
DIN and THABET (2011)

Challenge What must be accomplished to
achieve the goal.

ABBOTT (2018); BIL-
IŃSKA et al. (2020); LEE
et al. (2020); LIMA et al.
(2019); MCARTHUR and
TEATHER (2015); MEN-
DONÇA et al. (2018)

Rewards What to obtain when reaching
the goal.

ABBOTT (2018); BIL-
IŃSKA et al. (2020);
DAMAŠEVIČIUS and
AŠERIŠKIS (2017);
GEORGE et al. (2013);
LEE et al. (2020); LIMA
et al. (2019)

Game loop Flow of engagement of the game.
It is the execution of the game
where the player seeks a goal by
executing a challenge and being
rewarded with something.

BILIŃSKA et al. (2020);
CIGNONI (2001); LEE
et al. (2020); MENDONÇA
et al. (2018); ZUPPIROLI
et al. (2012)

Interface The visual of the game, the
game’s sprites, and graphics.

AL-WASHMI et al.
(2014); DAMAŠE-
VIČIUS and AŠERIŠKIS
(2017); GEORGE et al.
(2013); LIMA et al.
(2019); MCARTHUR
and TEATHER (2015);
MENDONÇA et al. (2018);
SHIRATUDDIN and THA-
BET (2011)

37

Entities Objects and elements instanti-
ated within the game.

CIGNONI (2001);
DAMAŠEVIČIUS and
AŠERIŠKIS (2017); LIMA
et al. (2019); MENDONÇA
et al. (2018); NIEBORG
(2005b)

Q3: What are the advantages and difficulties of creating games from
others?

While generalizing the motivations of mod makers is difficult, there are various
factors that contribute to a user creating a mod. Among the most significant ones
are the following: attempting new things, resolving bugs, creating new characters,
increasing the difficulty of the game, gaining advantages in the game, extending
the game’s life cycle, the software was originally designed for a significantly dif-
ferent environment and may require improvement, the official developer is unable
to deal with the problems, and so on (AGARWAL and SEETHARAMAN, 2015;
KOLBERT; LEE et al., 2020; POOR, 2014).

Modifiers, as well as games, are complex and take time to develop. The time
required to produce a mod varies significantly. Being constructed in a few days or
requiring a long time to build, with the advantage of reusing some pieces. As previ-
ously mentioned, developing a game may be extremely time demanding and might
take years. However, the time required to release a mod is far shorter, requiring
on average roughly 345 days with the game already completed (LEE et al., 2020),
while games can take years to complete. Mods represent a way for the community
to contribute to the original game. Depending on the mod’s nature, it may only
require one or multiple releases. For instance, a mod that enhances a game’s tex-
ture may require only one version. In comparison, a mod that conducts a thorough
evaluation may need one or more releases (HOFMAN-KOHLMEYER, 2019; LEE
et al., 2020). It is worth noting that there is a much longer period of time between
an official game release and a mod release than there is between consecutive mod
releases (LEE et al., 2020). Along with the increase of the game’s production period,
the cost of the game climbs significantly. While the cost of developing a digital game
for commercial distribution has been estimated at over ten million dollars, the cost
of modding is far lower (POSTIGO, 2007).

An advantage that can also be attributed to the use of modifiers is the ability to
increase the longevity of games (BILIŃSKA et al., 2020; LEE et al., 2020; SOTA-
MAA, 2010). Every game has a useful life cycle. Modifiers, on the other hand, can

38

extend the life of the game by adding additional instructions, characters, levels, and
other factors, giving players more areas to explore. Using the same logic, modifica-
tions may help boost sales, income, and profits for original games, as many people
purchase the original game in order to play the mod (AGARWAL and SEETHARA-
MAN, 2015; LEE et al., 2020; WALT, 2010). The life of a game is not only measured
in terms of how long it remains on bestseller lists or can maintain its launch price,
but also in terms of how long it is consumed, as well as fans discuss their favorite
games on gaming websites and magazines, host servers for team games, distribute
game information, and discuss the latest add-on (POSTIGO, 2007; TENGTRIRAT
and PROMPOON, 2013).

Another key benefit of modifications is their capacity to attract new players to
the game, so extending its longevity. For instance, the Dota 2 game was a mod for
the Warcraft game that surpassed 450,000 daily players five years after its debut
and 16 years after the original game’s release. Thus, the game’s player base and
longevity are increased (LEE et al., 2020; POSTIGO, 2007). It is worth noting that
according to some authors of the Top Ten of First Person Shooters, the success of
the Unreal Tournament was mainly due to the mods and mutators available for the
game (NIEBORG, 2005a). Additionally, modifiers might provide developers with
respite by taking off the pressure to provide fresh material for a game. Remember
that in some cases, even modifiers can generate new games, which is the case with
Warcraft 3 and Dota 2 (LEE et al., 2020).

Along with the benefits described above, several additional are still directly tied
to the community member who worked on the modification. Among the primary
ones that stand out are the user’s expression, communication between the firm and
the end-user, and diversity of the game via end-user ideas (BILIŃSKA et al., 2020).
Mods have become such a common practice in the community that they may now
be considered a form of culture, allowing the user to incorporate their experiences
into the game (SCACCHI, 2011a; UNGER, 2012).

When a player buys a game, he or she obtains a license to use the product.
This license is structured in the manner of a copyright-based agreement (WALT,
2010). Mods made by the community are susceptible to contract violations, placing
their authors at considerable danger of being held liable for their actions, which fre-
quently involve scamming games, exploiting product faults, or committing copyright
infringement (SCACCHI, 2011b).

Last but not least, this mod technique has gotten so widespread that many large
game production firms have opted to enlist members of the gaming community in or-
der to cut development costs and risks. This cooperation enables the players to pool
their unique perspectives and extensive experience and skills, therefore boosting the
quality of the innovation without incurring additional resources, as well as certifying

39

that it was what the community expected in terms of the game (PORETSKI and
ARAZY, 2017; TENGTRIRAT and PROMPOON, 2013).

Despite all the advantages described so far, some difficulties and challenges must
be observed when creating mods. The first and main problem is the initial invest-
ment to produce a mod, which is necessary to understand the source code, reverse
engineering and extract its features (KRÜGER et al., 2018; MENDONÇA et al.,
2018). Following this line of reasoning, some studies have already been carried out
using the product line. However, this approach also requires an initial investment
to conceptualize the initial features of the project (KRÜGER et al., 2018; MEN-
DONÇA et al., 2018).

Table 3.5 demonstrates the advantages and disadvantages of using mods. The
green color shows the advantages and the red the disadvantages.

Table 3.5: Advantages and disadvantages of using mods.

Advantages / Disadvan-
tages

Papers

Communication between the
company and the end-user

AGARWAL and SEETHARAMAN (2015);
KOLBERT; LEE et al. (2020) POOR (2014)

Diversification of the game
through end-user ideas

HOFMAN-KOHLMEYER (2019); LEE
et al. (2020); POSTIGO (2007)

Decreases the risk of game bugs AGARWAL and SEETHARAMAN (2015);
BILIŃSKA et al. (2020); KOLBERT
SOTAMAA (2010); TENGTRIRAT and
PROMPOON (2013); WALT (2010) LEE
et al. (2020); POOR (2014)

Create new instructions, char-
acters, levels, and other ele-
ments, providing players with
new aspects to explore

BILIŃSKA et al. (2020); SCACCHI (2011a);
UNGER (2012)

Increase the game life cycle BILIŃSKA et al. (2020); LEE et al.
(2020); SOTAMAA (2010) AGARWAL and
SEETHARAMAN (2015); TENGTRIRAT
and PROMPOON (2013); WALT (2010)

Shorter development time BILIŃSKA et al. (2020); PORETSKI
and ARAZY (2017); TENGTRIRAT and
PROMPOON (2013)

40

Lower development cost AGARWAL and SEETHARAMAN (2015);
TENGTRIRAT and PROMPOON (2013);
WALT (2010) KOLBERT; POOR (2014)

Increase the number of players
of the original game

AGARWAL and SEETHARAMAN (2015);
LEE et al. (2020); POOR (2014)

High initial investment KRÜGER et al. (2018); MENDONÇA et al.
(2018)

Q4: What tools or frameworks support these changes?

Numerous frameworks and tools facilitate the building of modifications. How-
ever, the most prevalent technique of mod development so far has been cloning and
do-it-yourself. The modder selects the basic game to be updated, verifies the charac-
teristics he/she wants to modify, and then produces the new game (KRÜGER et al.,
2018). This less complex strategy is referred to opportunistic reuse or ad-hoc reuse,
and it comprises cloning, copying, and straining. Opportunistic reuse provides im-
mediate advantages and produces the desired outcome. However, the quality of the
project is not a priority, significant reworking leads to unexpected behavior and an
unstable software structure (LIMA et al., 2019).

Typically, games are changed using tools that enable access to an unencrypted
internal representation of the game program. While it may appear as though game
developers would aim to discourage consumers from customizing their games, this is
not the case. Developers of video games are increasingly providing software tools for
customizing their products in order to boost sales and market share (AGARWAL and
SEETHARAMAN, 2015). Software development kits (SDKs) for games/domains
supplied to users by game development studios represent a modern business approach
for engaging users and assisting in product innovation outside the studio (HOFMAN-
KOHLMEYER, 2019; PORETSKI and ARAZY, 2017; SCACCHI, 2011b,b). In
addition to SDKs, which are the most common way of accessing the game’s source
code, several other platforms provide access to the game’s source code and allow
modifications. Among the main ones are the Creation Kit, GECK, Construction
Set, MODKit, REDKit, Modbuddy, and D’jinni (LEE et al., 2020).

Another possibility for the development of modifiers is through free software
games, in which the end user has complete access to the game’s source code and
may modify it as desired (SCACCHI, 2011b). However, this strategy is used by
small businesses or anonymous developers.

There are firms that assist and encourage the production of modifications with
the goal of reducing problems, improving the game’s quality and consistency, and

41

generating new ideas. This technique leverages the users’ ideas and wants to generate
improvements for the game sold. The Unreal engine was created to provide access to
all of its technology’s components. This enabled it to host multiple events dubbed
Unreal Tournaments, in which the developer may express his/her creativity while
developing his/her mods (LEE et al., 2020; NIEBORG, 2005a). Other companies
permit the construction of modifications as well, although without providing direct
access to the components. For instance, Blizzard Entertainment’s World of Warcraft
has a UI modification tool that enables add-ons to modify the user interface panel,
resulting in an enhanced gameplay experience. But these add-ons do not modify
or convert the game into something entirely different since Blizzard seeks to ensure
that players have access to the same configuration and mechanics as the original
game (WALT, 2010).

In adiction, there are developers that produce mods by reverse engineering the
source code of the original game. It is worth noting that this method for devel-
oping modifications is unlawful and violates the copyright of the original games
(KOLBERT).

Finally, single mod distribution platform may include several modifications for a
single game. They all, however, adapt the same basic game. These platforms must
be demonstrated in some way, such as demonstrating which files were changed in
each mod, or if one mod is compatible with another, as both can change the same
original game file (LEE et al., 2020).

Due to the large number of game variations generated based on an original game,
maintenance can become difficult, and businesses may consider transitioning to a
line of software products, referred to as an extractive method, to assist with mass
game production (DEBBICHE et al., 2019; KRÜGER et al., 2018; LIMA et al.,
2019; MENDONÇA et al., 2018; ZUPPIROLI et al., 2012).

Finally, there are several sites that support mods, integrating the community
and providing thousands of games. Among the main games are gamemodding 1,
moddb 2, modsonline 3, among others (CIGNONI, 2001; LEE et al., 2020).

3.2.3 Conclusion

Game companies are growing in size, generating billions of dollars each year,
releasing many titles each year, and attracting fans of all ages and genres. However,
as has been seen so far, developing a game may be a long process that might take
years to complete. However, the gaming community is rising daily. With such a
vast user community, some members may experience anxiety or dissatisfaction at

1http://www.gamemodding.net
2https://www.moddb.com
3http://modsonline.com/

42

the prospect of having to wait so long for a game to be published.
With a little online search, it is possible to locate multiple games for sale and

several websites that provide modifications for them. As previously mentioned, a
mod may be defined as a modification made to a game and depending on the level
of this modification this mod can receive different names, such as: patches, tweaks,
add-ons, among others. This method of modifying games can result in a number
of benefits for the company that generated the original games. The benefits are
numerous, and some businesses even encourage this practice. Among the primary
benefits are an increase in users, an increase in sales, and an increase in the game’s
longevity, among others. However, the study revealed that the process of developing
a mod might be expensive and ad-hoc.

It is noted the presence of tools and frameworks that support modifications,
ranging from clones to SDKs and tools made accessible by the game’s developer,
among other techniques. However, these tools are frequently associated with a
number of difficulties, including a large initial investment, a steep learning curve,
the requirement to comprehend the source code, and the fact that the majority of
these techniques are limited to the creation of basic games.

Throughout the investigation, multiple papers were found that contrasted ad-hoc
mod development with opportunistic reuse, in which software is constructed by copy
and paste (FENSKE et al., 2017; SIERRA et al., 2019). Demonstrating once again
the need of systematizing the process of mod development. Additionally, it was
seen in these same papers an early application of product lines for game building.
However, it was employed superficially and exploratorily.

As is already known, RS can bring several types of advantages in the construc-
tion of software in general, from systematization of development to an increase in
delivery speed and cost reduction. It was observed that these advantages were be-
ing highlighted in some articles through the research, but, however, the approaches
demonstrated were of an exploratory nature, with the exception of software compo-
nentization, an approach that has already been used by programmers and is even
found in some more current advanced engines (ALBASSAM and GOMAA, 2013;
AOUADI et al., 2016).

As a result, it was decided to conduct another search that would complement
the one mentioned in this section. The proposed study sought to determine which
RS techniques are being utilized to create games or mods. The study can be read
in more detail in the next section.

43

3.3 Main Study

Based on the information from the viability study, it was possible to find sev-
eral works that made references to SR techniques for building mods. As a result,
this section main purpose is to identify how SR has been integrated into the game
production process.

The protocol used in this search was demonstrated in Section 3.1. In the follow-
ing, the research questions will be demonstrated. Figure 3.6 demonstrates the steps
that were taken when performing the search.

Research Questions

• Q1: What was the motivation for using SR?

• Q2: What were the reuse methods used?

• Q3: What are the advantages of the methods used?

• Q4: What are the difficulties of the methods used?

• Q5: How were the methods applied?

• Q6: What are the requirements for creating games using reuse?

• Q7: What were the tools used?

The search string returned a total of 1200 papers. When analyzed according to
the inclusion and exclusion filters, this number dropped to 22 papers. The snow-
balling process was performed from these papers, and 732 more papers were ana-
lyzed. After this procedure, more 13 papers were included, totaling 35 papers read
and analyzed. Tables 3.7 and 3.6 show the generation of the search string and the
papers’ analysis. The colors green and red were used to show whether a paper an-
swered a question or not. It is worth noting that the papers used to validate the
search string were papers found in the study of the previous chapter that highlighted
the use of SR.

Table 3.8 shows the documents that were selected for this search, showing which
questions each document can answer. Column S indicates the type of study, S was
used for the Scopus database, I for IEEEXplorer, EI for El Compendex, SD for
Science Direct, B for Backward and F for Forward snowballing.

44

Figure 3.6: Search flow of research on games and reuse approaches.

Table 3.6: Search String of games and reuse approaches.

P *Game*
I Product line* OR product famil* OR variability OR model-driven*

OR feature modeling OR model transformation OR component de-
velopment OR asset* OR reuse OR software reuse

C Not applicable
O Tools OR approach* OR method* OR ideas OR framework*
C Create OR creation OR production OR development OR elabora-

tion OR generation OR generate

45

TITLE-ABS-KEY ((*game*) AND ("product line*" OR "product famil*"
OR variability OR model-driven* OR "feature modeling" OR "model trans-
formation" OR "component development" OR asset* OR "reuse" OR "soft-
ware reuse") AND (tools OR approach* OR method* OR ideas OR frame-
work*) AND (create OR creation OR production OR development OR
elaboration OR generation OR generate)) AND (LIMIT-TO (SUBJAREA
, "COMP") OR LIMIT-TO (SUBJAREA , "ENGI"))
Control
papers

1 - Modding as part of game culture
2 - Building the perfect game – an empirical study of game modi-
fications pedagogy

46

Ta
bl

e
3.

7:
A

na
ly

si
s

of
th

e
pa

pe
rs

ab
ou

t
ga

m
es

an
d

re
us

e
ap

pr
oa

ch
es

.

S
co

p
u
s

S
ci

en
ce

D
ir

ec
t

IE
E
E
X

p
lo

re
E
l
C

om
p
en

d
ex

S
n
ow

b
al

li
n
g

B
ac

kw
ar

d
S
n
ow

b
al

li
n
g

Fo
rw

ar
d

A
ct

iv
it
y

R
es

u
lt

N
u
m

b
er

of
p
ap

er
R

es
u
lt

N
u
m

b
er

of
p
ap

er
R

es
u
lt

N
u
m

b
er

of
p
ap

er
R

es
u
lt

N
u
m

b
er

of
p
ap

er
R

es
u
lt

N
u
m

b
er

of
p
ap

er
R

es
u
lt

N
u
m

b
er

of
p
ap

er
F
ir

st
E
xe

cu
ti

on
61

2
ad

de
d

61
2

16
2

ad
de

d
16

2
21

8
ad

de
d

21
8

20
8

ad
de

d
20

8
63

4
ad

de
d

63
4

98
ad

de
d

98

N
u
m

b
er

of
p
ap

er
s

19
32

p
ap

er
s

R
ep

ea
te

d
P
ap

er
s

11
8

w
it

hd
ra

w
49

4
64

w
it

hd
ra

w
98

41
w

it
hd

ra
w

17
7

54
w

it
hd

ra
w

15
4

25
1

w
it

hd
ra

w
38

3
34

w
it

hd
ra

w
64

R
em

ov
e

co
n
fe

re
n
ce

48
w

it
hd

ra
w

41
3

7
w

it
hd

ra
w

87
0

w
it

hd
ra

w
16

0
0

w
it

hd
ra

w
12

7
0

w
it

hd
ra

w
24

0
0

w
it

hd
ra

w
11

6

P
ap

er
s

in
an

ot
h
er

la
n
gu

ag
e

10
w

it
hd

ra
w

40
3

0
w

it
hd

ra
w

87
0

w
it

hd
ra

w
16

0
0

w
it

hd
ra

w
12

7
4

w
it

hd
ra

w
23

4
3

w
it

hd
ra

w
11

3

N
u
m

b
er

of
p
ap

er
s

11
10

p
ap

er
s

R
em

ov
e

by
ti

tl
e

32
4

w
it

hd
ra

w
78

77
w

it
hd

ra
w

10
13

9
w

it
hd

ra
w

21
96

w
it

hd
ra

w
36

17
2

w
it

hd
ra

w
62

86
w

it
hd

ra
w

27

N
u
m

b
er

of
p
ap

er
s

20
7

p
ap

er
s

R
em

ov
e

by
ab

st
ra

ct
59

w
it

hd
ra

w
14

10
w

it
hd

ra
w

0
18

w
it

hd
ra

w
3

20
w

it
hd

ra
w

16
40

w
it

hd
ra

w
22

18
w

it
hd

ra
w

9

N
u
m

b
er

of
p
ap

er
s

56
p
ap

er
s

P
ap

er
s

n
ot

fo
u
n
d

0
w

it
hd

ra
w

14
0

w
it

hd
ra

w
0

0
w

it
hd

ra
w

3
0

w
it

hd
ra

w
16

0
w

it
hd

ra
w

22
0

w
it

hd
ra

w
9

R
em

ov
e

by
qu

al
it
y

cr
it

er
ia

2
w

it
hd

ra
w

12
0

w
it

hd
ra

w
0

0
w

it
hd

ra
w

3
6

w
it

hd
ra

w
10

7
w

it
hd

ra
w

15
0

w
it

hd
ra

w
9

R
em

ov
e

by
fu

ll
p
ap

er
0

w
it

hd
ra

w
12

0
w

it
hd

ra
w

0
1

w
it

hd
ra

w
2

10
w

it
hd

ra
w

0
11

w
it

hd
ra

w
4

4
w

it
hd

ra
w

5

E
xt

ra
ct

ed
P
ap

er
s

23
p
ap

er
s

47

Table 3.8: Traceability matrix of games and reuse approaches.

Title Year Q1 Q2 Q3 Q4 Q5 Q6 Q7 S
SeGa4Biz: Model-Driven frame-
work for developing serious games
for business processes GUO et al.
(2015b)

2021 X X X X X X EI

A model-driven framework for de-
veloping android-based classic mul-
tiplayer 2D board games DER-
AKHSHANDI et al. (2021)

2021 X X X X X X X S

ProDSPL: Proactive self-
adaptation based on Dynamic
Software Product Lines AYALA
et al. (2021)

2021 X X X X X X S

PhyDSLK: a model-driven frame-
work for generating exergames
BALDASSARRE et al. (2021)

2020 X X X X X X EI

Lessons from practicing an adapted
model driven approach in game de-
velopment GUO et al. (2015b)

2020 X X X X X X EI

Product line architecture recov-
ery with outlier filtering in soft-
ware families: the Apo-Games case
study LIMA et al. (2019)

2019 X X X S

Model-driven game development:
A literature review LIMA et al.
(2019)

2019 X X X X X S

Migrating the android apo-games
into an annotation-based software
product line LIMA et al. (2019)

2019 X X X X X X S

A Comparative Analysis of Game
Engines to Develop Core Assets for
a Software Product Line of Mini-
Games SIERRA et al. (2019)

2019 X X X X X F

Creating a software product line
of mini-games to support language
therapy GUO et al. (2015b)

2018 X X X X X X EI

48

AsKME: A Feature-Based Ap-
proach to Develop Multiplatform
Quiz Games SARINHO et al.
(2018)

2018 X X X X S

Making Serious Games with
Reusable Software Components
VEGT et al. (2018)

2018 X X X F

A model-driven approach to gener-
ate and deploy videogames on mul-
tiple platforms NÚÑEZ-VALDEZ
et al. (2017)

2017 X X X X X X S

MEnDiGa: A Minimal Engine
for Digital Games BOAVENTURA
and SARINHO (2017)

2017 X X X X X X S

Variant-preserving refactorings for
migrating cloned products to a
product ling FENSKE et al. (2017)

2017 X X X X X X B

Engine-cooperative game model-
ing (ECGM): Bridge model-driven
game development and game en-
gine tool-chains ZHU et al. (2016)

2017 X X X X X S

RAGE reusable game software
components and their integration
into serious game engines VEGT
et al. (2016)

2017 X X X X X X S

Models and mechanisms for imple-
menting playful scenarios AOUADI
et al. (2016)

2016 X X X X X I

The RAGE advanced game tech-
nologies repository for support-
ing applied game development
GEORGIEV et al. (2016)

2016 X X X X X X EI

A Workflow for Model Driven
Game Development GUO et al.
(2015a)

2015 X X X X X X I

A DSL for rapid prototyping
of cross-platform tower defense
SÁNCHEZ et al. (2015)

2015 X X X X I

49

Building a Game Engine: A Tale of
Modern Model-Driven Engineering
GUANA et al. (2015)

2015 X X X X X X B

Applying software product lines
to multiplatform video games AL-
BASSAM and GOMAA (2013)

2013 X X X X X X X EI

A platform independent game tech-
nology model for model driven se-
rious games development TANG
et al. (2013)

2013 X X X X X S

A model driven development
framework for serious games
THILLAINATHAN (2013)

2013 X X X X X S

Gade4all: developing multi-
platform videogames based on
domain specific languages and
model driven engineering VALDEZ
et al. (2013)

2013 X X X X X B

A model driven serious games
development approach for game-
based learning TANG and HAN-
NEGHAN (2013)

2013 X X X X X B

A feature-based environment for
digital games SARINHO et al.
(2012)

2012 X X X X X B

The RPG DSL: A case study of lan-
guage engineering using MDD for
generating RPG games for mobile
phones MARQUES et al. (2012)

2012 X X X X X X B

SharpLudus revisited: From ad hoc
and monolithic digital game DSLs
to effectively customized DSM ap-
proaches FURTADO et al. (2011)

2011 X X X B

Model-driven game development-
case study. A mtc for maze-game
s prototyping MORALES et al.
(2011)

2011 X X X X X X B

50

3.3.1 Results

The emergence of the mod trend is closely related to increased accessibility to
personal computers and the expansion of the Internet, which is disseminating an
increasing amount of content (SOTAMAA, 2007). The community and academy are
progressively creating game adaptations, aiding game producers in a number of ways,
including attracting new players, prolonging the life of the game, proposing new
game concepts, and fixing issues. Modifications are referred to as mods in general
and may be regarded as modifications to an original game (SCACCHI, 2011b).

Modifications made by community players to industrial games are now widely
known as modding. Modders use a variety of methods to make their games different,
from simple changes to the layout of the game world to completely new games that
are independent of the original one (SOTAMAA, 2007). This section will discuss
the many types of modifiers discovered, their benefits and drawbacks, and lastly,
the essential criteria for constructing an adapted game, as well as if there are tools
available to aid in this process.

Numerous studies from various years and countries were uncovered throughout
this investigation. These findings will be illustrated in more detail below. Figure
3.9 shows how many studies answered each of the questions proposed in the study.
Figure 3.10 shows the countries of origin of the documents found. Figure 3.8 shows
studies grouped by year, while Figure 3.2 shows papers divided by search bases. In
this figure, two Veen diagrams are shown, the first that demonstrates the research
bases of the study and the second that uses these articles (main study) and compares
them with the papers of the snowballing process.

It is possible to deduce many conclusions from these figures, such as the fact that
multiple nations are interested in the subject of game development through reuse.
The average number of papers published per year remained consistent, demonstrat-
ing that it is an interesting subject and that while many works apply SR techniques
to game development, the majority of them, highlights the difficulties encountered,
demonstrating that it is a hard task that can generate numerous benefits.

51

Figure 3.7: Number of papers found in the search on games and reuse approaches
grouped by search base.

Figure 3.8: Number of papers found in the search on games and reuse approaches
grouped by year.

Figure 3.10: Number of papers found in the search on games and reuse approaches
grouped by country.

52

Figure 3.9: Number of questions answered per paper (Search on games and reuse
approaches).

3.3.2 Summary of findings

Q1: What was the motivation for using SR?

It is common in the game area to have development problems due to its high
complexity. These difficulties include low code reuse to develop a game and conse-
quently low productivity in the development (evolution and maintenance) of game
solutions (MARQUES et al., 2012). There are various advantages of utilizing SR in
application development. Among the most significant ones are reduced development
time, increased software quality, cost savings, and scale development. Numerous
businesses and development industries have already used these strategies into their
apps to enhance their performance. Creating reusable systems is a difficult challenge
that has sparked considerable attention in recent years, particularly in fields such as
mobile computing and robotics. Nonetheless, it is not widely employed in the realm
of computer gaming (AYALA et al., 2021; GUO et al., 2015a).

One of the main incentives for using SR principles is to reduce development time
and costs. Consider the following scenario: a rehabilitation center uses games to
aid treatment. Physiotherapy is classified into several stages, each having differ-
ent particularities for each problem, and there are different types of physiotherapy.
Consider the time and money it takes to build such a large number of games, some
of which can be highly customized for a given physiotherapy. For this, numerous
reusable forms have already been used in recent years in the production of games.

53

They can simplify and accelerate the development of game systems; these games
can only be built once, with subsequent iterations serving as expansions of the orig-
inal one (BOAVENTURA and SARINHO, 2017; GEORGIEV et al., 2016; SIERRA
et al., 2019; ZHU et al., 2016).

The gaming industry has risen significantly in recent years, owing to several
new investments and innovations. These emerging technologies are frequently still
under development, adding to the difficulty of development and introducing more
flaws (ALBASSAM and GOMAA, 2013). This rise is occurring across all platforms,
including PC, mobile, and console. This resulted in reuse, as the production of a
game may be so time-consuming that businesses prefer to build a single game and
then attempt to expand it (DERAKHSHANDI et al., 2021).

Another reason for using reuse techniques in game development is the scarcity of
game engines that support such approaches, and when they do, they sometimes lack
the complexity required by advanced games or have a high development complexity,
resulting in a steep learning curve (GUO et al., 2015b).

Finally, code and component generation techniques can further accelerate the
development of games, making them expand or even create from others already
created more quickly (TANG and HANNEGHAN, 2013).

Q2: What were the reuse methods used?

Developing games may be a time-consuming and error-prone process. Much has
been stated in recent years about the need of dealing with complexity, and several
ways have been devised and tried to do this. Such settings encourage reuse, reducing
the need to create software assets from scratch (SARINHO et al., 2012). As with
any other field of software development, the games industry is a unique domain
that may benefit from a variety of SR approaches, including product line, domain
modeling, components, and code-generating domain languages (FURTADO et al.,
2011).

The most prevalent method of reuse remains ad-hoc, comparable to opportunistic
reuse, in which goods are copied and changed to generate varieties (also known as the
clone-and-own approach). Clone-and-own enables low-cost variation development by
reusing existing code. However, this strategy results in a large amount of duplicate
code, making it difficult to maintain and grow the original code one (FENSKE et al.,
2017; FURTADO et al., 2011).

Component-based development is a field of study that seeks to identify software
components that may be reused in multiple applications and to construct these
components in a reusable manner, developing once and reusing N times. This is
the second most often used approach of SR for game development. Almost every

54

engine available today supports and distributes materials for game creation (ZHU
and WANG, 2019).

SPL is a collection of strategies, techniques, and tools for developing comparable
systems that provides a common core but has distinct characteristics. This method
is advantageous for game expansion since it allows the separation of related aspects
in order to adjust individual characteristics. Consider a game that can be played
on both desktop and mobile devices. All components, including rules, objects, me-
chanics, and other aspects, are repeated, with the exception of visual elements, such
as sprints and screen size (FENSKE et al., 2017; LIMA et al., 2019). DSPL is an
extension of SPL that enables runtime modification of certain product line elements
for self-adaptation (AYALA et al., 2021). This method is well-suited for developing
apps that are context-dependent and must adapt to their environment. It may be
used to adjust game mechanics and rules in real time and to build new games on a
regular basis.

MDD is a SE approach comprised of techniques for automating the development
of software code from high-level abstract models. These models are intended to
codify the structure, behavior, and needs of software applications that will be im-
proved later (AOUADI et al., 2016; BALDASSARRE et al., 2021; GUO et al., 2015a;
SÁNCHEZ et al., 2015; TANG et al., 2013; ZHU et al., 2016). By using current
game engines for new game creation, this strategy bridges the gap between game
concept and implementation. However, none of the MDD techniques described in
the literature proved persuasively that their tools were well integrated (ZHU et al.,
2016).

Table 3.9 demonstrates the main reuse methods used for game development.

Table 3.9: SR methods used for game development

Reuse
methods

Papers

Clone-and-
own

ALBASSAM and GOMAA (2013); AOUADI et al. (2016);
BALDASSARRE et al. (2021); BOAVENTURA and SAR-
INHO (2017); DERAKHSHANDI et al. (2021); FENSKE et al.
(2017); GEORGIEV et al. (2016); GUANA et al. (2015); GUO
et al. (2015a,b); MARQUES et al. (2012); MORALES et al.
(2011); SÁNCHEZ et al. (2015); SARINHO et al. (2012);
SIERRA et al. (2019); TANG and HANNEGHAN (2013);
VEGT et al. (2016, 2018); ZHU and WANG (2019); ?

55

Component-
based devel-
opment

ALBASSAM and GOMAA (2013); AOUADI et al. (2016);
BALDASSARRE et al. (2021); BOAVENTURA and SAR-
INHO (2017); DERAKHSHANDI et al. (2021); FENSKE et al.
(2017); GEORGIEV et al. (2016); GUANA et al. (2015); GUO
et al. (2015a,b); MARQUES et al. (2012); MORALES et al.
(2011); SÁNCHEZ et al. (2015); SARINHO et al. (2012);
SIERRA et al. (2019); TANG and HANNEGHAN (2013);
VEGT et al. (2016, 2018); ZHU and WANG (2019)

Software
Product
Line

ALBASSAM and GOMAA (2013); AYALA et al. (2021); LIMA
et al. (2019); SARINHO et al. (2018); SIERRA et al. (2019,?);
ZHU and WANG (2019)

Model
Driven De-
velopment

AOUADI et al. (2016); BALDASSARRE et al. (2021); DER-
AKHSHANDI et al. (2021); FURTADO et al. (2011); GUANA
et al. (2015); GUO et al. (2015a,b); KHORRAM et al. (2021);
MARQUES et al. (2012); NÚÑEZ-VALDEZ et al. (2017);
SÁNCHEZ et al. (2015); TANG and HANNEGHAN (2013);
TANG et al. (2013); THILLAINATHAN (2013); VALDEZ
et al. (2013); ZHU and WANG (2019); ZHU et al. (2016)

Q3: What are the advantages of the methods used?

The majority of organizations begin by copying whole systems and customizing
them to new client requirements. While this technique yields a high rate of return in
the short term, it may result in the propagation of flaws and challenges with scalabil-
ity and maintainability (FENSKE et al., 2017; SÁNCHEZ et al., 2015). Therefore,
despite being one of the possible uses of SR, this approach is not recommended due
to the disadvantages caused by it.

In recent years, several reusable methodologies have been used to game produc-
tion. They have the potential to simplify and speed manufacturing by concentrating
on modeling, components, product lines, and reusable components (BOAVENTURA
and SARINHO, 2017). Despite this, the gaming business had platform variability
problems as a result of the enormous volume of games and the requirement to build
them for a variety of platforms, including mobile, console, and computer (DEB-
BICHE et al., 2019; SÁNCHEZ et al., 2015). On the basis of this problem, it is
able to demonstrate one of the primary benefits of the SR idea, which is increased
scalability. As previously stated, the same game must support many platforms. For
instance, the product line approach may be utilized to produce these games for a

56

variety of platforms. The visual components and screen sizes would be customized
for each platform, but the remainder would be reused, decreasing development time
and expense (GUO et al., 2015a; LIMA et al., 2019). Another feature of the product
line is the ability to create modifications. If the original game was developed with
expansion in mind, it is feasible to establish a product line for it in which all of
its characteristics are malleable, and to create a new game, all that is required is
to tweak one of the product line tree’s characteristics while reusing everything else.
As a result, the product line may be a way to achieve a compromise between the
requirement for game versions, component reuse, and manufacturing costs (AYALA
et al., 2021; RINCÓN et al., 2018; SIERRA et al., 2019).

Apart from the product line, other techniques provide a number of advantages
when utilized. For example, MDD enables quick prototyping of system variations,
which may be quite beneficial during the early stages of game development or while
creating exergames 1 (BALDASSARRE et al., 2021). However, this approach has
also been used for serious game development, as it has complexity management,
providing different levels of abstraction and a good level of automation and code
generation (KHORRAM et al., 2021). In addition, MDD also reduces the require-
ment of knowledge and experience due to its abstraction, making complex rules
explicit directly in the abstraction without the need for domain on the part of the
developer (ZHU and WANG, 2019). MDD is not a silver bullet. Many factors can
influence the gain in productivity brought about by approaches involving MDD.
The decision must be careful on whether or not to adopt MDD according to vari-
ous aspects of the domains/projects (GUO et al., 2015b). MDD, in general, offers
outstanding benefits to its practitioners, including higher productivity, interoper-
ability, portability between multiple platforms, support for document generation,
simplicity of maintenance, and increased software quality, which increases product
reliability. Additionally, the ability to encapsulate technical components of cre-
ation decreases the obstacles that prevent non-technical individuals from producing
games (GUANA et al., 2015; TANG and HANNEGHAN, 2013; TANG et al., 2013;
THILLAINATHAN, 2013; VALDEZ et al., 2013).

Software components can also bring advantages to those who use them. It is
possible to partition the program into components that may be utilized in several
applications, hence decreasing the application’s development time and cost. This is a
strategy that developers and contemporary engines frequently employ (GEORGIEV
et al., 2016). Additionally, once numerous components are completed, the original
expense in developing a game will be lowered incrementally as new components are
created and utilized (VEGT et al., 2016).

Table 3.5 demonstrates a summary of the advantages of each reuse method found.
1Exergames: games for physical training (DJAOUTI et al., 2011).

57

In this table, three colors are used with different meanings: red for when there is no
advantage, yellow for having the advantage in a small or medium degree, and green
for when there is a degree of advantage.

Table 3.10: Advantages associated with the use of reuse tech-
niques.

Clone-
and-own

Component-
based
development

Software
Product
Line

Model
Driven
Development

Lower
initial investment

X

Lower investment
for expansion

X X X

Maintainability X X X
Scalability X X X
Shorter
development
time

X X X X

Non-technical
development

X

less complexity X X X
Prototyping X X

Q4: What are the difficulties of the methods used?

According to some experts, game makers continue to adopt clone-and-own strate-
gies to adapt their video games to multiple platforms and users. According to them,
the industry need tools/frameworks that enable the development of a multiplatform
video game software product line (ALBASSAM and GOMAA, 2013). Implementa-
tion difficulties may be the factors that made these tools/frameworks not yet widely
created and used.

Despite the numerous benefits indicated in the preceding question, there are a
few drawbacks for employing SR in game creation. For instance, establishing reuse
environments such as SPL takes a substantial upfront expenditure. As a result, cor-
porations frequently develop product versions using opportunistic reuse techniques
such as clone-and-own. However, this method leads in little code reuse and lim-
ited code scalability, making complex games both expensive and time-consuming to
design (FENSKE et al., 2017; ZHU and WANG, 2019).

58

Building games may be difficult, as they need the specification of several archi-
tectures, rules, behaviors, and gameplay features, among other things. This can be a
problem when reuse is required, as this piece must be flexible enough to be reused in
a variety of settings while also simplifying implementation through its abstractions
(GUANA et al., 2015).

Finally, another difficulty presented by some scholars is the lack of tools sup-
porting reuse techniques. Currently, several engines support game development.
However, few of these tools provide extensive support for reuse techniques, except
assets/components and the few that provides access has a high learning curve, which
makes it challenging to develop and learn.

Q5: How were the methods applied?

It was possible to determine through a review of the literature that there are
some solutions to the productivity and portability challenges connected with games.
Numerous ways have been developed to control the heterogeneity of the game domain
between instances and strategies. SPL was the first approach identified, with the goal
of identifying common application components and specifying only those that vary
among applications. This procedure is carried out in three stages: domain analysis,
variability analysis, and application. Domain analysis is used to collect and assess
information about the application domain in order to get the desired outcomes for
the product line. Typically, a domain analysis results in four deliverables: a domain
definition, domain terminology, descriptions of domain concepts, and explanations
of domain ideas’ commonality and variety, as well as their interrelationship (GUO
et al., 2015a). Variability analysis is used to determine which components of the
product line require modification depending on the results of a domain study. This
is the stage at which generic components of the product line are created. The
application stage tries to categorize all related qualities for the purpose of building
the SPL and specifying and expanding it in the future. However, the majority
of existing techniques focus on separating comparable games and then use all of
their attributes to create the SPL, which results in a lot of work (ALBASSAM and
GOMAA, 2013; RINCÓN et al., 2018).

MDD segregates conceptual and technological issues, allowing designers and de-
velopers to focus only on the product’s underlying logic. This separation seeks to
improve the system’s quality and minimize the time required to design it, while
also assuring interoperability, reliability, and performance (SÁNCHEZ et al., 2015).
This technique is composed of three components: definition, application, and anal-
ysis of variability. The definition establishes the domain and creates or selects the
appropriate tools, which may include editors, domain-specific libraries, and code

59

generators. The application defines domain-specific language (DSL) models and
creates code using those models. The development process takes a high-level ab-
straction model as input and applies N transformations until it produces a low-level
abstraction model from which code is created (BALDASSARRE et al., 2021; GUO
et al., 2015b; SÁNCHEZ et al., 2015; TANG et al., 2013). As previously noted,
these models require N modifications before they may be used. This model may
have a variety of names depending on its abstraction level. The first model devel-
oped is referred to as the Computational Independent Model (CIM), and it provides
the generic information about the model. This model will be enhanced to become
a Platform-Independent Model (PIM), which will incorporate more intricate rules.
Finally, the PIM model is converted to a Platform-Specific Model (PSM), which pro-
vides information on the platform on which the game will run. The game code may
be generated according to the PSM level (AOUADI et al., 2016; DERAKHSHANDI
et al., 2021). Finally, the variability analysis indicates the potential changes between
all models developed (GUO et al., 2015a,b).

The following steps are involved in component development: separation of simi-
lar codes, generic writing of codes in the form of components, creation of the asset
repository, and use of components. The first step aims to search within all ap-
plications for the codes that are rewritten N times, thus the possible codes to be
componentized. Then each of these codes is analyzed to create reusable components.
Finally, an asset repository is created to store the created components for future use
(GEORGIEV et al., 2016; VEGT et al., 2016).

Finally, approaches like clone-and-own operate at the granularity of entire sys-
tems. This approach does not have many large steps. It only has two steps: the
first one would be to clone the original application and the second one would be to
modify the code (DEBBICHE et al., 2019).

Q6: What are the requirements for creating games using reuse?

Developing a reuse approach requires defining a specific domain or market seg-
ment without trying to cover all possible domains. The first task performed is to
define the problem, objective and purpose that are sought with the game to be built.
Then, a domain analysis of the existing games and their internal characteristics is
carried out so that it is possible to group their similarities (NÚÑEZ-VALDEZ et al.,
2017; THILLAINATHAN, 2013).

There are several characteristics that need to be defined in order to be able
to use a specific reuse approach. Among them, the following stand out: technical
characteristics, forms of use, flexibility, and simplicity of the code to be generated
(GEORGIEV et al., 2016).

60

The characteristics defined above can be understood as structural characteris-
tics. However, there are other elements that need to be defined before the games are
built, among which the main ones are: game objects, stage scenery, behavioral prop-
erties, and gameplay, among other characteristics. Table 3.4 demonstrates each of
these elements, being the same for building mods (BOAVENTURA and SARINHO,
2017; DERAKHSHANDI et al., 2021; GUANA et al., 2015; RINCÓN et al., 2018;
SARINHO et al., 2012, 2018; TANG and HANNEGHAN, 2013; ZHU and WANG,
2019).

Q7: What were the tools used?

Various tools have been used to facilitate game creation by providing easy user
interfaces and code generation. But these tools are often domain-specific, not com-
prehensive, and often only support simple games. Furthermore, these game engines
are often huge and complex. This makes the learning curve steep and the cost of
usage quite high, even though most game engine features are not used (GUO et al.,
2015a).

Game engines are currently the biggest achievement in terms of software reuse in
the gaming domain. However, current engines like Unity, XNA and Unreal currently
do not use approaches like MDD and SPL directly, supporting only components and
assets. Also, as mentioned, these have a high learning curve and low support for peo-
ple with no programming experience (ALBASSAM and GOMAA, 2013; AOUADI
et al., 2016; NÚÑEZ-VALDEZ et al., 2017; ZHU and WANG, 2019). Other engines,
like Construct, GameSalad and GameMaker, have a low learning curve and support
users with no programming experience. However, games built with these engines
are simpler than those that can be built with the previous ones (NÚÑEZ-VALDEZ
et al., 2017; RINCÓN et al., 2018).

There are also developers who do not use any game generation tools, using only
IDEs such as IntelliJ and FeatureIDE to facilitate their interaction in building the
game (ÅKESSON et al., 2019).

All the tools mentioned above only support software componentization directly.
However, there are other tools that support other types of reuse approaches such as
MDD and SPL. However, these tools are not yet used on a large scale. The following
table shows the tools that were found in the review and how they can be used for
different types of reuse.

61

Table 3.11: Tools used for game development.

CBD SPL MDD Papers

Unity3D X ALBASSAM and GOMAA (2013);
AOUADI et al. (2016); DER-
AKHSHANDI et al. (2021); NÚÑEZ-
VALDEZ et al. (2017); SIERRA
et al. (2019); TANG et al. (2013);
THILLAINATHAN (2013); VALDEZ
et al. (2013); VEGT et al. (2016,
2018); ZHU and WANG (2019)

Unreal X DERAKHSHANDI et al. (2021);
TANG et al. (2013)

XNA X DERAKHSHANDI et al. (2021);
TANG et al. (2013); VEGT et al.
(2016)

Construct X RINCÓN et al. (2018)
GameMaker X DERAKHSHANDI et al. (2021);

NÚÑEZ-VALDEZ et al. (2017);
VALDEZ et al. (2013)

GameSalad X DERAKHSHANDI et al. (2021);
NÚÑEZ-VALDEZ et al. (2017);
VALDEZ et al. (2013)

Stencyl X VALDEZ et al. (2013)
RAGE X VEGT et al. (2018)
PhyDSL X BALDASSARRE et al. (2021);

GUANA et al. (2015)
SeGa4Biz X KHORRAM et al. (2021)
SeGMEnt X TANG et al. (2013)
FEnDiGa X SARINHO et al. (2012)
MEnDiGa X BOAVENTURA and SARINHO

(2017)
AsKME X SARINHO et al. (2018)

62

3.3.3 Conclusion

This study was an extension of the study in Section 3.2 that sought to identify
how reuse approaches are being used to support game development. This study
revealed that there are four main reuse approaches in game development, including
componentization, MDD, SPL, and clone-and-own. Each of these forms has its own
unique features and applications, but they can also be used together to get the most
out of them.

The analysis indicated that the great majority of publications emphasized the
benefits of code reuse in the construction of games, including reduced cost and
development time, increased quality, the ability to expand the game, among others.
However, a significant percentage of them highlighted challenges in establishing reuse
settings, suggesting that it is a topic worth investigating but requiring a lot of work.

Numerous technologies, including frameworks, methodologies, and engines, were
discovered that facilitate the building of games through reuse. However, these tools
are largely in the experimental stage or are usually associated with certain problems,
such as a steep learning curve, complicated implementation, and the construction
of only simple games. Among the tools identified, the most often used strategy to
reuse was componentization, which is still utilized in modern engines. Additionally,
five tools support MDD, but just one tool supports SPL. However, when it comes
to these latest approaches, the tools are still in the experimentation stage.

Another problem that is worth mentioning is that there are few tools that support
development guided by reuse and that, in addition, these tools need a scope for
creating the game; that is, it is only possible to reuse the artifacts if the games have
well-defined characteristics.

Additionally, it was possible to observe that the process of creating a game may
be rather difficult, including numerous phases and requiring knowledge of several
aspects, including rules, characters, and the console on which the game would be
conducted, among others.

Based on what has been described so far, it is possible to notice that the use of
Software Reuse to build games is something that can generate many benefits, but
that currently there are few tools that support this approach.

63

Chapter 4

Exploratory Studies

This chapter aims to introduce the problem that this work seeks to solve, as well
as the initial prototypes that were made to validate the idea.

4.1 Problem discussion

Several reasons lead a game user to create a Mod. Among the main ones are:
trying new things, solving bugs, creating new characters, increasing the difficulty of
the game, gaining advantages about the game, increasing the game life cycle, among
others (LEE et al., 2020). As previously stated, little information on modifiers has
been found in the literature, which is why mods were sought. However, because
the two have similar terms, it is assumed that their motivations, disadvantages,
and advantages are also similar.However, the term mod will be used to facilitate
understanding.

Mods, as well as games, are complex and take time to develop. The time it
takes to build a mod can vary a lot. Being built in a few days, or taking a long
development time. Depending on the nature of a mod, it may require only one or
more releases. For example, a mod that improves a texture in a game may need
only one version. On the other hand, a mod that does a full review may require one
or more releases (LEE et al., 2020) (HOFMAN-KOHLMEYER, 2019).

There are several ways to create a mod, among the most common ones are:
having access to the game’s original code, be it open source or provided by the
game’s producer, using reverse engineering, or even modifying the game through a
platform provided by the producer as, for example, World of Warcraft provides a UI
customization tool that allows add-ons to reconfigure the user interface panel (LEE
et al., 2020; WALT, 2010). However, this UI customization is limited, allowing only
to edit some characters, create new maps and minor modifications.

Through the studies carried out, it was possible to observe that the community
has already been using forms of reuse to build games. Game development through

64

existing ones is known as mods and is applied on a large scale by the community
and even by companies that aim to improve their games or increase their game
list. However, although mods have become a popular way to express oneself in the
community, they are still made in an ad-hoc manner and are often compared to
opportunistic reuse, being performed most of the time through clone-and-own. As
seen in the search, there are additional methods for developing games with SR, such
as software componentization, which makes them accessible in the most popular
game engines. However, there are different approaches, such as SPL and MDD are
still in testing phases, with few tools available for support. In this study, only one
tool was found for supporting SPL approach.

The use of reuse in software development may supporting various benefits, in-
cluding a reduction in development time, an improvement in software quality, and
the opportunity to expand the product more quickly and easily. Looking at these
outstanding advantages, it is possible to connect these benefits to the challenges of
game production that are: long development time, risk of numerous defects, and
complexity of generating new versions of the original game.

There are several approaches for using software reuse, from clone-and-own to
product lines. Each of these approaches has different advantages and purposes
of use (KRUEGER, 1992; MORISIO et al., 2002). Next, each of these will be
discussed, focusing on game development. It is worth remembering that all the
following observations were made keeping in mind the development of mods and
game expansion.

• Clone-and-own:

– Context of use: this approach might be adopted for small projects in
which an extension of the game is not initially planned.

– Advantage: this strategy delivers an excellent initial return by reusing
a large part of the existing game.

– Disadvantage: future maintenance and updates could be costly if the
same changes and improvements are made to many projects at the same
time.

– Example: take an open source game and modify specific features.

• Componentization:

– Context of use: this approach is applicable for medium to large projects
1. The expansion of the original game is not planned in advance, but

1A project is considered ‘small’ if line of code (LOC) of the project is between 10.000 and

65

by reusing the components, new games may be produced. Its primary
purpose is to construct new games by reusing its components.

– Advantage: this method is already prevalent, as it is employed by several
engines. If a modification is made to a component, all games using that
component will receive the update.

– Disadvantage: does not allow expansion of games directly.

– Example: in a (First-Person Shooter) FPS game, for instance, all move-
ment and a significant portion of the actions may be componentized be-
cause they will be the same in all games.

• MDD:

– Context of use: this approach is applicable for medium to large projects.
The original game’s expansion is not preplanned. This approach is well
used because its implementation only starts after a well-elaborated model
is created after many iterations.

– Advantage: platforms that are based on this development process allow
full games to be created by anybody with limited programming skills.

– Disadvantage: unlike the others, it is not a development pattern, but
a development process.

– Example: use the Model-Based Development process in projects with
poorly defined requirements and with a great possibility of modification
due to the possibility of modifying the models before actually starting
the project.

• SPL:

– Context of use: this approach is applicable for medium to large projects.
The expansion of the original game is intended earlier.

– Advantage: several games can be derived from a single game by selecting
game features.

– Disadvantage: few tools and platforms available.

– Example: a simple use of the product line in game development enables
the creation of games for many sorts of devices. Consider a game that
requires a mobile and desktop version. Using product lines, the rules,

40.000, ‘medium’ if LOC is between 40.000 and 100.000 and ‘large’ if LOC are typically over
100.000 (QURESHI, 2012). But this is considered just an estimate, remembering that several
factors can still be considered, such as people involved, difficulty, criticality development time,
among other factors.

66

mechanics, and other game pieces will be utilized, and just the sprites
will be modified to accommodate multiple screen sizes.

Based on the benefits, goals, and settings of the highlighted reuse approaches,
it is possible to deduce that there are several ways to use reuse to create games,
depending on the context and the amount of work spent. Some of these approaches
are less methodical than others, such as clone-and-own, others are already being
used as is the case of components, and others are still in the experimental phase,
such as MDD and SPL.

Based on what has been described up to this point, it is possible to note that the
clone-and-own strategy is not advised owing to its lack of opportunities for game
evolution. Componentization is an effective method for developing high-quality soft-
ware and has already been implemented in the largest gaming engines. However,
when it comes to game evolution, this method alone is not enough, because of the
requirement to comprehend the component and its evolution. This technique is best
suited for code reuse in multiple types of games rather than evolution game or de-
velopment of mods. The MDD approach aims to manage any software engineering
process in which models are built and refined. At a high level, the MDD concept
is similar to the low-code concept in that there are pre-made models that can be
used and modified by the programmer. However, when considering only evolution
and creation of mods, this approach proves to be more limited, allowing to manage
only one mod at a time. As a result, SPL is the most recommended reuse strategy
for the creation and evolution of games and mods, allowing vertical selection and
evolution of features, where these can be chosen to generate the final product, al-
lowing addition or removal of features, and allowing for the creation of N versions of
the game at once. However, as previously stated, all of the platforms found in this
review that supported the SPL approach were in the testing phase and required a
significant amount of work to build, even though they were still specific to a certain
type of game, which reduced the possibility of generalization of the approach.

Another common problem in the gaming field is the representation of game fea-
tures. In the literature, there are numerous game representation approaches that
present elements and behaviors, such as the elemental tetrad NETO and TAYLOR;
SCHELL (2008); UNGER (2012) and the ORC framework GUARDIOLA (2016).
However, these frameworks are not yet integrated into any tool for automatic rep-
resentation, being still a challenge for the gaming community (SARINHO et al.,
2012). In light of this, it is possible to imagine a visual tool for developing games
using SPL idea, where the game to be made would be represented by a tree and the
developer could view the game’s characteristics and generate different versions of it.

As previously mentioned, there are N methods to describe the characteristics
of a game, and one of the most well-known is the elemental tetrad model, which

67

illustrates the mechanics, second level mechanics, and aesthetics of a game’s char-
acteristics. Considering that it is possible to describe a game using these elements,
it is plausible to assume that a new game will be formed if a mutator is applied
to one of these elements (mechanics, second level mechanics and aesthetics). It is
worth remembering that a mutator can be understood as a small modification that
can be applied to a characteristic of a game to modify it NETO and TAYLOR;
UNGER (2012). For example, to modify a game’s character movement mechanics,
just apply a mechanic mutator that modifies this movement, for example, increasing
it whenever it is close to an enemy. Based on this, the elemental tetrad framework
was combined with the SPL and mutators approach to develop a new game engine.
With this, each edge would represent a mutator applied to a game, and each new
node would represent a potential feature. As elemental tetrad is partitioned into
four parts, it is possible to imagine that 3 feature trees will be needed (discarding
technology), one for each part of elemental tetrad. Figure 4.1 demonstrates an ex-
ample of a mechanics tree, it is possible to observe the original game with all its
mechanics and two mods that were made from it, adding mutators and excluding
some characteristics. For example, mod one was created by removing the possibility
of a machine gun, increasing walking speed and increasing the number of shots from
the default weapon.

Figure 4.1: Illustration of a feature derivation tree.

On the basis of this concept, it is possible to imagine an SPL-based game devel-
opment platform that will use this concept. Through it, it would be able to code
according to a specific pattern, and all of the game’s features would be represented
as a tree of features. Thus, it is possible to see the game’s features and then alter or
choose the features of a potential mod, letting the developer create the game once
and then change it directly through the features tree. The platform aims to provide
facilitators that seek to accelerate the development of mods, such as: the feature tree

68

that separates visually the game into all its features, projects patterns that must be
followed and mutators that can be used to modify the created games. It is expected
that the usage of this platform would reduce redo work, increase the number of mods
developed, and accelerate the process of generating mods and games.

All previous chapters concentrated only on theoretical studies demonstrating dif-
ficulties and potential solutions. Using just the author’s ideas and existing literature
as a foundation, no instrument was created to verify whether or not such a concept
was viable. Therefore, some proofs of concept were carried out to verify the viabil-
ity of building the platform described above. Next, they will be described in more
detail.

4.2 Proof of concept

The main point of this section is to show the games and ideas that were developed
to see if the initial idea from the previous section could be built on.

As discussed in the last session, the product line was the main reuse strategy
chosen for study in this work. The purpose of this was to establish a development
platform that facilitates the creation of games using this method. However, prior to
the creation of the platform, research was conducted to determine how this strategy
would be implemented. In this section, four proofs of concept will be demonstrated
that aim to validate the possibility of building the platform.

As stated in Chapter 2, games have several types of definitions, and one of them
is that they can be understood as a simulation of a real case (XEXÉO et al., 2013).
This work aims to build a platform to assist in game development. However, before
the final platform is constructed, prototypes were develop as a proof of concept
regarding the viability of building the platform. Based on these premises, first,
the construction of games will be used to simulate the possibilities of creating the
platform due to the ease of development by the author.

4.2.1 Initial exploration

The first prototype built aimed to validate the difficulty of working with game
mutators, that is, to validate how game characteristics could be parameterized to
be modified, resulting in configurable games. As it is the simplest prototype to be
developed, it was created using the GameMaker Studio 2 and with the help of one
of the students of a Software Reuse course. Being the only prototype that was built
with assistance. All other prototypes were built from the Unity engine, due to being
more elaborate prototypes.

The prototype developed aimed to create games based on the configurations

69

of the application’s three JSON (an JSON representing a model for each part of
elemental tetrad). From the application it is possible to develop several platform
games, running at 60 frames per second, depending on the settings that are chosen
within the JSON files. Within the JSON files there are several attributes to be
configured, below each file will be demonstrated in more detail.

• Mechanics

– Player’s weapon (bool)

– Enemy’s weapon (bool)

– Player’s score (bool)

• Aesthetics

– Weapon sprite (int)

– Player sprite (int)

– Enemy sprite (int)

– Scenario sprite (int)

• Second level mechanics

– Player speed (int)

– Player’s HP (int)

– Player jumping force (int)

– Enemy speed (int)

– Enemy’s HP (int)

– Enemy jumping force (int)

– Weapon force (int)

– Weapon speed (int)

– Weapon type (int)

– Gravity

Figure 4.2: Configuration JSON example.

As previously stated, the games are built using three configuration files: the me-
chanics file, which controls which additional mechanics the game will have (Boolean
variables), the second level mechanics file, which controls the strength and speed
of the game objectives (integer variables), and the aesthetic file, which controls the
visual aspect of the game (integer variables that point to a file in a folder with
the sprites). It is worth mentioning that the prototype could be evolved to have
much more mechanics and second level mechanics, however, with the few options
that were implemented, it is already possible to develop many versions of platform

70

Figure 4.3: Games created from the prototype.

games. Figures 4.2 and 4.3 demonstrate the game configuration files, one for each
part of elemental tetrad, and games that were created from the prototype. From
the first figure you can see early games that were created using the sprites of mario
and metal slug.

Although it was only a prototype for creating very simple platform games with-
out any animation, with static sprites and without elaborate mechanics, from the
prototype it was possible to observe that it would be possible to parameterize the
features of the games and to develop different games by modifying only a few vari-
ables. Thus, it was possible to move on to the second prototype that sought to
verify the difficulty of developing a product line for a specific game.

4.2.2 Developing a product line

For the creation of the initial product line, the Codeboy game was used, which
was built within a master’s dissertation (CASTRO, 2020). Codeboy was a mod
development experience in which a Lightbot adaptation was created with the goal
of teaching programming fundamentals through games.

Lightbot’s mechanics, second level mechanics, and aesthetics, as well as the
game’s background, were changed for the construction of Codeboy in order to teach
reuse ideas. Next, each of the modifications based on the elemental tetrad will be
described.

• Mechanics: character movement, drag-and-drop actions, and sequence auto-
execution have all been intact. New mechanisms were added for catching the
star and opening the treasure’s chest.

• second level mechanics: the second level mechanics of develop functions
were updated in accordance with the elemental tetrad to enable the usage of

71

FODA7 (KANG et al., 1990)decision tree, which is a common model in the
SR domain.

• Aesthetics: the game’s aesthetics were kept, but new sprites were used to
alter the visual aesthetics.

Figure 4.4 shows the Lightbot and Codeboy creation trees. It can be seen that
the Lightbot game received two mutators over the Codeboy game was generated,
and that each new node in the tree represents a new game.

Figure 4.4: Tetrad Generation Game (CASTRO and WERNER, 2021; GOUWS
et al., 2013).

From figure 4.4, it is possible to perceive the application of mutators to cre-
ate games. Each of the nodes of the tree that can be interpreted as new games is
represented by a letter (A, B, C, or D) in the figure. The tree begins with letter
A, illustrating the original lightbot game. This node allows the application of vi-
sual mutators from the right and mechanical mutators from the left. Continuing
along the left side, visual mutators were applied, which provided the game a new
appearance with new sprites, thus arriving at node B. From this node, mutators of

7Feature oriented domain analysis (FODA): It can be understood as a model of a domain anal-
ysis that demonstrates which system characteristics are mandatory, exclusive, or optional(KANG
et al., 1990).

72

mechanics were applied, so developing Codeboy, a new game with new mechanics.
Returning to node A, on the left, mechanical mutators were applied, establishing
new characteristics for the game and transforming it into a new game designed to
teach recursion. N mutators can be applied in each phase, however, some steps were
omitted from the figure for the sake of simplification.

Table 4.1 compares the possible four games demonstrated in the product line
according to the elemental tetrad framework. The same letters A, B, C and D
will be used to represent the games. Aesthetics according to the elemental tetrad
framework are the sensations that players can feel while playing, however, to change
a game’s aesthetics, N mechanics and second level mechanics mutators are needed to
change such aesthetics. Therefore, the aesthetics of feelings for the three displayed
games are identical: Challenge (take the character from point A to B), Submission
(game is seen as a hobby for the user) and Expression (the player creates his/her
own sequence of moves). From this table it is possible to observe that small changes
in the mechanics, second level mechanics and aesthetics of a game can generate new
games.

Table 4.1: Lightbot and Codeboy characterized according to the
MDA framework.

Mechanic Dynamic Aesthetic
A Walk and turn.

Turn on the
light.

Create movement sequences. Original Sprites.

B Walk and turn.
Turn on the
light.

Create movement sequences. New Sprites.

C Walk, turn, push
and break. Col-
lect items (Star
and chest).

Create movement sequences.
Reuse functions. Choose to
open the treasure’s chest (op-
tional).

New Sprites.

D Walk and turn.
Turn on the
light.

Create movement sequences.
Reuse functions.

Original Sprites.

The second prototype used the game developed for the master’s degree as a use
case to demonstrate how a game product line would be built. Despite the fact that
it was a previously built game, it was possible to reuse its code to build a product

73

line in which features were rebuilt, modified, and added. This study revealed that it
was possible to separate the characteristics of the games into smaller parts, allowing
us to move forward with the study in one more stage.

4.2.3 Dynamic Tetrad Game

After demonstrating that it is possible to parameterize game settings via the first
prototype and separate game features into smaller parts via the SPL of prototype
2, it is time to create prototypes for community validation.

As previously mentioned, any game can be explained through its mechanics,
second level mechanics, and aesthetics. In light of this, it can be asserted that
if each of these elements is modified, a new game can be create. Thus, a game
prototype based on the elemental tetrad was constructed, in which modifications
are applied to the game at runtime, producing new mods periodically.

The built prototype applies the concept of dynamic product lines to mods. As
a prototype, this technique was utilized to construct the game due to its higher
efficiency in arranging future modifications, since as the game does not need to
be reconstructed each time a change is made. The characteristics of the classic
product line are developed during the design phase, however, for the development of
the prototype Dynamic Software Product Line (DSPL) (AYALA et al., 2021) was
chosen, due to the ease in coordinating the changes within the game.

The game was designed to simulate a DSPL, with each tetrad component chang-
ing during the course of the game. Creating a mod involves adding one or more
mutators to a game. Therefore, it is plausible to believe that there are mutators,
one for each part of tetrad architecture, and that these mutators are used to build
new modifications for games. Further abstracting this concept, it is conceivable to
assume that tetrad modifiers applied sequentially may yield each of the categories
of mods outlined in Section 3.2. Using an aesthetics modifier, for instance, might
suffice to construct an interface customisation hack. To make mutators or tweaks,
it would be essential to employ a second level mechanics mutator; for a complete
conversion, N mutators of all three dimensions would be required.

Elemental tetrad utilizes the term aesthetics to describe to the feelings experi-
enced by the game’s player, such as creativity, challenge, and community, among
others. It is said that the game provokes specific feelings. However, the player re-
ceives these experiences in relation to cause and consequence. It is believed that the
game’s mechanics and second level mechanics create a sensation for the player. Due
of this cause-and-effect relationship, it is difficult to create novel feelings while devel-
oping modifications. When rules and second level mechanics are modified, feelings
may alter, but there is no one modifier that provides a new aesthetic. Therefore, in

74

this work, the aesthetic component of the game will be considered solely in terms of
its visual aspect, i.e., sprites, maps, on-screen objects, etc.

The game functions like an infinite runner (CASTRO and WERNER, 2021).
Each time the player reaches a checkpoint (marked by a flag), a new random com-
bination of game mechanics, second level mechanics, and aesthetics is generated,
thus producing a new version of the game at runtime. Figure 4.6 shows four phases
generated at random by the game. Each time the player meets a flag, a new type of
random mod is produced. To visualize the specified attributes, the game displays
a panel displaying the selected configuration. Figure 4.6 shows the panel. From
this figure it is possible to observe all the characteristics that are being modified
throughout the game. Table 4.2 describes each of the features in more detail.

Figure 4.5: Elemental tetrad Generation Game (CASTRO and WERNER, 2021).

Figure 4.6: Configuration panel (CASTRO and WERNER, 2021).

75

Table 4.2: Changeable game features;

Characteristic Explanation
Movement type Controlled through 3 booleans. Horizontal: The charac-

ter will run horizontally. Vertical up: The character will
run from top to bottom in a vertical position. Vertical
down: The character will run from bottom to top in a
vertical position.

Velocity It is controlled through a number with 3 values (1, 2 and
3) that creates a vector with fast, medium and low speeds.

Graphics The game has 3 stages: Desert, Ice, stone and swamp.
Gravity It is controlled through a boolean that defines whether or

not the character will float.
Graphics
Display It is controlled through a number with 3 values (1, 2 and

3) that creates a vector of distance between the objects on
the screen. Control through which the game will check if
there are more or less spaced objects.

Table 4.3: Game mechanics, dynamics and aesthetics.

Mechanics Run and jump or fly, destroy objects with bombs,
destroy objects by clicking on the object, lives,
score, pick up coins to buy new levels, lose lives
by hitting objects

Dynamics Increase or decrease speed, increase or decrease
gravity, change character directions

Aesthetics or Interface Fire environment Ice environment Earth environ-
ment Air environment

The game’s properties are categorized in Table 4.3 according to the elemental
tetrad. The required gameplay elements include lives, scores, money, and the loss
of life when colliding with level objects. Note that any random mod will possess
these characteristics. There is a boolean variable for each random game feature
that determines whether it will be implemented or not. For each mechanism, for
instance, the game will pick between walking, jumping, or flying, destroying items
with bombs, and damaging objects by clicking, serving the same rule for the second
level mechanics. Each step will pick a terrain type for aesthetic purposes.

The feature tree for full game functionality is demonstrated in Figure 4.7, where

76

Figure 4.7: Elemental tetrad Feature tree (CASTRO and WERNER, 2021).

filled balls are required and empty balls are optional. Triangles with fill indicate
that just one feature may be selected. This graphic depicts a model based on the
FODA characteristics model (KANG et al., 1990). To facilitate viewing, the graphic
has been separated into the three components of elemental tetrad.

The prototype created aims to demonstrate the possibility of automating the
process, having a product line where the original game is the core of the game’s
functionalities. The gamer itself could generate modifications to the game from the
use of mutators according to the dimensions of elemental tetrad. From the initial
prototype, it was possible to observe two distinct views of product line: a more
traditional one where each node is a characteristic and to create the game it is
necessary to navigate the tree and add the elements, and another where each edge
of the tree can be a mutator that generates a new node when applied to an existing
node, thereby creating a new game with different characteristics (this work aims to
combine the two views).

4.2.4 Classic Tetrad Game

This work’s first prototype aimed to develop an manual product line, which was
derived from an original game built from scratch through reverse engineering with
modifications made directly in the source code. The previous section described
a prototype of a game that aimed to simulate a dynamic product line; this one
was a little more challenging, but the changes made during runtime were easier to
manage because the game did not need to be recompiled for each change. The game
that will be described presently seeks to replicate a classic SPL, with the game being
constructed throughout development, hence increasing a litle bit the implementation
difficulties.

The game may be interpreted as a platform in which the protagonist must com-

77

plete the level’s three tasks. At the beginning of the game, the player must select
the characteristics he/she wants to incorporate to the game. There are three feature
trees for this purpose, one for each level of elemental tetrad. Figure 4.8 demon-
strates some levels generated by the game, from which it is also possible to see the
objectives that were selected to be conquered. Figure 4.10 demonstrates the game’s
characteristics selection menu, having a characteristics tree for each part of elemen-
tal tetrad. This figure also displays the game’s rules menu, which describes how to
play. Figure 4.9 demonstrates the positioning of each of the elements of elemental
tetrad in the game.

Figure 4.8: Levels generated by the game.

Figure 4.9: Game feature selection trees, grouped according to the elemental tetrad.

The game works as a product line where the player can choose each part of the
game as its mechanics, its objectives, its enemies and other elements. In each game,
the player will choose the characteristics he/she prefers and the game builder will

78

Figure 4.10: Game characteristics selection trees.

Figure 4.11: Tetrad SPL Classic game feature tree.

create a game with the selected characteristics. Next, each of the elements that can
be selected or modified by the game will be described. Figure 4.11 demonstrates all
three FODA (KANG et al., 1990) trees with the characteristics that can be chosen.

Finally, to make the game more dynamic and difficult, a number of features were
added, including characters with varying amounts of health, distinct attacks, and
an A* algorithm to follow the character.

79

Elements that can be selected or modified:

• Mechanics:

– Drops: drops in the language of games can be understood as the act of
an enemy dropping an item in a match, however, in this game it was used
with a sense of items or elements that are dispersed across the game.

∗ Enemies: Choose if the player should kill all enemies or not.

∗ Coins: Items that must be collected in the game.

∗ Lifes: Items that must be collected in the game.

– Final obstacles: obstacles to be overcome by the player.

∗ Boss: choose if the game will have one or multiple bosses.

∗ Check Point: choose whether the game will have checkpoints.

– Game goal: main objective of the game.

∗ Save dog: save the dog from the cage.

∗ Timer: choose if the game should be won before time runs out.

∗ Find objects: Select the items that the player must find in the
game. There are two options: match elements, which must find the
secret object, and puzzle solver, which must find similar objects.

• Second level mechanics:

– Move: choose the second level mechanics of movement.

∗ Walk: the character can only walk.

∗ Run: the character can only run.

– attack: choose the second level mechanics of attack.

∗ Shoot: choose between the two possibilities of weapons, with one
shot at a time or many shots.

∗ Cut: choose weapon with sword option.

• Aesthetics:

– Ecosystem: choose the game stage.

∗ Desert: choose between day or night.

∗ Forest: choose between day or night.

From this game, it was possible to expand the idea of building a game platform
even further. This game attempted to demonstrate how the platform’s product line

80

would behave by separating and dividing the characteristics according to the charac-
teristics tree and elemental tetrad, allowing the player to select the game’s elements,
rules, and objectives, thereby creating a unique game for each tree configuration.
This game was hard-coded being necessary to create several conditionals for its cre-
ation, however for the development of the platform, it is intended that this tree be
created automatically based on the source code of the game to be modified.

4.3 Evaluation

This session will present the planning and preliminary qualitative results of the
prototypes built to validate the idea of this work. Descriptions about the planning,
participants, procedure and results are presented.

4.3.1 Planning

In the search for evidence about the importance, need and approval of the gaming
community in the face of the proposal to create the platform, a study was carried
out with the objective of validating this proposal.

The main item to be evaluated in this initial evaluation would be the community’s
approval of the platform’s development, so it would be a technology validation, and
then some questions from an adapted Technology Acceptance Model (TAM) ques-
tionnaire were used (DAVIS, 1993). TAM collects data primarily on the usefulness
and usability of the presented idea, allowing users to determine whether the idea to
be built will be useful to the community. This model is well-known in the academic
field for measuring technology acceptance and has strengths such as focusing on
technology-specific information; being extensible, allowing it to be applied in differ-
ent contexts; and being able to be used during, and after the adoption of a specific
technology. However, in this work, some questions of this questionnaire were mod-
ified to validate the possible usefulness of the idea before the development of the
platform. It is worth remembering that the TAM will be used for final validation of
the tool after it has been developed (DOS SANTOS, 2016). However, because the
idea is validated through a game, the MEEGA (PETRI et al., 2016) questionnaire
was also used. This questionnaire is mainly used to validate the usability and ex-
perience provided by a game, however, in this study, it will be used to determine
whether or not the usability and experience of the game influenced or not the ac-
ceptance of the technology. It is mainly being used to ensure that if the game has
a problem, and it does not inhibit the idea from being accepted. As a result, the
MEEGA questionnaire will be used to validate the game’s usability and experience,
while the TAM questions will be used to evaluate the usefulness of the tool to be

81

built.
The evaluation procedure ran from 10/10/2022 to 10/21/2022, with a pilot evalu-

ation on 10/07/2022 with a participant to make sure that the game and questionnaire
had no issues that would affect the evaluation, as well as to confirm the execution
time that a candidate would take to carry out the experiment. Following the pilot
execution, it was possible to determine that the procedure took an average of 30
minutes and did not present any problem that would affect the experiment.

4.3.2 Participants sample

For the pilot study, only one undergraduate student was used to validate the
games and the questionnaire in order to identify possible problems. Three groups of
participants were chosen for the main study. This division of groups was created to
be able to divide the different levels of experience of the participants, each of these
groups will be described in more detail below.

• Experts: The first sample was selected from graduate students from Fed-
eral University of Rio de Janeiro (UFRJ), UNIRIO and Rio de Janeiro State
University (UERJ) who had prior experience with games and Software Reuse.
Because this group had more experience in the area, this group attempted to
validate the idea more prudently.

• SR students: The second population was drawn from a sample of students
enrolled in the SR course at UFRJ. This population had less experience with
reuse than the first, but they were younger participants who were familiar with
games and programming. From this population, it was intended to obtain a
less rigorous perspective than the first group and with a vision a little bit
focused on people who already used games and programming.

• Gaming community: The third group of participants was chosen from the
gaming community, leaving the invitation open to anyone who wanted to take
part. This group was formed in order to gain a less academic and rigorous
perspective and understand what the gaming community is looking for, since
they are the biggest mod creators.

4.3.3 Procedure

The study was conducted remotely through the availability of the materials re-
quired for the study’s execution. However, for the pilot study and the first two
populations, the entire experiment was carried out via a Google Meeting call, with

82

the think-aloud protocol (JÄÄSKELÄINEN, 2010). This protocol was used to col-
lect additional information, such as whether the player was having difficulty with
the game and whether he/she liked the proposed idea, among other things. Using
this protocol, it was also possible to capture the sound of the environment, which
aided in understanding some sensations felt by the player through their reactions,
such as claims, sighs, and expressions of fatigue or stress. The main stages of this
study are as follows:

• Study and game description: This step involved the distribution of a form
containing the primary information required to conduct the evaluation, such
as explanatory texts about the study, basic game commands, and urls for the
questionnaire and installer. It is worth mentioning that the questionnaire was
made available in two versions through google forms, English and Portuguese,
seeking to have a greater number of participants. The questionnaires used can
be found in Appendix A and B.

• Participants’ characterization: A characterization questionnaire was
made available to each of the participants.

• Game execution: Participants must install and test the two games sent to
them.

• Completing the qualitative questionnaire: The TAM (DAVIS, 1993)
and MEEGA questionnaires (PETRI et al., 2016) adapted to the context were
made available to each of the participants.

4.3.4 Results

This evaluation’s primary objective is to determine the viability of the platform
development concept. Due to this, the two games described in Sections 4.2.3 and
4.2.4 were evaluated using a single questionnaire, as the purpose of the evaluation
was not to evaluate each individual game, but rather to introduce the concept of
the platform and determine its viability. This decision was taken in order to reduce
or optimize the evaluation time and thus obtain a better result.

Despite the questionnaire used to collect information about usability and game
experience, this information was collected only in the event that any game feature
is misunderstood or is not to the user’s liking; however, this does not affect the final
result of the evaluation.

83

Participants sample

The study involved 46 evaluators, who were divided into three groups: specialists,
who were defined as experts users with experience in the field of games and SR;
students who took the SR course; and the gaming enthusiast community.

It is worth remembering that, many different answers were given in relation to
the participants’ time of experience, and in order to present this result in a concise
manner, these answers were divided into six categories: More than 10 years, Up to
10 years, Up to 5 years, Up to 3 years, Less than a year and Without experience.

Figure 4.12: Characterization of specialists. Source: from the author.

Analysis of results

Figures 4.12 and 4.13 show how the study specialists were classified, showing
that there were three specialists that evaluated the study, each with a distinct level
of expertise in each subject. From theses figures, it is possible to infer that two users
have been involved with games for more than ten years. However, it is important

84

Figure 4.13: Experience of specialists. Source: from the author.

Figure 4.14: Characterization of students. Source: from the author.

85

Figure 4.15: Experience of students. Source: from the author.

Figure 4.16: Characterization of community. Source: from the author.

86

Figure 4.17: Experience of community. Source: from the author.

to note that this time is only in relation to the time they had contact with games,
whether they were playing a video game or even doing a little more research on
the topic. However, when it comes to game development, it should be noted that
only one member has been an expert in the field for more than 10 years, while the
other has only 5 years of expertise. It is important to note that this experience time
decreases even more when the topic of mods is brought up, with 5 and 3 years of
experience for each participant. About SR note that all participants have at least 10
years of experience in the subject, but when dealing with SPL only one participant
has this time of experience. When analyzing this information, it is possible to notice
that the group consists of a specialist who is somewhat more game-focused, one who
is more expert about reuse, and lastly a more generalist user.

When looking at the student research group’s data, it is possible to see that the
students are all around the same age and are still enrolled in graduation. Information
on the students’ characteristics is included in Figures 4.12 and 4.13.

Another noteworthy statistic is that while half of the students has more than
10 years of expertise with digital games, when it comes to game development or
mods this experience drops to 3 or even zero. Finally, in terms of experience with
SR, all students had less than a year of experience, which was to be expected given
that they are undergraduate students and are only now becoming familiarized with
the field. It is important to note that although everyone was familiar with software
development and Software Engineering, they knew little about the SR idea.

When looking at the community assessment group, it is clear that the majority
of the participants has between the ages of 18 and 28 and are either graduates or in

87

Figure 4.18: Meega / TAM Questionnaire with Specialists Response. Source: from
the author.

the process of graduating. When the experiences of these participants are examined,
it is clear that the majority of them have been in contact with games for a long time,
having been players for more than ten years and having knowledge about mods and
game development for about three years. However, when it comes to SR and SPL, it
is possible to notice that the majority of evaluators lack ors has limited experience
in the field. This was to be expected given that the studies was conducted with the
gaming community in mind. Figures 4.16 and 4.17 demonstrate information about
the characterization of the community study group.

Despite having three groups of participants with varying levels of knowledge
about games and SR, the answers generally followed a pattern. However, it was
possible to notice some slightly lower scores in the answers of the specialists, which

88

Figure 4.19: Meega / TAM Questionnaire with Students Response. Source: from
the author.

was to be expected given that they are specialists and expect a more accurate result.
Figures 4.18, 4.19 and 4.20 demonstrate the answers regarding usability, experience
and usefulness of the proposed idea.

It should be noted that only one questionnaire was used for both games, taking
into account that the main purpose of the evaluation was to check the viability of
building the platform. However, a few Meega questionnaire questions were also used
to see if the game’s usability and experience could influence the evaluation’s final
result.

Regarding the game’s usability and experience, it was possible to notice that it
did not directly affect the study’s results; however, some improvements that could
be made were identified, such as: improving the character’s movement, having more

89

Figure 4.20: Meega / TAM Questionnaire with Community Response. Source: from
the author.

instructions on how to play, and using some context variables to improve the player
experience by randomly generating the game. Despite the fact that only one ques-
tionnaire was used for both games, it is believed that the majority of usability issues
are related to the first game, based on comments such as: utilizing context factors
to generate the game at random to enhance the user experience; Interesting, beau-
tiful, and intuitive game. However, understanding how games are generated can be
difficult for non-gamers.

Regarding the verification of the utility of the game, a considerable number of
favorable answers were observed, indicating that users were able to construct games
from the notion of SPL and comprehend how the concept of a feature tree would

90

function. The questionnaire generated responses such as: Regarding the possibility
of deriving games from the selection of elements of a line, it appears to be a solution
option with real application and contribution to the community; Very interesting
concept, I was able to create three completely different games; Interesting concept,
which would greatly benefit the game development community.

Looking at the answers in general, it is possible to notice that more than 70% of
the answers obtained positive results (Agree and Strongly Agree) and that approx-
imately 95% of the respondents gave answers greater than or equal to Indifferent,
with only 5% of the answers obtaining a negative note (Disagree and Strongly Dis-
agree), based on a total of 46 participants. This percentage is even higher when
considering only the answers that discuss the tool’s usefulness, with more than 81%
of positive responses, more than 98% of responses above indifferent, and fewer than
2% of negative responses. From this, it is clear that the suggested tool has a great
deal of promise and utility, and that it has the potential to aid the community in
the development of mods.

4.4 Conclusion

This chapter presented three games produced with various product line perspec-
tives and creative efforts. The first product line concept was a manual process in
which the Lightbot game was modified N times, generating two mods. The sec-
ond concept was to create mods through a dynamic product line, with the game
randomly selecting each of the new game’s qualities. Finally, a game was create in
which the user selects each of the game’s characteristics. Figure 4.21 demonstrates
the progression in terms of difficulty and evolution of building the SPL-based game
development platform and what each prototype sought to validate at work.

Figure 4.21: Progression in terms of difficulty in building the SPL platform.

91

As mentioned, four prototypes were created, each of which attempted to validate
a portion of the difficulty and possibility of creating the platform. The first sought to
validate the difficulty in parameterizing game settings, the second sought to validate
the difficulty in manually creating a product line, and the third and fourth sought
to validate the platform’s concept with the community in an interactive manner.

The last two games created attempted to demonstrate the concept of building the
platform to be proposed, and an evaluation was conducted with them to verify the
feasibility of building the platform. In general, regardless of the group of evaluators,
it was possible to notice a large amount of positive responses for both usability
and experience, thus demonstrating that these variables did not influence the final
result of the research. Regarding usefulness, it was also possible to perceive positive
responses, thus demonstrating that the idea of the platform is valid and would be
useful for the community. With this, the development of the platform was followed.

92

Chapter 5

EngageSPL Platform

As previously stated, the term mods was chosen because it is similar to the term
modifiers. It is assumed that the terms advantages, disadvantages, and motivation
are comparable.

This chapter aims to describe in more detail the EngageSPL platform that aims
to help the development of video games through SPL.

5.1 Overview

Based on the main difficulties of developing mods/modifiers described in Chapter
3, such as lack of appropriate tools, high development cost, difficulty in understand-
ing the source code and delay in development time, the present work proposes the
development of a platform that incorporates SPL concepts, the elemental tetrade
framework, and modifiers to assist in these problems. Although the platform tries
to contribute with all problems, the understanding of source code would not be
solved directly, but could be improved by: viewing the feature tree where the code
will be separated by features, pre-fabricated modifiers where features can be modi-
fied by them and by coding language standards which can make the code easier to
understand. It is important to remember that this is not the main purpose of the
platform. The main purpose of the platform is to make it possible to build a game
once and generate N different versions of it quickly, easily, and with little effort.
Table 5.1 demonstrates how each of the problems is intended to be solved through
the platform.

Table 5.1: EngageSPL features VS mod development problems.

Problems Features that aim to help solve the problem

93

Lack of appro-
priate tools

Development of a specific platform for the evolution of
mods that will make use of the concepts of Product Lines,
MDA and mutators

High develop-
ment cost

As the platform facilitates the evolution of mods, the cre-
ation of new mods will become cheaper.

Delay in devel-
opment time

The process will require less work and less time to develop

Difficulty in un-
derstanding the
source code

This topic will not be resolved directly. However, certain
features will facilitate in its difficulty.
(1) The platform will have a development pattern that en-
ables the generation of the feature tree; this pattern will
reduce the difficulty of understanding the code, taking into
account that all games will have the same structure.
(2) Even if the developer does not understand the code,
he/she will still be able to view the game’s features through
the feature tree and modify them through the use of mu-
tators by viewing the feature tree and applying modifiers.

Based on the initial experience with the games described in Chapter 4 and the
problems listed above, the thesis proposal is the creation of a platform for the devel-
opment of video games using the concepts of SPL, elemental tetrade, and modifiers.
The platform’s core concept is the integration of these three concepts, which makes it
possible to divide the game’s features into a tree structure and then modify, add, or
remove them. The name given to the platform was ENgine for GAme GEneration
through Software Product Line (EngageSPL).

A platform aims to provide a number of features that will aid in the develop-
ment of video games, particularly in their evolution. It is intended that the platform
will allow to create a game once and then evolve several video games with different
characteristics by using modifiers on the edges of the features tree. The platform’s
concept is to have three feature trees, one for each part of elemental tetrade frame-
work, and then apply the modifiers from these trees. As a result, through the
platform, the mechanics, tecnology, story, and aesthetics of the video games can be
edited easily and even without programming. Figure 5.1 shows an example of how
modifiers can be applied to feature trees, showing three trees, one for each part of the
elemental tetrade. From this figure, it is possible to visualize examples of the feature
trees, as well as the addition of a new mechanic to the mechanics tree. Through the
second level mechanics tree, it is possible to visualize a modifier’s edit to the game’s
second level mechanics, and through aesthetics, it is possible to visualize an edit to

94

the game’s aesthetics.

Figure 5.1: Example of feature trees.

To make it possible to carry out what has been presented so far, the platform
will have an IDE for building games with several features that allows a video game
to evolve. Among the platform’s key features are:

• Pattern check: The code must follow a specific pattern so that the feature
tree and modifiers are created, used, and viewed by the platform. This pattern
will be automatically verified by the platform, demonstrating the problems.
All the code will be written in javascript, a language that has already been
widespread in the community.

• Feature tree: Visual demonstration of all game features. Through this tab
it will be possible to select all the characteristics of the game to be created, as
well as apply the modifiers in a certain characteristic. It is worth remembering
that there will be 3 tabs, one for each part of elemental tetrade.

• modifiers: The platform will have a list of pre-made modifiers that can be
applied to the features of the games to modify them. However, it will also be
possible to create extra modifiers. All modifiers can be viewed through the
modifiers tab.

Figure 5.2 demonstrates a wireframe of the platform screen, including all of its
subscreens. Next, each of them will be described.

• File list: List of files for the game being developed.

• File: Game file being edited.

95

Figure 5.2: Platform idea wireframe

• elemental tetrade: Tree of game features that will be generated automat-
ically. Through them the game characteristics can be selected, excluded or
modified by the list of modifiers. It is worth remembering that there are 3
trees, one for each part of elemental tetrade.

• Console: Terminal that will demonstrate the game’s compilation errors if the
game doesn’t follow the tool’s development patterns.

• List of modifiers: List of modifiers that can be used to modify the game’s
feature tree.

From the development of this platform, some results and contributions to the
video games area are expected. Next, each one of them will be described.

• Contributions

– Viewing game features: Every game created on the platform will have
its characteristics separated automatically according to its mechanics,
second level mechanics, and aesthetics, facilitating the understanding of
the game’s characteristics and even serving as documentation.

– Fast mod evolution: The game will be developed only once and N
versions of it can be generated, through the choice of characteristics and
their modifications through modifiers.

– Less time and cost to develop a video games: the platform simplifies
the process of a game’s evolution, resulting in a cost reduction.

• Expected results

96

– A greater number of video games created by the community

– Reduced mod development costs

– Facilitate the process of building games

– Decrease the evolution time of a mod

In order to achieve the aforementioned results and contributions, the develop-
ment of the platform must satisfy certain requirements. It is important to note that
all platform requirements were derived from the Chapter 3 review. The following
table details each platform requirement and the origin from which the review was
conducted.

5.2 Schedule of activities

The research and exploratory studies supported the construction of the platform
for game evolution through SPL. The main activities that will be carried out for the
development of this work will be listed below. Figure 5.4 demonstrates the activity
schedule.

Figure 5.3: Schedule of activities.

Figure 5.4: Schedule of development activities.

97

• Development activities

– Surveys with specialists: Literature reviews and previous experiments
have demonstrated that the solution can be developed. Once this is con-
firmed, it is time to consult with specialists in the field regarding com-
pliance and approval for the platform’s development. For this, a survey
will be conducted with specialists to see their comments and support on
the idea to be built. (Questionnaire to be defined).

– Specify game build standards: Specify the design standards that
must be followed for building games through the tool. This will help the
platform to comprehend how the game was constructed, hence enabling
the building of the feature tree.

– Develop the IDE’s backbones: Develop the visual structure of the
IDE: terminal, file list, text editor, visual tree structure and list of mod-
ifiers.

– Build pattern checking on the platform: Develop the code checker
that will read the project files and verify that the projects conform to
what was specified.

– Generate the IDE compiler: Integrate the compiler with the IDE.
This will run the Javascript language compiler and make code run.

– Develop the feature tree structure: Develop the tab that will demon-
strate the game’s feature tree. This step will check the project files,
separate them into characteristics and generate the tree.

– Develop the list of modifiers: Create the tab that will show the list of
modifiers. In this step, the basic modifiers and the modifier architectural
pattern will be developed, which will allow the creation of new modifiers
by the developer.

– Integrate the feature tree with modifiers: Integrating the modifier
list with the features tree will enable the modifiers to be utilized to change
new games by modifying the tree.

• Evaluate the platform (Pilot study): The pilot study will have two types
of evaluation

– The first type of evaluation will use a comparative method to validate
the ease and time of development by the platform. Some games already
created by other engines will be recreated on the platform to verify their
usability.

98

– In the second evaluation, a pilot study will be carried out with some
students to validate the final questionnaire (to be developed) and to catch
possible problems in the tool.

• Implement improvements: Develop the possible improvements found in
the questionnaire or on the platform.

• Evaluate the platform: Evaluate the tool through the modified TAM ques-
tionnaire for the platform context (to be defined). This evaluation will include
diverse groups of game developers with varying degrees of proficiency: expert,
students and community developers. Some participants will utilize the tool to
develop games, while others will not. The identical activities will be presented
to both groups in order to evaluate the tool’s usability, development time, and
acceptance.

• Implement improvements: Develop the improvements found through the
evaluation.

• Write the thesis: Conduct an analysis and write of results found through
the development of the platform and evaluation.

• Defend the thesis: Create the thesis presentation slides, send the thesis to
the board. Defend the PhD.

99

References

ABBOTT, D., 2018, “Modding Tabletop Games for Education”, Proceedings of
International Conference on Games and Learning Alliance, pp. 318–329.

AGARWAL, S., SEETHARAMAN, P., 2015, “Understanding Game Modding
through Phases of Mod Development.” Proceedings of ICEIS, pp. 114–
121.

ÅKESSON, J., NILSSON, S., KRÜGER, J., et al., 2019, “Migrating the android
apo-games into an annotation-based software product line”. In: Pro-
ceedings of the 23rd International Systems and Software Product Line
Conference-Volume A, pp. 103–107.

AL-WASHMI, R., BANA, J., KNIGHT, I., et al., 2014, “Design of a math learning
game using a Minecraft mod”. In: European conference on games based
learning, v. 1, p. 10. Academic Conferences International Limited.

ALBASSAM, E., GOMAA, H., 2013, “Applying software product lines to multi-
platform video games”. In: 2013 3rd International Workshop on Games
and Software Engineering: Engineering Computer Games to Enable Pos-
itive, Progressive Change (GAS), pp. 1–7. IEEE.

AOUADI, N., PERNELLE, P., AMAR, C. B., et al., 2016, “Models and mechanisms
for implementing playful scenarios”. In: 2016 IEEE/ACS 13th Interna-
tional Conference of Computer Systems and Applications (AICCSA), pp.
1–8. IEEE.

ARAÚJO, J. C., ARAÚJO, M. C., NEIVA, F. W., 2022, “Uma abordagem de
aprendizado integrada e interdisciplinar através de um processo de desen-
volvimento cross-platform”, ANALECTA-Centro Universitário Academia,
v. 7, n. 2.

AYALA, I., PAPADOPOULOS, A. V., AMOR, M., et al., 2021, “Prodspl: Proac-
tive self-adaptation based on dynamic software product lines”, Journal of
Systems and Software, v. 175, pp. 110909.

100

BALDASSARRE, M. T., CAIVANO, D., ROMANO, S., et al., 2021, “PhyDSLK: a
model-driven framework for generating exergames”, Multimedia Tools and
Applications, v. 80, n. 18, pp. 27947–27971.

BEATTIE, A., 2020. “How the Video Game Industry Is Chang-
ing”. https://www.investopedia.com/articles/investing/053115/

how-video-game-industry-changing.asp. Online; accessed 29 May
2022.

BILIŃSKA, K., DEWALSKA-OPITEK, A., HOFMAN-KOHLMEYER, M., 2020,
“To Mod or Not to Mod—An Empirical Study on Game Modding as
Customer Value Co-Creation”, Sustainability, v. 12, n. 21, pp. 9014.

BLOIS, A., 2006, “Uma abordagem de Projeto Arquitetural baseado em Com-
ponentes no Contexto de Engenharia de Domínio”, Unpublished doctoral
dissertation). Universidade Federal Do Rio De Janeiro, Rio de Janeiro,
Brazil.

BOAVENTURA, F., SARINHO, V. T., 2017, “Mendiga: A minimal engine for
digital games”, International Journal of Computer Games Technology,
v. 2017.

BOURQUE, P., FAIRLEY, R. E., 2014, Guide to the Software Engineering Body
of Knowledge SWEBOK. 3rd ed. , IEEE Computer Society. ISBN: 978-
0-7695-5166-1.

CASTRO, D., WERNER, C., 2021, “Rebuilding games at runtime”. In: 2021 36th
IEEE/ACM International Conference on Automated Software Engineer-
ing Workshops (ASEW), pp. 73–77. IEEE.

CASTRO, D. C. B., 2020, USO DE JOGOS COMO ESTRATÉGIA PARA O EN-
SINO DE REUTILIZAÇÃO DE SOFTWARE. Tese de Mestrado, Uni-
versidade Federal do Rio de Janeiro.

CHAMPION, E., 2013, Game mods: design, theory and criticism. Lulu.com.

CHEUNG, G., HUANG, J., 2012, “Remix and play: lessons from rule variants in
texas hold’em and halo 2”. In: Proceedings of the ACM 2012 conference
on Computer Supported Cooperative Work, pp. 559–568.

CIGNONI, G. A., 2001, “Reporting about the Mod software process”. In: European
Workshop on Software Process Technology, pp. 242–245. Springer.

CLAUDE CHAUNIER, TORBEN MOGENSEN, B. T. “Mutators”. http://www.
di.fc.ul.pt/~jpn/cv/mutators.htm. Online; accessed 04 March 2021.

101

https://www.investopedia.com/articles/investing/053115/how-video-game-industry-changing.asp
https://www.investopedia.com/articles/investing/053115/how-video-game-industry-changing.asp
Lulu.com
http://www.di.fc.ul.pt/~jpn/cv/mutators.htm
http://www.di.fc.ul.pt/~jpn/cv/mutators.htm

CLELAND, N. “Mod (video games)”. https://en.wikipedia.org/wiki/Mod_

(video_games). Online; accessed 04 March 2021.

CUSKER, J., 2013, “Elsevier Compendex and Google Scholar: a quantitative com-
parison of two resources for engineering research and an update to prior
comparisons”, The Journal of Academic Librarianship, v. 39, n. 3, pp. 241–
243.

DACONCEICAO, R., LOCKE, C., COOPER, K., et al., 2013, “Semi-automated
serious educational game generation: A component-based game engineer-
ing approach”, Proceedings of CGAMES’2013 USA, pp. 222–227.

DAMAŠEVIČIUS, R., AŠERIŠKIS, D., 2017, “Visual and computational modelling
of minority games”, TEM J, v. 6, n. 1, pp. 108–116.

DAVIS, F. D., 1993, “User acceptance of information technology: system charac-
teristics, user perceptions and behavioral impacts”, International journal
of man-machine studies, v. 38, n. 3, pp. 475–487.

DEBBICHE, J., LIGNELL, O., KRÜGER, J., et al., 2019, “Migrating Java-based
apo-games into a composition-based software product line”. In: Pro-
ceedings of the 23rd International Systems and Software Product Line
Conference-Volume A, pp. 98–102.

DERAKHSHANDI, M., KOLAHDOUZ-RAHIMI, S., TROYA, J., et al., 2021, “A
model-driven framework for developing android-based classic multiplayer
2D board games”, Automated Software Engineering, v. 28, n. 2, pp. 1–57.

DEY, T., MASSENGILL, J. L., MOCKUS, A., 2016, “Analysis of popularity of
game mods: A case study”. In: Proceedings of the 2016 Annual Symposium
on Computer-Human Interaction in Play Companion Extended Abstracts,
pp. 133–139.

DJAOUTI, D., ALVAREZ, J., JESSEL, J.-P., 2011, “Classifying serious games:
the G/P/S model”. In: Handbook of research on improving learning and
motivation through educational games: Multidisciplinary approaches, IGI
global, pp. 118–136.

DORMANS, J., 2011, “Simulating mechanics to study emergence in games”. In:
Proceedings of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, v. 7, pp. 2–7.

102

https://en.wikipedia.org/wiki/Mod_(video_games)
https://en.wikipedia.org/wiki/Mod_(video_games)

DOS SANTOS, R. P., 2016, Managing and monitoring software ecosystem to sup-
port demand and solution analysis. Tese de Doutorado, Ph. D. Disserta-
tion. Universidade Federal do Rio de Janeiro.

EHRMANN, J., LEWIS, C., LEWIS, P., 1968, “Homo ludens revisited”, Yale
French Studies, , n. 41, pp. 31–57.

FENSKE, W., MEINICKE, J., SCHULZE, S., et al., 2017, “Variant-preserving
refactorings for migrating cloned products to a product line”. In: 2017
IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 316–326. IEEE.

FURTADO, A. W., SANTOS, A. L., RAMALHO, G. L., 2011, “SharpLudus re-
visited: from ad hoc and monolithic digital game DSLs to effectively
customized DSM approaches”. In: Proceedings of the compilation of the
co-located workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11,
NEAT’11, & VMIL’11, pp. 57–62.

GAROUSI, V., FELDERER, M., MÄNTYLÄ, M. V., 2019, “Guidelines for includ-
ing grey literature and conducting multivocal literature reviews in software
engineering”, Information and Software Technology, v. 106, pp. 101–121.

GEORGE, S., LAVOUÉ, É., MONTERRAT, B., 2013, “An environment to support
collaborative learning by modding”. In: European Conference on Technol-
ogy Enhanced Learning, pp. 111–124. Springer.

GEORGIEV, A., GRIGOROV, A., BONTCHEV, B., et al., 2016, “The RAGE ad-
vanced game technologies repository for supporting applied game devel-
opment”. In: International Conference on Games and Learning Alliance,
pp. 235–245. Springer.

GOUWS, L. A., BRADSHAW, K., WENTWORTH, P., 2013, “Computational
thinking in educational activities: an evaluation of the educational game
light-bot”. In: Proceedings of the 18th ACM conference on Innovation and
technology in computer science education, pp. 10–15.

GUANA, V., STROULIA, E., NGUYEN, V., 2015, “Building a game engine: A
tale of modern model-driven engineering”. In: 2015 IEEE/ACM 4th In-
ternational Workshop on Games and Software Engineering, pp. 15–21.
IEEE.

GUARDIOLA, E., 2016, “The gameplay loop: a player activity model for game
design and analysis”. In: Proceedings of the 13th International Conference
on Advances in Computer Entertainment Technology, pp. 1–7.

103

GUO, H., TRÆTTEBERG, H., WANG, A. I., et al., 2015a, “A workflow for model
driven game development”. In: 2015 IEEE 19th International Enterprise
Distributed Object Computing Conference, pp. 94–103. IEEE, a.

GUO, H., TRÆTTEBERG, H., WANG, A. I., et al., 2015b, “Lessons from Practic-
ing an Adapted Model Driven Approach in Game Development”. In: Inter-
national Conference on Entertainment Computing, pp. 451–456. Springer,
b.

HOFMAN-KOHLMEYER, M. M., 2019, “PLAYERS AS CONTENT CREATORS.
THE BENEFITS OF GAME MODDING ACCORDING TO POLISH
USERS”, International Scientific Journal News, v. 2, pp. 8–26.

HUNICKE, R., LEBLANC, M., ZUBEK, R., 2004, “MDA: A formal approach to
game design and game research”. In: Proceedings of the AAAI Workshop
on Challenges in Game AI, v. 4.

JÄÄSKELÄINEN, R., 2010, “Think-aloud protocol”, Handbook of translation stud-
ies, v. 1, pp. 371–374.

JARRETT, J., 2021, “Gaming the gift: The affective economy of League of Leg-
ends ‘fair’free-to-play model”, Journal of Consumer Culture, v. 21, n. 1,
pp. 102–119.

KANG, K. C., COHEN, S. G., HESS, J. A., et al., 1990, Feature-oriented domain
analysis (FODA) feasibility study. Relatório técnico, Carnegie-Mellon
Univ Pittsburgh Pa Software Engineering Inst.

KHORRAM, F., TAROMIRAD, M., RAMSIN, R., 2021, “SeGa4Biz: Model-
Driven Framework for Developing Serious Games for Business Processes.”
In: MODELSWARD, pp. 139–146.

KITCHENHAM, B., BRERETON, O. P., BUDGEN, D., et al., 2009, “Systematic
literature reviews in software engineering–a systematic literature review”,
Information and software technology, v. 51, n. 1, pp. 7–15.

KOLBERT, J. “Unofficial patch”. https://en.wikipedia.org/wiki/

Unofficial_patch. Online; accessed 09 March 2021.

KRUEGER, C. W., 1992, “Software reuse”, ACM Computing Surveys (CSUR),
v. 24, n. 2, pp. 131–183.

KRÜGER, J., FENSKE, W., THÜM, T., et al., 2018, “Apo-games: a case study for
reverse engineering variability from cloned Java variants”. In: Proceedings

104

https://en.wikipedia.org/wiki/Unofficial_patch
https://en.wikipedia.org/wiki/Unofficial_patch

of the 22nd International Systems and Software Product Line Conference-
Volume 1, pp. 251–256.

KYAW, A. S., 2013, Unity 4. x Game AI programming. Packt Publishing Ltd.

LACERDA, D. P., DRESCH, A., PROENÇA, A., et al., 2013, “Design Science
Research: método de pesquisa para a engenharia de produção”, Gestão &
produção, v. 20, n. 4, pp. 741–761.

LEE, D., LIN, D., BEZEMER, C.-P., et al., 2020, “Building the perfect game–an
empirical study of game modifications”, Empirical Software Engineering,
pp. 1–34.

LIMA, C., ASSUNÇÃO, W. K., MARTINEZ, J., et al., 2019, “Product line archi-
tecture recovery with outlier filtering in software families: the Apo-Games
case study”, Journal of the Brazilian Computer Society, v. 25, n. 1, pp. 1–
17.

MAGIOLADITIS, M. “Video game conversion”. https://en.wikipedia.org/

wiki/Video_game_conversion. Online; accessed 07 March 2021.

MAIA, N., BACELO, A. P. T., WERNER, C. M. L., 2007, “Odyssey-MDA: A
Transformational Approach to Component Models.” Proceedings of Inter-
nacional Conference on Software Engineering and Knowledge Engineer-
ing, pp. 9–14.

MARCHAND, A., HENNIG-THURAU, T., 2013, “Value creation in the video game
industry: Industry economics, consumer benefits, and research opportu-
nities”, Journal of interactive marketing, v. 27, n. 3, pp. 141–157.

MARQUES, E., BALEGAS, V., BARROCA, B. F., et al., 2012, “The RPG DSL: a
case study of language engineering using MDD for generating RPG games
for mobile phones”. In: Proceedings of the 2012 workshop on Domain-
specific modeling, pp. 13–18.

MATALONGA, S., RODRIGUES, F., TRAVASSOS, G. H., 2017, “Characterizing
testing methods for context-aware software systems: Results from a quasi-
systematic literature review”, Journal of Systems and Software, v. 131,
pp. 1–21.

MCARTHUR, V., TEATHER, R. J., 2015, “Serious mods: A case for modding
in serious games pedagogy”, Proceedings of IEEE Games Entertainment
Media Conference (GEM), pp. 1–4.

105

https://en.wikipedia.org/wiki/Video_game_conversion
https://en.wikipedia.org/wiki/Video_game_conversion

MENDONÇA, W. D., ASSUNÇÃO, W. K., LINSBAUER, L., 2018, “Multi-
objective optimization for reverse engineering of apo-games feature mod-
els”. In: Proceedings of the 22nd International Systems and Software Prod-
uct Line Conference-Volume 1, pp. 279–283.

MORAES, T. M., SOUZA, A. D., 2011, “Revisão sistemática sobre a comunicação
dentro do processo de desenvolvimento de software”, Universidade Federal
de Goiás-GO, p. 57.

MORALES, L., MÉNDEZ-ACUNA, D., MONTES, W., 2011, “Model-driven game
development-case study. a mtc for maze-game s prototyping”, Revista elec-
trónica en construcción de software PARADIGMA, v. 5, n. 3, pp. 1–15.

MORISIO, M., EZRAN, M., TULLY, C., 2002, “Success and failure factors in
software reuse”, IEEE Transactions on software engineering, v. 28, n. 4,
pp. 340–357.

MOTTA, R. C., DE OLIVEIRA, K. M., TRAVASSOS, G. H., 2016, “Characterizing
Interoperability in Context-aware Software Systems”, Proceedings of VI
Brazilian Symposium on Computing Systems Engineering (SBESC), pp.
203–208.

NETO, J. P., TAYLOR, W., “Game Mutators for Restricting Play”, Game & Puzzle
Design, vol. 1, no. 2, 2015 (Colour), p. 64.

NIEBORG, D. B., 2005a, “Am I mod or not?-An analysis of first person shooter
modification culture”. In: Creative Gamers Seminar—Exploring Partici-
patory Culture in Gaming, University of Tampere, Finland (14–15 Jan-
uary), a.

NIEBORG, D. B., 2005b, “Am I mod or not?—An analysis of first person shooter
modification culture”. In: Creative Gamers Seminar—Exploring Partici-
patory Culture in Gaming, University of Tampere, Finland (14–15 Jan-
uary), b.

NÚÑEZ-VALDEZ, E. R., GARCÍA-DÍAZ, V., LOVELLE, J. M. C., et al., 2017,
“A model-driven approach to generate and deploy videogames on multiple
platforms”, Journal of Ambient Intelligence and Humanized Computing,
v. 8, n. 3, pp. 435–447.

PASHKOV, S., 2021, “Video game industry market analysis: Approaches that
resulted in industry success and high demand”, .

106

PATTERSON, R. F. “Mod (video gaming)”. https://civilization.fandom.com/
wiki/Mod_(video_gaming). Online; accessed 05 March 2021.

PETRI, G., VON WANGENHEIM, C. G., BORGATTO, A. F., 2016, “MEEGA+:
an evolution of a model for the evaluation of educational games”, IN-
CoD/GQS, v. 3, pp. 1–40.

PETTICREW, M., ROBERTS, H., 2008, Systematic reviews in the social sciences:
A practical guide. John Wiley & Sons.

POLITOWSKI, C., PETRILLO, F., GUÉHÉNEUC, Y.-G., 2021, “A Survey of
Video Game Testing”. In: 2021 IEEE/ACM International Conference on
Automation of Software Test (AST), pp. 90–99. IEEE.

POOR, N., 2014, “Computer game modders’ motivations and sense of community:
A mixed-methods approach”, New media & society, v. 16, n. 8, pp. 1249–
1267.

PORETSKI, L., ARAZY, O., 2017, “Placing value on community co-creations: A
study of a video game’modding’community”. In: Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and Social
Computing, pp. 480–491.

POSTIGO, H., 2007, “Of mods and modders: Chasing down the value of fan-based
digital game modifications”, Games and Culture, v. 2, n. 4, pp. 300–313.

QURESHI, M. R. J., 2012, “Agile software development methodology for medium
and large projects”, IET software, v. 6, n. 4, pp. 358–363.

RAMADAN, R. “Does game modding require programming?” https://www.

quora.com/Does-game-modding-require-programming. Online; ac-
cessed 09 March 2021.

RAMADAN, R., WIDYANI, Y., 2013, “Game development life cycle guidelines”,
2013 International Conference on Advanced Computer Science and Infor-
mation Systems (ICACSIS), pp. 95–100.

RANDELL, B., 1979, “Software Engineering in 1968”. In: Proceedings of the 4th In-
ternational Conference on Software Engineering, ICSE’79, p. 1–10. IEEE
Press.

RINCÓN, L., MARTÍNEZ, J.-C., PABÓN, M. C., et al., 2018, “Creating a software
product line of mini-games to support language therapy”. In: Colombian
Conference on Computing, pp. 418–431. Springer.

107

https://civilization.fandom.com/wiki/Mod_(video_gaming)
https://civilization.fandom.com/wiki/Mod_(video_gaming)
https://www.quora.com/Does-game-modding-require-programming
https://www.quora.com/Does-game-modding-require-programming

SAMETINGER, J., 1997, Software engineering with reusable components. Springer
Science & Business Media.

SÁNCHEZ, K., GARCÉS, K., CASALLAS, R., 2015, “A dsl for rapid prototyping
of cross-platform tower defense games”. In: 2015 10th Computing Colom-
bian Conference (10CCC), pp. 93–99. IEEE.

SARINHO, V. T., APOLINÁRIO, A. L., ALMEIDA, E. S., 2012, “A feature-
based environment for digital games”. In: International Conference on
Entertainment Computing, pp. 518–523. Springer.

SARINHO, V. T., DE AZEVEDO, G. S., BOAVENTURA, F. M., 2018, “Askme:
A feature-based approach to develop multiplatform quiz games”. In: 2018
17th Brazilian Symposium on Computer Games and Digital Entertain-
ment (SBGames), pp. 38–3809. IEEE.

SCACCHI, W., 2011a, “Modding as an open source approach to extending com-
puter game systems”, Proceedings of IFIP International Conference on
Open Source Systems, pp. 62–74.

SCACCHI, W., 2011b, “Modding as a basis for developing game systems”, Proceed-
ings of the 1st international workshop on Games and software engineering,
pp. 5–8.

SCHELL, J., 2008, The Art of Game Design: A book of lenses. CRC press.

SHIRATUDDIN, M. F., THABET, W., 2011, “Utilizing a 3D game engine to de-
velop a virtual design review system”, .

SIERRA, M., PABÓN, M. C., RINCÓN, L., et al., 2019, “A comparative analysis
of game engines to develop core assets for a software product line of mini-
games”. In: International Conference on Software and Systems Reuse, pp.
64–74. Springer.

SOTAMAA, O., 2007, “On modder labour, commodification of play, and mod com-
petitions”, First Monday, v. 12, n. 9.

SOTAMAA, O., 2010, “When the game is not enough: Motivations and practices
among computer game modding culture”, Games and Culture, v. 5, n. 3,
pp. 239–255.

TANG, S., HANNEGHAN, M., 2013, “A model driven serious games development
approach for game-based learning”. In: Proceedings of the International
Conference on Software Engineering Research and Practice (SERP), p. 1.

108

The Steering Committee of The World Congress in Computer Science,
Computer

TANG, S., HANNEGHAN, M., CARTER, C., 2013, “A platform independent game
technology model for model driven serious games development”, Electronic
Journal of e-Learning, v. 11, n. 1, pp. pp61–79.

TENGTRIRAT, T., PROMPOON, N., 2013, “Applying Exception Handling Pat-
terns for User Interface Customization in Software Games Modification”.
In: Proceedings of the International MultiConference of Engineers and
Computer Scientists, v. 1.

THILLAINATHAN, N., 2013, “A model driven development framework for serious
games”, Available at SSRN 2475410.

UNGER, A., 2012, “Modding as part of game culture”, Computer Games and New
Media Cultures, pp. 509–523.

VALDEZ, E. R. N., MARTÍNEZ, Ó. S., BUSTELO, B. C. P. G., et al., 2013,
“Gade4all: developing multi-platform videogames based on domain spe-
cific languages and model driven engineering”, IJIMAI, v. 2, n. 2, pp. 33–
42.

VEGT, W. V. D., NYAMSUREN, E., WESTERA, W., 2016, “RAGE reusable
game software components and their integration into serious game en-
gines”. In: International Conference on Software Reuse, pp. 165–180.
Springer.

VEGT, W. V. D., NYAMSUREN, E., WESTERA, W., 2018, “Making Serious
Games with Reusable Software Components”. In: Joint International
Conference on Serious Games, pp. 13–16. Springer.

WADA, H., SUZUKI, J., 2005, “Modeling turnpike frontend system: A model-
driven development framework leveraging UML metamodeling and
attribute-oriented programming”. In: International Conference on Model
Driven Engineering Languages and Systems, pp. 584–600. Springer.

WALT, S., 2010, “Computer game mods, modders, modding, and the mod scene”,
First Monda, v. 15, n. 5.

WEEKE, C., 2020, “Appropriation & Motivation in Game Modification”, Erasmus
University Thesis Repository.

109

WIDJMAN, T., 2021. “Global Games Market to Generate $175.8 Billion in
2021; Despite a Slight Decline, the Market Is on Track to Surpass $200
Billion in 2023”. https://newzoo.com/insights/articles/global-games-
market-to-generate-175-8-billion-in-2021-despite-a-slight-decline-the-
market-is-on-track-to-surpass-200-billion-in-2023. Online; accessed 29
May 2022.

WOHLIN, C., 2014, “Guidelines for snowballing in systematic literature studies and
a replication in software engineering”. In: Proceedings of the 18th interna-
tional conference on evaluation and assessment in software engineering,
pp. 1–10.

XEXÉO, G., CARMO, A., ACIOLI, A., et al., 2013, “O que são jogos”, LUDES.
Rio de Janeiro, v. 1, pp. 1–30.

ZHU, M., WANG, A. I., 2019, “Model-driven game development: A literature
review”, ACM Computing Surveys (CSUR), v. 52, n. 6, pp. 1–32.

ZHU, M., WANG, A. I., TRÆTTEBERG, H., 2016, “Engine-cooperative game
modeling (ecgm) bridge model-driven game development and game en-
gine tool-chains”. In: Proceedings of the 13th International Conference on
Advances in Computer Entertainment Technology, pp. 1–10.

ZUPPIROLI, S., CIANCARINI, P., GABBRIELLI, M., 2012, “A role-playing game
for a software engineering lab: Developing a product line”. In: 2012 IEEE
25th Conference on Software Engineering Education and Training, pp.
13–22. IEEE.

110

Appendix A

TAM + MEEGA Questionnaire
(English version)

A.1 Job description

Games is one of the industries that has grown significantly over the years, attract-
ing enthusiasts of all ages, genres, and tastes and reaching a community of billions
of consumers. However, game development can be time-consuming, with numerous
participants and stages, which makes some titles to take years to complete. With
such a large community, some customers cannot wait that long for the game to be
released. As a result, they end up making his/her own versions of the game; this
process of modifying an existing game to make a new one is known as a mod.

Although the development of mods is common in the gaming community, a study
revealed some difficulties in the process, which stand out: the lack of specialized tools
for building mods, the difficulty of understanding the original game’s source code,
and, at times, the need to recreate the original game from scratch.

The mod concept is very similar to the concept of opportunistic software reuse,
in which specific software is copied and modified. Through a study on games and
software reuse it was possible to conclude that Software Product Line would be one
of the most recommended approaches for building mods. As a result, the goal of
this work is to demonstrate the concept of a product line for building games using
two existing games. The first aims to generate a new game automatically modifying
the game’s mechanics, dynamics, and aesthetics. The second lets the player design
his/her own game by combining mechanics, dynamics, and aesthetics.

Basic commands and notes:

• Game 1

– Use the joystick to move the character

111

– Avoid hitting obstacles

• Game 2

– Within the feature tree, select all desired mechanics, dynamics, and aes-
thetics for the game. If you have two options for a trait, choose at least
one.

– Use the joystick to move the character

– To attack or hold the boxes, press the buttons on the right.

– To jump, press the left side button.

– Complete the game objectives outlined on the splash screen to win.

A.2 Characterization questionnaire

Please answer the following questions based on your experience with the games.
All data collected will be used exclusively for research purposes and will be published
completely anonymously, without compromising the participant.

1. Educational background:

2 PhD.

2 PhD student.

2 Master’s degree.

2 Master’s student.

2 Graduate.

2 Graduate student.

2 Others (please specify):

2. Age group:

2 Less than 18 years

2 18-28 years

2 29-39 years

2 40-50 years

2 Over 50 years

3. Experience

112

Consider: (1) no experience with the activity; (2) theoretical knowledge but no
practice; (3) personal or classroom projects; and (4) industry projects. (5) Has
extensive knowledge

1 2 3 4 5
Digital games 2 2 2 2 2
Game development 2 2 2 2 2
Mods 2 2 2 2 2
Software Reuse 2 2 2 2 2
Software product line 2 2 2 2 2

4. Time experience

Please provide details in your answer. Include how many months of experience
you have in each of the knowledge areas.

Technology Months
Digital games
Game development
Mods
Software Reuse
Software product line

A.3 Evaluation questionnaire

5. Usability

1 2 3 4 5
The game design is attractive (board, cards, inter-
faces, graphics, etc).

2 2 2 2 2

Texts, colors and fonts match and are consistent. 2 2 2 2 2
Learning to play this game was easy for me. 2 2 2 2 2
I think that the game is easy to play. 2 2 2 2 2
The game rules are clear and easy to understand. 2 2 2 2 2
The fonts (size and style) used in the game are
easy to read.

2 2 2 2 2

The colours used in the game are meaningful. 2 2 2 2 2

113

6. Experience

1 2 3 4 5
This game is appropriately challenging for me. 2 2 2 2 2
The game provides new challenges (offers new ob-
stacles, situations, or variations) at an appropriate
pace.

2 2 2 2 2

The game does not become monotonous as it pro-
gresses (repetitive or boring tasks).

2 2 2 2 2

I would recommend this game to my colleagues. 2 2 2 2 2
I had fun playing the game. 2 2 2 2 2
There was something interesting at the beginning
of the game that captured my attention.

2 2 2 2 2

I was so involved in my gaming task that I lost
track of time.

2 2 2 2 2

I forgot about the environment around me while
playing this game.

2 2 2 2 2

The game contents are relevant to my interests. 2 2 2 2 2

7. Utility of the proposed tool:

1 2 3 4 5
Did I easily understand how to use the SPL ap-
proach?

2 2 2 2 2

Did I apply the strategy correctly? I designed the
games I want to play.

2 2 2 2 2

Do I understand what happened in the interaction
with the tool?

2 2 2 2 2

Have I noticed how simple it is to create a new
game using Product Line?

2 2 2 2 2

Would I use a tool to expand games if one were to
be proposed?

2 2 2 2 2

8. Have you identified any positive or negative aspects of using the
game in your opinion? If so, which one(s)?

114

9. Do you have any idea on how to improve the game or the platform?
If so, please explain.

10. This question is for any additional comment (difficulties, criticisms,
and/or suggestions) about the study. We depend on your help to
improve the work.

Thanks for your collaboration!

Diego Cardoso Borda Castro
Cláudia Maria Lima Werner

115

Appendix B

TAM + MEEGA Questionnaire
(Portuguese version)

B.1 Descrição do trabalho

Uma das indústrias que mais vem crescendo ao longo dos anos é a de jogos,
atraindo entusiastas de todas as idades, gêneros e gostos, chegando a ter uma comu-
nidade de bilhões de consumidores. No entanto, o desenvolvimento de jogos pode ser
algo demorado, com muitos participantes e etapas, o que faz com que alguns títulos
levem anos até sua entrega final. Com uma comunidade de entusiastas tão grande,
alguns consumidores não conseguem esperar tanto tempo até o lançamento do jogo.
Devido a isso, acabam criando suas próprias versões do jogo. Esse procedimento de
utilizar um jogo já existente para construção de um novo é conhecido como mod.

Apesar da construção de mods ser algo recorrente na comunidade de jogos,
através de um estudo realizado, foi possível perceber algumas dificuldades nesse
processo, onde se destacam: a falta de ferramentas especializadas para construção
de mods, a dificuldade de entender o código fonte do jogo original ou até mesmo,
em alguns momentos, a necessidade de recriar o jogo original do zero.

O conceito de mod se assemelha muito com o conceito de Reutilização de Software
oportunista, onde um determinado software é copiado e modificado. Tendo isso
em mente, foi realizado um estudo sobre jogos e Reutilização de Software, onde a
abordagem de Linha de produto de Software se destacou entre as demais para a
construção de mods. Devido a isso, esse trabalho visa demonstrar o conceito de
linha de produto para construção de jogos por meio de dois jogos disponibilizados.
O primeiro visa criar um novo jogo de forma automática de tempos em tempos
através da modificação das mecânicas, dinâmicas e estéticas do jogo. O segundo
permite que o próprio jogador construa seu jogo por meio da seleção das mecânicas,

116

dinâmicas e estéticas.

Comandos básicos e observações:

• Jogo 1

– Utilize o joystick para movimentar o personagem

– Evite bater nos obstáculos

• Jogo 2

– Selecione todas as mecânicas, dinâmicas e estéticas desejadas para o jogo
dentro da árvore de características. Se tiver duas opções para uma car-
acterísticas, lembre-se de selecionar pelo menos uma.

– Utilize o joystick para movimentar o personagem

– Utilize os botões do lado direito para atacar ou segurar as caixas

– Utilize o botão do lado esquerdo para pular

– Para vencer, cumpra os objetivos do jogo descritos na tela inicial

B.2 Questionário de caracterização

Por favor, responda as questões abaixo com base na experiência que obteve ao
utilizar os jogos. Todos os dados coletados são apenas para melhoria da pesquisa e
serão publicados de forma totalmente anônima, não comprometendo o participante.

11. Formação Acadêmica:

2 Doutorado concluído

2 Doutorado em andamento

2 Mestrado concluído

2 Mestrado em andamento

2 Graduação concluída

2 Graduação em andamento

2 Outro (Qual):

12. Faixa etária:

2 Menos de 18 anos

2 18 a 28 anos

2 29 a 39 anos

117

2 40 a 50 anos

2 Mais de 50 anos

13. Experiência

Conside: (1) Sem experiência com a atividade; (2) Possui conhecimento teórico,
sem prática; (3) Pratiquei em projetos em pessoais ou em sala de aula; (4) Pratiquei
em projetos na indústria; (5) Possui um vasto conhecimento

1 2 3 4 5
Jogos digitais 2 2 2 2 2
Desenvolvimento de jogos 2 2 2 2 2
Mods 2 2 2 2 2
Reutilização de Software 2 2 2 2 2
Linha de produto de Software 2 2 2 2 2

14. Tempo de experiência

Por favor, detalhe sua resposta. Inclua o número de meses de experiência para
cada uma das áreas de conhecimento.

Tecnologia Meses
Jogos digitais
Desenvolvimento de jogos
Mods
Reutilização de Software
Linha de produto de Software

B.3 Questionário de avaliação

15. Usabilidade

1 2 3 4 5
O design do jogo é atraente (tabuleiro, cartas, in-
terfaces, gráficos, etc.).

2 2 2 2 2

Os textos, cores e fontes combinam e são consis-
tentes.

2 2 2 2 2

Eu precisei aprender algumas coisas antes que eu
pudesse jogar o jogo.

2 2 2 2 2

Eu considero que o jogo é fácil de jogar 2 2 2 2 2

118

As regras do jogo são claras e compreensíveis. 2 2 2 2 2
As fontes (tamanho e estilo) utilizadas no jogo são
legíveis.

2 2 2 2 2

As cores utilizadas no jogo são compreensíveis. 2 2 2 2 2

16. Experiência

1 2 3 4 5
Este jogo é adequadamente desafiador para mim. 2 2 2 2 2
O jogo oferece novos desafios (oferece novos ob-
stáculos, situações ou variações) com um ritmo ad-
equado.

2 2 2 2 2

O jogo não se torna monótono nas suas tarefas
(repetitivo ou com tarefas chatas).

2 2 2 2 2

Eu recomendaria este jogo para meus colegas. 2 2 2 2 2
Eu me diverti com o jogo. 2 2 2 2 2
Houve algo interessante no início do jogo que cap-
turou minha atenção.

2 2 2 2 2

Eu estava tão envolvido no jogo que eu perdi a
noção do tempo.

2 2 2 2 2

Eu esqueci sobre o ambiente ao meu redor en-
quanto jogava este jogo.

2 2 2 2 2

O conteúdo do jogo é relevante para os meus in-
teresses.

2 2 2 2 2

17. Utilidade da ferramenta a ser proposta:

1 2 3 4 5
Eu compreendi facilmente como usar a abordagem
de SPL?

2 2 2 2 2

Eu usei a abordagem da maneira correta? Criei os
jogos que gostaria

2 2 2 2 2

Compreendi o que aconteceu na interação com a
ferramenta?

2 2 2 2 2

Eu notei a facilidade de criar um novo jogo por
meio de Linha de produto?

2 2 2 2 2

119

Caso existisse a ferramenta a ser proposta, eu us-
aria uma ferramenta dessa para expandir jogos?

2 2 2 2 2

18. De acordo com sua opinião, foi identificado algum aspecto positivo
/ negativo da utilização do jogo? Se sim, qual(ais)?

19. Você possui alguma sugestão para melhoria do jogo ou da plataforma?
Em caso positivo, por favor, especifique-a.

20. Este espaço é reservado para quaisquer comentários adicionais (di-
ficuldades, críticas e/ou sugestões) a respeito do estudo executado.
Contamos com sua contribuição para que o trabalho seja aprimorado.

Obrigado pela sua colaboração!

Diego Cardoso Borda Castro
Cláudia Maria Lima Werner

120

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation and Context
	Objective
	Methodology
	Text organization

	Theoretical foundation
	Games
	Mods and Modifiers

	Software Reuse
	Components
	Software Product line
	Model Driven Development

	Final considerations

	Literature Review
	Search protocol
	Viability Study
	Results
	Summary of findings
	Conclusion

	Main Study
	Results
	Summary of findings
	Conclusion

	Exploratory Studies
	Problem discussion
	Proof of concept
	Initial exploration
	Developing a product line
	Dynamic Tetrad Game
	Classic Tetrad Game

	Evaluation
	Planning
	Participants sample
	Procedure
	Results

	Conclusion

	EngageSPL Platform
	Overview
	Schedule of activities

	References
	TAM + MEEGA Questionnaire (English version)
	Job description
	Characterization questionnaire
	Evaluation questionnaire

	TAM + MEEGA Questionnaire (Portuguese version)
	Descrição do trabalho
	Questionário de caracterização
	Questionário de avaliação

