
 

 

 

 

 

EXAME DE QUALIFICAÇÃO (QUALIFYING EXAMINATION) 

 

 

ON THE USE OF VISUALIZATION FOR SUPPORTING SOFTWARE REUSE 

Marcelo Schots de Oliveira 

 

 

Orientadora (advisor): Cláudia Maria Lima Werner 

 

Rio de Janeiro 

Abril de 2014 



ii 

Abstract of Qualifying Examination presented to COPPE/UFRJ as a partial fulfillment 

of the requirements for the candidacy to the degree of Doctor of Science (D.Sc.) 

 

 

ON THE USE OF VISUALIZATION FOR SUPPORTING SOFTWARE REUSE 

 

 

Marcelo Schots de Oliveira 

 

April/2014 

 

Advisor: Cláudia Maria Lima Werner 

 

Department: Systems Engineering and Computer Science 

 

Software reuse is a very common and widespread concept nowadays. Reuse 

activities are present in the daily routine of software developers, yet mostly in an ad-hoc 

or a pragmatic way. A well-defined reuse program allows for reducing the effort and 

time spent on software development. Nevertheless, despite the extensive literature on 

this topic, organizations still struggle in beginning and coping with a reuse program. 

A study on software visualizations targeted to reuse-related tasks pointed out 

that no work so far addresses a number of reuse tasks in an integrated way, and the 

existing ones that address particular tasks are limited in terms of collecting information 

from data sources and supporting the customization and selection of visualizations. 

Besides, most of them do not provide enough evidence on their effectiveness. 

In this sense, this thesis proposal aims at providing software visualization 

mechanisms through an environment called APPRAiSER for supporting stakeholders 

(mainly reuse managers and developers) in executing software reuse tasks, such as 

exploring a reuse repository, obtaining and understanding information regarding 

reusable assets, and monitoring reuse initiatives. The long-term goal is to help 

introducing, instigating, establishing, and monitoring software reuse initiatives, by 

increasing efficiency and efficacy while decreasing the effort and time spent by 

stakeholders in performing such tasks. 



iii 

SUMMARY 

Chapter 1 – Introduction ................................................................................................... 1 

1.1 Foreword ........................................................................................................ 1 

1.2 Motivation ...................................................................................................... 2 

1.3 Hypothesis and Research Questions .............................................................. 4 

1.4 Goals............................................................................................................... 5 

1.5 Research Methodology ................................................................................... 5 

1.6 Text Structure ................................................................................................. 8 

Chapter 2 – Software Reuse ............................................................................................. 9 

2.1 Contextualization ........................................................................................... 9 

2.2 Software Reuse in Quality Standards and Maturity Models ........................ 12 

2.3 Software Reuse Tasks .................................................................................. 14 

2.4 Concerns about Software Reuse ................................................................... 17 

2.5 Software Reuse in Practice: The Brazilian Scenario .................................... 19 

2.5.1 Literature Reports on Software Reuse Implementations ...................... 19 

2.5.2 A Study of the Software Reuse Scenario in Brazil ............................... 21 

2.6 Discussion .................................................................................................... 33 

2.7 Final Remarks .............................................................................................. 36 

Chapter 3 – Software Visualization ................................................................................ 38 

3.1 Contextualization ......................................................................................... 38 

3.2 The Role of Visualization in Awareness and Comprehension ..................... 40 

3.2.1 On the Awareness of the Software Development Life Cycle ............... 41 

3.2.2 Program Comprehension and Visualization ......................................... 43 

3.2.3 Awareness and Comprehension Challenges ......................................... 44 

3.3 Software Visualization and Reuse................................................................ 47 

3.3.1 Findings from the Informal Literature Review ..................................... 48 

3.3.2 An Extended Framework for Categorizing Visualization Approaches 50 

3.3.3 Outline of the Secondary Study (Quasi-Systematic Review) ............... 54 

3.4 Discussion .................................................................................................... 60 

3.5 Final Remarks .............................................................................................. 66 

Chapter 4 – Proposed Approach: The APPRAiSER Environment ................................ 67 

4.1 Introduction .................................................................................................. 67 



iv 

4.2 APPRAiSER Elements ................................................................................. 69 

4.2.1 Repository Miner .................................................................................. 70 

4.2.2 Metrics Extractor .................................................................................. 73 

4.2.3 GraphVCS ............................................................................................. 74 

4.2.4 Context-Aware Visualization Engine (CAVE) ..................................... 76 

4.2.5 ReuseDashboard ................................................................................... 79 

4.2.6 Rec4Reuse............................................................................................. 81 

4.2.7 Zooming Browser ................................................................................. 83 

4.3 Other Architectural and Implementation Aspects ........................................ 87 

4.4 Final Remarks .............................................................................................. 88 

Chapter 5 – Conclusion .................................................................................................. 91 

5.1 Epilogue ....................................................................................................... 91 

5.2 Expected Results and Contributions ............................................................ 92 

5.3 Current Stage ................................................................................................ 93 

5.3.1 Research Achievements ........................................................................ 94 

5.4 Next Steps and Schedule .............................................................................. 95 

5.4.1 Survey with software reuse researchers and practitioners .................... 95 

5.4.2 Approach Evaluation ............................................................................ 96 

5.4.3 Expected Targets for Publications ........................................................ 98 

5.4.4 Schedule ................................................................................................ 99 

References .................................................................................................................... 100 

 



v 

LIST OF ILLUSTRATIONS 

Figure 1.1 – Research methodology ................................................................................ 6 

Figure 2.1 – Reuse-based development [Kim & Stohr 1998] ....................................... 10 

Figure 2.2 – Distribution of respondents according to the MPS assessor levels (left) and 

participants’ experience (based on the year of authorization) in performing MR-MPS-

SW implementations and assessments (right) ................................................................ 24 

Figure 3.1 – 3D workspace visualization [Ripley et al. 2007] ...................................... 42 

Figure 3.2 – EvolTrack and plug-ins PREViA and SocialNetwork [Werner et al. 2011]

 ........................................................................................................................................ 43 

Figure 3.3 – The city metaphor presented in CodeCity [Wettel & Lanza 2008]........... 44 

Figure 3.4 – Dimensions of software visualizations (extended from [Maletic et al. 

2002]).............................................................................................................................. 50 

Figure 4.1 – APPRAiSER Overview ............................................................................. 70 

Figure 4.2 – Mapping between stakeholders, reuse tasks and APPRAiSER tools ........ 70 

Figure 4.3 – An example of Evaluation Plan in Eclipse [Palmieri et al. 2013] ............. 74 

Figure 4.4 – GraphVCS Screenshot [Pereira & Schots 2011] ....................................... 76 

Figure 4.5 – Information Visualization Feature Model [Vasconcelos et al. 2014a] ...... 79 

Figure 4.6 – ReuseDashboard screenshot [Palmieri et al. 2013] ................................... 81 

Figure 4.7 – Rec4Reuse screenshot [Vital & Krause 2013] .......................................... 83 

Figure 4.8 – Core elements and their surroundings ....................................................... 85 

Figure 4.9 – APPRAiSER Conceptual Model ............................................................... 87 

 



vi 

LIST OF TABLES 

Table 2.1 – A list of reuse-related project tasks and organizational tasks ..................... 16 

Table 2.2 – Examples of reuse-related tasks that vary according to the quality focus .. 17 

Table 2.3 – Questions and Goals of the Study – Reuse Management (GRU) ............... 22 

Table 2.4 – Questions and Goals of the Study – Development for Reuse (DRU) ......... 23 

Table 2.5 – Questions and Goals of the Study – General Questions on Reuse Processes

 ........................................................................................................................................ 23 

Table 3.1 – Mapping between research questions and information to be extracted ...... 56 

Table 3.2 – Study selection data (manual search) .......................................................... 58 

Table 3.3 – Study selection data (search engines) ......................................................... 59 

Table 4.1 – The use of APPRAiSER in different stages of reuse initiatives ................. 89 

Table 4.2 – APPRAiSER tools: current status and necessary modifications ................ 90 

Table 5.1 – Schedule of the next steps ........................................................................... 99 



1 

CHAPTER 1 – INTRODUCTION 

This chapter presents the motivation for this work, the research 

questions that guided the proposal of the approach, as well as its 

goals and the adopted research methodology. 

1.1 Foreword 

Software systems permeate advances in all areas of knowledge, and there is an 

increasing participation of software in society [Brazilian Computer Society 2006]. Such 

systems are embedded in everyday devices such as household appliances, and support 

areas such as communication (e.g., mobile devices, social media etc.) healthcare (e.g., 

blood pressure and glucose monitors, electronic patient records, clinical exams, artificial 

pacemakers etc.), context-awareness (e.g., place recommenders based on location 

awareness, smart houses – for healthcare, energy saving etc.) and so on. In a fast-paced 

world that is continuously changing across all areas, there is a large demand for new 

functionalities, and there is a broad field of software-related opportunities that increase 

each day. 

The demands of each of these fields (among others) and the advances of mobile 

devices, social media, and new technologies over the years have been strongly 

influencing the way software systems are built. Traditional approaches no longer meet 

the demands of new circumstances, and have given rise to the emergence of new forms 

of development, including agile methodologies [Fowler & Highsmith 2001] and the 

widespread open source practices [Haefliger et al. 2008]. The steady growth of 

distributed software development has also made the scenario more complex and, at the 

same time, more stimulating and challenging [Schots et al. 2012]. 

This scenario not only has led to a large-scale adoption of new technologies, 

practices and methodologies for software development, but also has required a smaller 

and ever decreasing time-to-market. Software organizations, in turn, need ways to make 

software development as efficient as possible in order to cope with the increasing 

demands. 

One of the ways of supporting the demand for delivery of software systems in 

less time with less effort is through software reuse. Software reuse has become a very 



2 

common and widespread concept in software development, and has been a promising 

paradigm in software engineering since its inception [Benedicenti et al. 1996], given 

that it can be fully integrated and supported in the software development process, 

improving the life cycle by reducing the effort and time needed to develop a software 

system. 

Since the beginning of software engineering, much research has been done in 

developing techniques and tools for supporting software reuse [Naur & Randell 1968] 

[Mili et al. 1995] [Frakes & Kang 2005], which include cataloging, retrieval and storage 

of reusable assets1. Moreover, several approaches have been proposed or adapted to 

support development for and with reuse, such as domain engineering techniques [Kang 

et al. 1990], software product lines [Clements & Northrop 2002] [Fernandes et al. 

2011], and so on. 

1.2 Motivation 

Reuse activities are present in the daily routine of software developers, yet 

mostly in an ad-hoc or a pragmatic way. Despite the maturity of software reuse research 

and the extensive literature available, organizations still have difficulties in 

understanding and implementing reuse practices. Some issues and challenges related to 

implementing software reuse processes and establishing an effective reuse program2 

include: 

 the lack of understanding of software reuse concepts and how to effectively apply 

them [Morisio et al. 2002] [Schots & Werner 2013]; 

 the lack of acceptance of reuse practices by the development team and top 

management in software organizations [Benedicenti et al. 1996] [Sametinger 1997] 

[Sherif & Vinze 2003]; 

 the lack of knowledge and experience for the creation and management of reuse 

repositories [Morisio et al. 2002] [Schots & Werner 2013] and the definition, 

identification and evaluation of reusable assets [Schots & Werner 2013], as well as 

making such assets available and findable [Frakes & Kang 2005]; 

                                                 

 
1 In this work, any item built for use in multiple contexts, such as software designs, specifications, source 

code, documentations, test cases etc. can be considered as reusable assets [IEEE 2010]. 
2 A reuse program is an organizational mechanism that establishes the goals, scope, and strategies for 

addressing issues related to business, people, process, and technology involved in the adoption of 

software reuse. The term “reuse program” should not be confused with “a software application for reuse”. 



3 

 a long learning curve of understanding a software asset, i.e., its structure, behavior 

and functionality [Ye & Fischer 2002] [Marshall et al. 2003] [Anslow et al. 2004] 

[Frakes & Kang 2005]; 

 the lack of proper tool support for performing software reuse tasks [Benedicenti et 

al. 1996] [Morisio et al. 2002] [Schots & Werner 2013]; 

 the absence of a culture of development for reuse in development teams and the lack 

of systematization for the construction of reusable assets [Prieto-Diaz & Arango 

1991] [Sherif & Vinze 2003]; 

 the “Not-Invented-Here” (NIH) syndrome [Sametinger 1997] [Sherif & Vinze 

2003], i.e., the difficulty of accepting and trusting third-party developed assets, 

resulting in a tendency towards “reinventing the wheel” (recreating something from 

scratch instead of reusing) based on the belief that in-house developments are 

inherently better than existing implementations. 

As it can be seen, introducing a software reuse program must also envision non-

technical aspects, e.g., engagement of team members and managerial support [Kim & 

Stohr 1998]. Sherif and Vinze (2003) highlight that reuse provides better results when 

all stakeholders are committed to it [Sherif & Vinze 2003]. In this sense, two crucial 

concerns for facilitating the acceptance/consciousness and adoption of reuse are how to 

increase the visibility of reuse results and how to provide appropriate reuse awareness. 

Awareness mechanisms allow stakeholders to be percipient of what goes on in the 

development scenario [Treude & Storey 2010], and can provide them with the necessary 

information and support for performing their reuse-related tasks. 

One of the ways to increase awareness is by employing visualization resources 

and techniques [Hattori 2010]. Software visualization has been researched as a way to 

assist software development activities that involve human reasoning, helping people to 

deal with the large amount and variety of information by providing appropriate 

abstractions [Lanza & Marinescu 2006] [Diehl 2007]. In the software reuse scenario, its 

use can allow awareness and comprehension of reuse elements (i.e., assets, users, and 

development projects) and their surroundings. 

Despite the potential of software visualization on supporting software reuse, 

little work has been done with this goal, and the existing ones (e.g., [Alonso & Frakes 

2000], [Marshall et al. 2003] and [Anslow et al. 2004]) do not take into account the 

different reuse stakeholders’ information needs. Besides, they are very limited in terms 



4 

of visual customization and integration with other information sources, not providing 

enough evidence on their effectiveness [Schots et al. 2014]. 

Thus, it is believed that software visualization resources can be better 

investigated and explored in order to provide and increase awareness of the reuse 

scenario and support reuse-related tasks, such as exploring a reuse repository, obtaining, 

and understanding information regarding reusable assets, and monitoring reuse 

initiatives. Through visual abstractions, one can better comprehend the reuse elements 

and their surroundings. This is the focus of the environment proposed in this work. 

1.3 Hypothesis and Research Questions 

Considering that 

i. software reuse brings several benefits to the software development scenario, 

reducing the cost and effort necessary for the construction of new software systems, 

thus allowing a “better” time-to-market and bringing a potential increase of quality; 

ii. the establishment of a reuse program can facilitate reuse management in software 

development organizations, allowing for an increase of maturity towards systematic 

reuse; 

iii. besides supporting stakeholders in their reuse-related tasks according to their roles, 

it is important to provide them with visibility of the obtained results, so that they can 

become committed with software reuse by perceiving the benefits brought by it; 

iv. the difficulty in finding and understanding reusable assets may lead potential 

consumers (“reusers”) to prefer to recreate from scratch an existing solution, due to 

the lack of available information (or lack of organization of the existing 

information) related to such assets; 

v. software visualization techniques and resources allow awareness and comprehension 

of the structure, behavior and evolution of software entities and metadata, assisting 

software development activities that involve human reasoning; 

The hypothesis of this work is: 

The use of proper visualization resources can assist stakeholders in carrying out 

their software reuse tasks, facilitating the institutionalization of a reuse program in 

software development organizations. 

For investigating this hypothesis, the following research questions were derived: 

 RQ1. What are the characteristics and limitations of the visualization approaches 

that have been proposed to support software reuse? 



5 

 RQ2. Which aspects (comprising stakeholders’ needs, reuse tasks, and reuse-related 

data) should be taken into account for a visualization-based approach to support 

software reuse? 

 RQ3. Are reuse-oriented visualizations feasible in helping stakeholders to be aware 

of the reuse scenario, allowing the execution of reuse tasks more accurately, 

increasing their efficiency and efficacy? 

1.4 Goals 

The main goal of this work is to investigate, propose, and evaluate the use of 

visualization resources for supporting software reuse awareness. This generic goal can 

be decomposed in the following specific goals: 

i. Characterize existing works that use visualization for supporting reuse somehow, in 

order to analyze their features, strengths and limitations; 

ii. Identify the needs of stakeholders involved in software reuse tasks, taking into 

account their role in such tasks; 

iii. Identify the necessary features for an approach that aims to support stakeholders in 

performing reuse tasks; 

iv. Define an approach and implement an interactive visualization environment that 

supports software development organizations to introduce, instigate and monitor 

software reuse initiatives; 

v. Ensure that the proposed approach meets some of the needs identified from the 

stakeholders, and also increases efficiency and efficacy while decreases the effort 

and time involved in performing reuse tasks. 

This work is also a first step towards meeting the challenges described in 

[Schots et al. 2012] regarding awareness and comprehension in software and systems 

engineering, and is related to other works (developed or under development) at 

COPPE/UFRJ and the State University of Rio de Janeiro (UERJ), as discussed 

throughout the text. 

1.5 Research Methodology 

In order to answer the posed research questions, it is important to establish a 

research methodology. The methodology being adopted in this work is depicted in 

Figure 1.1, which shows the main research steps (on the left) and how it is intended to 



6 

accomplish them (on the right) –, provided that the chosen ways to accomplish each 

step may vary depending on the findings of the previous steps. The initial steps 

comprise the characterization of the research topic, and address both RQ1 and RQ2. The 

results are intended to provide and refine desirable features for proposing and 

developing a novel approach, which is then evaluated and improved, addressing RQ3. 

 

Figure 1.1 – Research methodology 

In the first step (Collect preliminary information), an informal literature review 

provides the initial/basic knowledge about the research topic, which is subsequently 

improved in a quasi-systematic review that is conducted in the second step 

(Characterize the state-of-the-art), allowing for a broader, more comprehensive view of 

the topic. Quasi-systematic reviews use the same rigorous methodological processes 

from systematic reviews, looking for the identification of relevant evidence in the 

research field under investigation, but usually no meta-analysis can be applied 

[Travassos et al. 2008]. 

The literature must be reviewed continuously for providing subsides for 

enriching the definition of the topic and the proposed solution. Therefore, the first step 

of the research methodology is iteratively executed in this work, and the second step is 

going to be re-executed afterwards. The main findings of these two steps are presented 

in Chapter 3, and the detailed description of the planning, execution and analysis of the 

quasi-systematic review can be found in [Schots et al. 2014]. 



7 

A fundamental part of this research process is to ensure the identification of the 

information needs of each stakeholder [Schots et al. 2012] from the state-of-the-

practice, since such needs may not have been identified in the literature. This is 

accomplished in parallel to the characterization of the state-of-the-art in the second step 

of the research (Characterize the state-of-the-practice) by means of two primary 

studies: (i) semi-structured interviews with practitioners, and (ii) surveys with 

researchers and practitioners. Semi-structured interviews “are designed to elicit not only 

the information foreseen, but also unexpected types of information” [Seaman 1999], 

while surveys allow for a broader coverage of reuse researchers and practitioners. 

Details about these steps can be found in Chapter 2. 

The findings from these steps provide and refine desirable features for the third 

step of the research methodology (Propose and develop the approach), and may also 

help building a body of knowledge on the topic, in addition to pointing out research 

opportunities for other works. Through the implementation of the approach, an 

environment for supporting software reuse by awareness must be concretized, according 

to the defined goals. Chapter 4 describes the definition of the environment and its 

details. 

The feasibility of the proposed approach is evaluated in the fourth step (Evaluate 

the proposed approach), which is intended to assess quantitatively and qualitatively 

whether the perceptive and cognitive abilities of stakeholders in carrying out software 

reuse tasks are properly stimulated, by increasing efficiency and efficacy, while 

decreasing the effort and time spent on such tasks. This involves the planning and 

execution of studies. 

Although this step can only be accomplished after the third step is done, there 

are some possibilities based on empirical studies on visualization presented in literature 

(e.g., [Kagdi & Maletic 2008]). An observational study is intended to capture firsthand 

behaviors and interactions that might not be noticed otherwise [Seaman 1999]. 

Interaction log analysis techniques are also intended to enrich the data [Seaman 1999]. 

More details are described in Chapter 5. 

Finally, based on the evaluation results and feedback, the fifth step (Improve the 

proposed approach) takes place, for making the necessary adjustments and the 

identified improvements, if applicable. 



8 

1.6 Text Structure 

The remaining of this text is organized as follows: 

 Chapter 2 (Software Reuse) presents the main concepts related to software reuse, 

including how quality standards and maturity models address this topic, as well as 

some issues related to the establishment of a reuse program. It also presents a study 

conducted for characterizing the state-of-the-practice, along with its results. 

 Chapter 3 (Software Visualization) introduces some concepts related to software 

visualization, some challenges in awareness and comprehension, and related works 

identified from the conduction of a quasi-systematic review. 

 Chapter 4 (Proposed Approach: The APPRAiSER Environment) describes the 

proposed solution and its main elements, including their goals and details on their 

development. 

 Finally, Chapter 5 (Conclusion) shows the expected contributions from this work, 

the results obtained so far, and a tentative schedule for the remaining steps. 



9 

CHAPTER 2 – SOFTWARE REUSE 

This chapter presents an overview of software reuse, including a brief 

motivation, a description of how some quality standards and maturity 

models address this topic, and examples of software reuse tasks. 

Besides, some common issues related to the establishment of a reuse 

program are discussed, along with some problems recognized during 

the implementation and assessment of reuse processes. 

2.1 Contextualization 

Software reuse is a very common and widespread concept nowadays. According 

to [Holmes 2008], it has a well-established history in both research literature [Naur & 

Randell 1968] and industrial practice [Poulin et al. 1993]. One can state that reuse is 

present in the routine of software developers, yet mostly in an ad-hoc or pragmatic way. 

Reuse practices allow achieving a number of benefits, such as reducing the 

effort and time spent on software development [Naur & Randell 1968] [Krueger 1992] 

[Poulin et al. 1993] [Mili et al. 1995]. Reusing assets from past projects (i.e., that have 

been already tested and deployed) also allows developing more reliable applications and 

decreasing maintenance efforts, since their quality is assured on previous experiences of 

use [Benedicenti et al. 1996] [Morisio et al. 2002]. Besides, the availability of reusable 

assets can facilitate newcomers in dealing with new technologies and domains (taking 

external solutions as a basis for their own development), as well as experienced 

developers in increasing their productivity by composing existing solutions. 

Since the idea of building new software from existing pieces of preexistent 

software arose [Naur & Randell 1968], it was noticed that several types of artifacts can 

be reused in software development, such as requirements specifications, software 

designs, test cases and so on [IEEE 2010]. However, a recent study with Brazilian 

organizations pointed out that reuse of source code artifacts is still on the mainstream of 

software development [Schots & Werner 2013]. This has also been reported in other 

nationwide and worldwide studies, such as [Sá et al. 1997] and [Haefliger et al. 2008]. 

The concept of reuse of source code is frequently linked to software 

components, i.e., “self-contained, clearly identifiable artifacts that describe and/or 



10 

perform specific functions and have clear interfaces, appropriate documentation and a 

defined reuse status” [Sametinger 1997]. Hooper & Chester (1991) classify reusable 

software components into two categories: horizontal and vertical. 

Horizontal reuse refers to “reuse across a broad range of application areas, such 

as data structures, sorting algorithms, and user-interface mechanisms”. According to 

these authors, the assets are typically utilities that are purposely generic for comprising 

multiple applications [Hooper & Chester 1991]. 

Vertical reuse, in turn, refers to components within a given application area that 

can be reused in similar applications that belong to the same problem domain. Although 

horizontal reuse is better understood and easier to achieve (thus more frequently 

employed), the greatest reuse potential leverage comes from vertical reuse, due to its 

potential to build software product lines [Clements & Northrop 2002] and create 

competitive advantages to the organization [Hooper & Chester 1991]. 

Reuse can occur within several activities in software development. A reuse-

based development model (as illustrated in Figure 2.1) divides activities into two groups 

[Kim & Stohr 1998]: (i) producing activities, involving the identification, classification 

and cataloging of software resources, and (ii) consuming activities, comprising the 

retrieval, understanding, modification, and integration of those resources into the 

software product. These groups can be referred to as development for reuse (i.e., build 

generic assets that can be reused in similar contexts) and development with reuse or by 

reuse (i.e., use existing assets to build [parts of the] software), respectively [Moore & 

Bailin 1991]. 

 

Figure 2.1 – Reuse-based development [Kim & Stohr 1998] 



11 

According to this figure, the first step (step 1) involves analyzing existing 

software resources (that are developed internally or externally) in order to identify 

potentially reusable artifacts (that may require some adjustments to this end), which 

must be then classified and cataloged (step 2) in a software library. These two steps 

have to be performed at the beginning of a reuse program and whenever a new software 

resource is acquired/developed [Kim & Stohr 1998]. Specifying requirements for the 

new system (step 3) has to be performed regardless of whether the software resource is 

to be developed from scratch or not. 

Retrieving appropriate reusable software resources from the software library 

(step 4) is only necessary in a software reuse scenario [Kim & Stohr 1998]. After that, 

the next step (step 5) is to understand and assess the functionality of the selected 

resources in order to use or modify them. Modifying software resources (step 6) is 

necessary for adapting reusable assets to the context of a given application when the 

retrieved resources do not exactly match the requirements specification – which often 

occurs –, while building new software resources (step 7) is required when there are no 

similar resources in the software library for meeting some of the requirements. Finally, 

the last step (step 8) is the integration of both new and reusable software resources into 

the target software system [Kim & Stohr 1998]. 

The aforementioned process suggests a reuse-based software development 

scenario, whose advantage is to develop software assets aiming at their future reuse (if 

appropriate, according to the organization’s goals). Developing assets without aiming 

their reuse beforehand (or not taking into account their reuse potential) makes it hard to 

fit them into other contexts beyond the original ones to which they were developed. 

This is partially due to the lack of systematization in the construction of reusable assets 

[Prieto-Díaz & Arango 1991]. 

Introducing reuse in an organization may require new ways of thinking about 

software development, given that the way software is reused has changed over the 

years. Developers search for existing solutions (usually source code snippets or 

components) based on project’s needs or recommendations from another developer. 

The rise and massive use of free/open source software repositories (e.g., Google 

Code, Maven, Github), Integrated Development Environments (IDEs) (e.g., Eclipse, 

NetBeans), issue tracking systems (e.g., Bugzilla, JIRA, Redmine), among other tools, 

have strongly influenced not only software development in general, but also software 

reuse. Particularly, social media tools geared to software development, such as forums, 



12 

mailing lists of development communities and Q&A (question-and-answer) websites 

(e.g., StackOverflow), have been playing key roles in this scenario in the last years. 

All kinds of information regarding a reusable asset can be found by means of 

these resources, including examples of use, tutorials, documentation, support, and so on. 

Integrating these sources can provide relevant information to the reuse scenario, 

especially in terms of giving more confidence to the consumer in deciding whether to 

reuse an asset or not. 

2.2 Software Reuse in Quality Standards and Maturity Models 

Organizations need to continually seek for improving the quality of their 

products and services in order to stay in the competitive market. To this end, the quality 

of processes has been progressively targeted by software development organizations. 

Due to this increasing demand for software quality, a number of quality standards and 

maturity models – such as CMMI-DEV (Capability Maturity Model Integration for 

Development) [CMMI Product Team 2010] and MR-MPS-SW (Brazilian Reference 

Model for Software Process Improvement) [SOFTEX 2012] – have been proposed, 

establishing requirements for defining, evaluating and improving software processes. 

In order to demonstrate its importance in the maturity of software organizations 

and promote ways towards its systematization, software reuse is covered by several 

quality standards (e.g., [ISO/IEC 2008], [IEEE 2010], and [ISO/IEC 2012]), which 

comprise activities related to the management of the reuse program, as well as the 

storage, retrieval, management, and control of the assets, among others. Such standards 

also contain guidelines for integrating reuse in the primary processes of the software life 

cycle, along with processes for reuse across projects. 

According to [ISO/IEC 2008], for instance, a successful implementation of the 

Reuse Program Management process should provide the following outcomes as results 

[ISO/IEC 2008]: (i) define the organization’s reuse strategy, including its purpose, 

scope, goals and objectives; (ii) identify the domains in which to investigate reuse 

opportunities or in which it intends to practice reuse; (iii) assess the organization’s 

systematic reuse capability; (iv) assess each domain to determine its reuse potential; (v) 

evaluate reuse proposals to ensure the reuse product is suitable for the proposed 

application; (vi) implement the reuse strategy in the organization; (vii) establish 

feedback, communication, and notification mechanisms that operate among reuse 



13 

program administrators, asset managers, domain engineers, developers, operators, and 

maintainers; and (viii) monitor and evaluate the reuse program. 

Reuse practices are also integrated into models that aim to measure the maturity 

level of organizations that produce software, such as MR-MPS [Rocha et al. 2007] 

[SOFTEX 2012], a program for software process improvement coordinated by the 

Association for Promoting the Brazilian Software Excellence (SOFTEX). This program 

aims to define and enhance a model for improvement and assessment of software 

processes focusing on micro, small, and medium enterprises (MSMEs). The MPS-SW 

model complies with ISO/IEC 12207 and 15504, is compatible with CMMI-DEV, 

adopts software engineering best practices, and is appropriate (both from the technical 

point of view as to costs) to the reality of Brazilian organizations [SOFTEX 2012]. 

MR-MPS-SW is divided into 7 maturity levels, from level G (lowest maturity 

level) to level A (highest maturity level), in ascending order. Since its version 1.2 

released in 2007, this model indicates reuse as one of the goals to be accomplished by 

organizations in order to evolve their maturity levels. In this model, reuse is expressed 

in two processes: Reuse Management – GRU3, required since the intermediary maturity 

stages (starting from level E), and Development for Reuse – DRU4, in more advanced 

stages (from level C onwards). 

The purpose of the Reuse Management process is to manage the life cycle of 

reusable assets [SOFTEX 2013a]. To make this possible, the process defines that the 

organizations must have a documented strategy for asset management, including criteria 

that govern their life cycle (i.e., criteria for acceptance, certification, classification, 

discontinuity and evaluation of assets) (GRU 1). In addition, there must be a mechanism 

for the storage and retrieval of assets (GRU 2). Modifications on these assets must be 

controlled throughout the life cycle (GRU 4), and usage data shall be recorded (GRU 3), 

so as to notify users about potential problems detected, modifications carried out, new 

versions available and discontinued assets (GRU 5) [SOFTEX 2013a]. 

The purpose of the Development for Reuse process, in turn, is to identify 

opportunities for systematic reuse of assets in the organization and, if possible, establish 

a reuse program for developing assets from the engineering of application domains 

[SOFTEX 2013b]. This process starts with the identification of the reuse potential 

                                                 

 
3 Acronym for “Gerência de Reutilização”, in Portuguese. 

4 Acronym for “Desenvolvimento para Reutilização”, in Portuguese. 



14 

(DRU 1) and the reuse capabilities (DRU 2) of the organization. The ensuing steps are 

the planning (DRU 3), implementation, monitoring and evaluation (DRU 4) of a reuse 

program, which comprise the evaluation of proposals for reuse (DRU 5), the 

development of domain models and domain architectures (DRU 6, DRU 7 and DRU 8), 

and the specification, development (or acquisition) and maintenance of domain assets 

(DRU 9) [SOFTEX 2013b]. 

2.3 Software Reuse Tasks 

Software development stakeholders need assistance in the execution of tasks 

related to software reuse, both at the organizational level and the project level. A 

discussion of some of these reuse tasks extracted from the literature is presented as 

follows. 

Aiming to increase their productivity, developers may want to explore the reuse 

repository for an overview of which assets are available for reuse, or search for a 

specific reusable asset that they are aware of. After selecting one or more reusable 

assets, they should make a preliminary evaluation for obtaining general information 

about it (e.g., in terms of its available metadata, evolution history, developers, reuse 

cases, dependencies and so on), which may increase reuse confidence. This acts as a 

filter for selecting one or more assets for an evaluation in depth. 

The assets may be compared against each other in terms of their adequacy, and 

thus are selected according to the project needs. Then, developers may try to 

understand detailed information of a reusable asset (in terms of the available 

information regarding its structure, behavior and software metrics), before or during 

the integration with the software system being developed. Eventually, developers may 

want to rate a reusable asset for stimulating or discourage its reuse and provide 

feedback to its developers, or report problems on a reused asset that did not work as 

expected, leading it to maintenance activities (addressed in GRU 4 [SOFTEX 2012]). 

Developers may also want to identify assets candidate to reuse, (i.e., existing 

assets that can support other development projects) from version control repositories, 

which is a common place for storing development, keeping an evolution history. After 

that, such developers may need to assess the reusability of the identified assets for 

easing reuse and avoiding reuse problems, and may choose to refactor an existing asset 

to make it (more) reusable if such asset has a large reuse potential for the organization 

projects. If no candidate asset is found, developers may also want to develop a reusable 



15 

asset if reuse potential exists or maintain a reusable asset if an existing asset does not 

have a satisfactory level of reusability (e.g., it may have a high coupling that hampers its 

reuse). 

When potentially reusable assets are found, a reuse manager5 must evaluate such 

candidate assets (or new versions of existing assets) for entering the reuse repository, in 

terms of organizational criteria, in order to ensure that the reuse repository only 

contains assets whose quality is attested and whose relevance to the organization is 

verified beforehand. This is also handled in GRU 1 [SOFTEX 2012]. 

It may be necessary to contact people who have already contributed to the 

development of the asset or who have already reused it, for requesting support or 

clearing doubts. To this end, one must identify experts (producers and consumers) on a 

given reusable asset. Developers usually maintain an overall, broad awareness of who is 

who and who does what on a project, but more detailed information about people’s 

expertise and activities is often required [Gutwin et al. 2004], and may be relevant for 

reusable assets as well. 

Reuse managers must also register established interested parties of a reusable 

asset. If the usage data of an asset are available, one can semi-automatically identify 

potential experts and interested parties based on them, being confirmed later by the 

reuse manager. This allows notifying interested parties about changes on the status of 

an asset, and also supports meeting GRU 3 and GRU 5 [SOFTEX 2012]. 

Finally, reuse managers must also evaluate and maintain the reuse repository for 

discontinuing assets. This can be done based either on organizational changes (e.g., 

change of domain interests) or on evaluation scores and problems reported by 

consumers. 

For an effective reuse initiative, one should plan the reuse activities, defining 

what the organization considers as reusable assets of interest, with appropriate criteria 

for governing the asset life cycle (i.e., for the acceptance, certification, classification, 

discontinuity and evaluation of assets). It is also necessary to define a periodicity of 

reuse repository evaluations. This is also expected in GRU 1 [SOFTEX 2012]. 

                                                 

 
5 A reuse manager is responsible for managing and monitoring the overall reuse program. In spite of 

being a mere managerial role, a technical profile is emphasized to keep up with particularities of assets 

and the reuse repository. 



16 

In order to keep up with the reuse initiatives, it is fundamental to monitor the 

reuse activities, so that action plans for establishing corrective actions can be made if 

necessary. Preferably, reuse results should be reported to stakeholders, especially top 

management, so that all of them can become committed to reuse. 

This set of tasks are summarized in Table 2.1, classified into project tasks – i.e., 

tasks that are relevant in the context of a specific software project – and organizational 

tasks – i.e., tasks that either benefit all the projects or are relevant to the organizational 

structure (and to the reuse initiatives) as a whole. 

Sometimes a given reuse task may be applicable to more than one context, but 

its goal varies according to the focus of analysis. For illustration purposes, inspired in 

[Poulin 1994], some of these tasks that vary in terms of development for and with reuse 

are presented (in a fine-grained level) in Table 2.2. 

As it can be noticed, many tasks can be encompassed by both scenarios/contexts, 

but each with a different quality focus (i.e., different perspectives). Thus, it is important 

to provide means for achieving these quality focuses. 

Table 2.1 – A list of reuse-related project tasks and organizational tasks 

P
ro

je
ct

 T
a

sk
s 

Explore the reuse repository 

Search for a reusable asset 

Obtain general information regarding a reusable asset (in terms of its available metadata, 

evolution history, developers, reuse occurrences, issues and so on) 

Select an asset according to the project needs 

Understand detailed information of a reusable asset (in terms of the available information 

regarding its structure, behavior and software metrics) 

Rate and/or report problems on a reused asset 

O
rg

a
n

iz
a

ti
o

n
a

l 
T

a
sk

s 

Identify assets candidate to reuse 

Assess the reusability of a (candidate) asset 

Refactor an existing asset to make it (more) reusable 

Develop or maintain a reusable asset 

Evaluate a candidate asset (or a new version of an existing asset) for entering the reuse 

repository, in terms of organizational criteria 

Identify experts (producers and consumers) on a reusable asset 

Register usage data of an asset 

Identify potential interested parties and register established interested parties of an asset 

Notify interested parties about changes on the status of an asset 

Evaluate and maintain the reuse repository 

Plan the reuse activities 

Monitor the reuse activities 

Report reuse results to stakeholders 



17 

Table 2.2 – Examples of reuse-related tasks that vary according to the quality focus 

Task 
Quality focus 

Development for Reuse Development with Reuse 

Evaluate asset 

flexibility and 

generality 

Flexible assets are more likely to 

be reused, while more generic 

assets can be applicable to other 

contexts, and also improve the 

chances of reuse 

There is a need for evaluating 

whether the asset fits the project 

and developer’s needs 

Understand 

asset 

dependencies 

The less the number of external 

dependencies, the more the asset 

is self-contained and, therefore, 

the easy it is to be reused 

Understanding dependencies is 

relevant (among other reasons) 

for impact analysis, e.g., in terms 

of asset modules that can conflict 

with current project configuration 

Verify 

previous reuse 

occurrences 

This is relevant for maintaining 

the assets repository, as 

discontinuity criteria may apply 

This is important to help assessing 

the asset’s quality and maturity 

Understand the 

reasons why a 

given reusable 

asset is not 

being reused 

This is useful for a decision 

making process regarding the 

asset refactoring/maintenance 

(adaptive, perfective or 

corrective) or discontinuation 

This can be effort- and time-

saving, since the reason can be an 

asset constraint (e.g., it only 

works on a specific operation 

system) or problems in reusing it 

Analyze 

documentation 

Both general and detailed 

documentation can be relevant for 

maintaining the assets 

General documentation can be 

enough if it contains instructions 

on how to reuse the asset 

2.4 Concerns about Software Reuse 

Achieving effective software reuse is a difficult problem in itself, one that 

requires proper support in a number of facets, such as managerial aspects [Griss et al. 

1994], the aid of tools [Marshall et al. 2003], and adequate mechanisms for retrieval of 

reusable assets [Braga et al. 2006], among others. In order to be acquainted with the 

barriers related to effective reuse, it is important to recognize some usual concerns and 

issues associated to software reuse initiatives. 

Many reuse-related issues can be associated to technical aspects, such as the lack 

of tools and techniques for effectively supporting software reuse, as pointed out by 

[Kim & Stohr 1998], [Lucrédio et al. 2008] and other works. Particularly, wrong 

technology choices may considerably hamper the execution of reuse processes 

[Lucrédio et al. 2008] [Schots & Werner 2013]. 

However, it is important to emphasize that solving these aspects is not enough 

for the success of a reuse program; according to [Card & Comer 1994] and [Morisio et 

al. 2002], a misconception of the reuse needs may lead to the probability of neglecting 

the importance of assessing the reuse potential at the organizational level and addressing 



18 

other barriers, treating reuse as a matter of technology acquisition. Thus, as with any 

other software process, a crucial concern that must be taken into account is the 

envisioning of non-technical aspects. 

Because software development processes are performed by people, attempts to 

introduce a software reuse program may also fail because of human issues, such as: (i) 

lack of management commitment, (ii) lack of understanding of reusable assets, (iii) lack 

of engagement of team members, (iv) absence of incentives, and (v) cognitive overload 

[Kim & Stohr 1998]. According to [Schmidt 1999], some of the non-technical 

impediments to successful reuse commonly include the following: 

 Organizational impediments: Systematically developing, deploying, and supporting 

reusable software assets require a deep understanding of application developers’ 

needs and business requirements. As the number of developers and projects 

employing reusable assets increases, it becomes hard to structure an organization to 

provide effective feedback loops between these constituencies. 

 Administrative impediments: It is hard to catalog, archive, and retrieve reusable 

assets across multiple business units within large organizations. Although it is 

common to opportunistically scavenge small classes or functions from existing 

programs, developers often find it hard to locate suitable reusable assets outside of 

their immediate workgroups. 

 Psychological impediments: Application developers may also perceive “top down” 

reuse efforts as an indication that management lacks confidence in their technical 

abilities. In addition, the “Not Invented Here” (NIH) syndrome [Sametinger 1997] 

[Sherif & Vinze 2003] is ubiquitous in many organizations, particularly among 

highly talented programmers. 

Regarding the latter impediment, another study [Frakes & Fox 1995] pointed out 

that the NIH syndrome has become a minor obstacle, and has included reuse education 

and the perceived economic feasibility (among others) as factors that affect reuse, in 

accordance with [Card & Comer 1994]. However, although this syndrome has been 

alleviated over time, much of the phenomenon is caused by the cognitive difficulties 

that are inherent in the reuse process [Ye & Fischer 2000]. 

A crucial concern is how to facilitate the acceptance/consciousness and adoption 

of reuse. Reuse stakeholders must be aware of the reuse results that are relevant to them 

and need awareness support for reuse tasks. Monitoring activities, for instance, allows 

the early detection (and possibly resolution) of inconsistencies and shortcomings inside 



19 

the software process, supporting and fostering the real integration of reuse paradigm 

into the existing software development process, encouraging continuous process 

improvement [Benedicenti et al. 1996]. Since there is a lot of information involved for 

performing reuse tasks, the lack of awareness and understanding of such information 

can hinder obtaining the expected results [Selby 2005] [Gill 2006]. This non-technical 

aspect, however, can be partially handled with a proper support to the technical aspects. 

2.5 Software Reuse in Practice: The Brazilian Scenario 

Despite the extensive literature on software reuse, including several reports on 

how to achieve the expected benefits of reuse (and what should not be done, in order to 

avoid recurring failures), organizations still struggle in beginning and coping with a 

reuse program, as well as in selecting solutions and technology support that are suitable 

for the execution of organizational processes that involve activities related to reuse 

[Morisio et al. 2002] [Lucrédio et al. 2008]. 

2.5.1 Literature Reports on Software Reuse Implementations 

A number of studies and reports on the implementation of reuse processes in 

organizations were identified in the literature (e.g., [Frakes & Fox 1995], [Frakes & Fox 

1996], [Kim & Stohr 1998], [Morisio et al. 2002] and [Sherif & Vinze 2003], among 

others). Some of the reports in the Brazilian scenario are listed as follows. 

Sá et al. (1997) report the experience of introducing software reuse in an 

organization, by measuring aspects related to reuse before and after the implementation. 

The authors mention technical and cultural obstacles identified during the process, such 

as: (i) reuse was only understood as code reuse; (ii) there was no technical or 

managerial commitment to produce reusable assets; (iii) most systems’ development 

was going straight to the implementation phase, because stakeholders did not believe in 

Software Engineering as presented in the literature; and (iv) the view of profits was 

immediate (short-sighted) regarding the production of reusable assets [Sá et al. 1997]. 

Lucrédio et al. (2008) present a survey carried out with industry professionals, 

involving Brazilian organizations, aiming to relate organizational characteristics with 

the successful adoption of reuse, not taking into account the reasons why some 

organizations were not successful. The survey comprised several factors divided into 

four perspectives: organizational factors, business factors, technological factors, and 

processes factors. From the 200 contacted organizations, 57 answered the survey. The 



20 

main influence factors identified include the development team, the use of tools and 

quality models, the prior development of reusable assets, the type of these assets, and 

the existence of a systematic reuse process. The difficulties encountered are also related 

to these factors (e.g., an inadequate tool support and the lack of systematization of reuse 

represent negative influence factors) [Lucrédio et al. 2008]. 

Silva Filho et al. (2008) describe the implementation of the MR-MPS-SW Reuse 

Management (GRU) process at the Software Engineering Laboratory of an academic 

institution. Any software artifact (process asset, source code, or executable) could be 

considered as reusable assets; they were suggested by the team and evaluated against 

their quality and reuse potential. Notifications related to the assets’ status were made 

manually by e-mail. The main difficulties mentioned were the definition of a non-

intrusive strategy (i.e., which would not impact the usual activities of the organizational 

unit) and the choice of useful metrics to monitor and control the process. As to technical 

aspects, the identification of reusable assets was considered the most critical activity 

regarding the level of intrusion, cost, and effort. Some lessons learned include: (i) the 

definition of a reuse management focus (such as the minimization of projects’ cost and 

effort) can guide to the prioritization of software process improvements, and (ii) the 

more mature the reuse management process is, the clearer the perception on how it can 

be automated [Silva Filho et al. 2008]. 

Santos et al. (2009) describe the experience on implementing MR-MPS-SW 

Reuse Management (GRU) and Development for Reuse (DRU) processes in a medium-

sized, geographically distributed organization. The defined process for GRU is triggered 

either from the need to assess candidate assets or for implementing enhancements in a 

particular asset, which may arise from problems identified during the assets’ use or from 

opportunities for improvement identified over time. Regardless of how the process 

starts, it ends with the notification of interested parties regarding the availability, 

evolution, or discontinuation of reusable assets. A research is performed for identifying 

people potentially interested in a given reusable asset, as well as for defining the role 

responsible for maintaining such asset [Santos et al. 2009]. 

Periodically, an assessment of the reusable assets base is made periodically for 

identifying assets that were less used or criticized by users – such assets can be 

improved or subject to discontinuation. In an initial search effort on the organization’s 

legacy systems, 4 potential reusable assets were identified, being 3 approved on the 

acceptance and certification criteria, becoming part of the reusable assets library. The 



21 

authors underline the low number of identified reusable assets. Besides, the tools used 

for supporting the reuse program were too general, such as text editors and 

spreadsheets. Communications related to the reuse processes are made by e-mails sent 

manually [Santos et al. 2009]. 

During the execution of the DRU process, an initial list of nine areas of expertise 

was identified, corresponding to the business processes supported by the systems 

developed by the organization. From these, only three were rated as having some 

potential for systematic reuse and, therefore, were analyzed in more detail (according to 

the authors, the other processes did not follow a formal line of development compatible 

with reuse principles). The assessment of the reuse capabilities of the organization 

showed that there were limited resources for the establishment of an appropriate reuse 

program, but a plan was drawn up to overcome this problem, defining the necessary 

resources for its execution. Nevertheless, DRU was considered out of scope during the 

final assessment of the implementation, due to the lack of concrete data and results on 

the development of reusable assets [Santos et al. 2009]. 

Although the literature reports on the implementation of reuse processes in the 

Brazilian scenario present some problems in common, they usually describe isolated 

cases, and do not aim at comprehensively characterizing usual problems identified 

during the implementation and assessment of reuse processes. The most comprehensive 

one is the work of Lucrédio et al. [Lucrédio et al. 2008], but it is not based on a widely 

used quality standard or maturity model, i.e., it cannot be ensured that all the analyzed 

organizations perform a set of reuse tasks in common. 

2.5.2 A Study of the Software Reuse Scenario in Brazil 

In order to obtain more information on the implementation of processes related 

to reuse in Brazilian software organizations, semi-structured interviews were conducted 

with MPS.BR implementers and assessors. The choice for this population is due to the 

fact that there is a representative number of MPS.BR assessments on level E (60 out of 

the 488 organizations successfully assessed in MPS.BR6 are in level E or above, 

including 38 in level C7 or above), covering a considerable portion of the nationwide 

                                                 

 
6 MPS-SW Published Assessments (data from August 23, 2013), extracted from [SOFTEX 2013d]. 

7 It is noteworthy that the DRU process allows the exclusion of most outcomes from an assessment if the 

organization does not have opportunity and/or ability to perform development for reuse. Thus, one cannot 

state that all these organizations perform DRU. 



22 

scenario. Moreover, this ensures a common set of reuse tasks (that organizations must 

implement to meet the model), thus allowing for more representative results. 

The interview questions were designed to obtain both technical (regarding the 

decisions for implementing the processes, based on the outcomes) and non-technical 

information (involving implementers’ opinions concerning the assessed organizations, 

as well as difficulties and frequent problems) with respect to reuse processes. The 

questions for Reuse Management (GRU), Development for Reuse (DRU) and other 

questions that are relevant for reuse processes in general are shown in Table 2.3, Table 

2.4, and Table 2.5, respectively, along with their corresponding goals. 

Other aspects related to the outcomes were not directly included in the 

questions, such as the control of changes in assets (related to GRU 4) and the criteria for 

acceptance, certification, classification, evaluation and discontinuity of assets (related to 

GRU 1), among others. These items are very specialized; thus, they were evaluated 

indirectly through the general questions and the intersection with other outcomes. 

For analyzing the collected data, the open coding technique [Seaman 2009] is 

used, by marking and categorizing snippets of interviews, relating them to questions 

(categories) initially defined. 

Table 2.3 – Questions and Goals of the Study – Reuse Management (GRU) 

ID Question Goal 

Q1 
Which kinds of assets have been considered 

as reusable by the organizations? 

Identify which types of artifacts are 

considered as reusable by organizations in 

their projects/ processes. Related to GRU 1. 

Q2 Where are the reusable assets usually stored? 
Identify mechanisms (tools) used for storing 

reusable assets. Related to GRU 2. 

Q3 

Where/how are the reusable assets made 

available for reuse, i.e., where/how are the 

stored assets listed so that the interested 

parties can find them? 

Identify the way organizations make their 

reusable assets available and the mechanism 

(tool) used to this end. Related to GRU 2. 

Q4 
How are the usage data about the assets 

logged? 

Identify how organizations record reusable 

assets’ usage data. Related to GRU 3. 

Q5 

How are interested parties informed of 

problems detected, modifications made, new 

versions released, and discontinued assets? 

Identify the mechanisms used for notifying 

interested parties about changes in the status 

of assets. Related directly to GRU 5 and 

indirectly to GRU 4. 



23 

Table 2.4 – Questions and Goals of the Study – Development for Reuse (DRU) 

ID Question Goal 

Q6 

What are the application domains of the 

organizations in which opportunities for 

reusing assets have been identified, or in 

which they have intended to practice reuse? 

Identify relevant application domains from 

the viewpoint of the state-of-the-practice. 

Related to DRU1. 

Q7 
Are organizations able to plan and establish an 

effective reuse program? 

Check if reuse programs have been properly 

established in organizations. Related to 

DRU3 and DRU4. 

Q8 
How are organizations monitoring the reuse 

program? 

Identify monitoring mechanisms and 

strategies being used by organizations. 

Related to DRU4. 

Q9 

How are reuse proposals (requests for reusing 

existing domain assets or 

developing/acquiring new ones) made? 

Identify how reuse proposals are made and 

which kinds of request are more frequent. 

Related to DRU5. 

Q10 
How are domain models and domain 

architectures represented in organizations? 

Identify techniques being used by 

organizations for representing domain 

models and domain architectures. Related to 

DRU6, DRU7, and DRU8. 

Q11 
How are domain assets specified/ acquired/ 

developed and maintained? 

Identify techniques being used by 

organizations for specifying, acquiring, 

and/or developing domain assets. Related to 

DRU9. 

Table 2.5 – Questions and Goals of the Study – General Questions on Reuse Processes 

ID Question Goal 

Q12 

Which comments are made by the 

organizations regarding the GRU and DRU 

processes? 

Characterize general problems pointed out 

by organizations. Answers to this question 

may drive the remainder of the interview for 

more details (funnel strategy). 

Q13 

What is the point of view of the diverse 

stakeholders (developers, project managers, 

top management) about reuse? 

Identify whether there is any cultural 

resistance by stakeholders and, if so, which 

roles have such resistance. This information 

is also relevant for DRU4. 

Q14 
Which GRU and DRU aspects are more 

difficult to understand by the organizations? 

Obtain more information about difficulties 

in understanding (including processes, 

concepts, tasks, tools etc.) pointed by the 

respondent. This is purposely broad. 

Q15 

Which are the most difficult tasks 

(particularly, GRU and DRU tasks) for the 

organizations to perform? 

Identify information about the most difficult 

tasks. 

Q16 

What are the problems (“required” items) 

usually identified on GRU and DRU during 

assessments? 

Identify issues that organizations cannot 

accomplish in GRU and DRU, as well as 

potential difficulties in implementations. 

Q17 

Which aspects related to the implementations 

or assessments of the GRU and DRU 

processes would you like to add (including the 

moment in the MR-MPS-SW implementation 

when you start to implement GRU and DRU 

processes, and potential difficulties in 

implementing or evaluating these processes)? 

Identify difficulties on the implementations 

or assessments of the GRU and DRU 

processes, and ultimately verify how 

organizations prepare themselves to 

assessments. 

Q18 
Is there anything else that has not been asked 

and you would like to comment on? 

Obtain feedback on the process and other 

aspects that participants would like to add. 



24 

Invitation e-mails were sent based on the list of Implementing Institutions (IIs) 

and Assessment Institutions (AIs) available on the SOFTEX website [SOFTEX 2014a]. 

The response rate in terms of the IIs and AIs was 38.46%. The criterion for participation 

in the study was the experience in the implementation and/or assessment of the GRU 

and/or DRU processes. Participants were interviewed in person during the XII Brazilian 

Symposium on Software Quality (July 1 to 5, 2013), or remotely, via Skype (between 

July 6, 2013 and August 25, 2013). 

In total, there were 10 respondents, all concomitantly MR-MPS-SW 

implementers and assessors, having carried out (or accompanied, as leader assessors) at 

least 1 implementation or assessment of the GRU process (in most cases, more than 3 

assessments). Figure 2.2 (left) shows the distribution of the respondents according to the 

MPS assessor levels (ordered from the lowest level to the highest), while Figure 2.2 

(right) shows the year of authorization8 to perform implementations and assessments of 

MR-MPS-SW. 

 

Figure 2.2 – Distribution of respondents according to the MPS assessor levels (left) and 

participants’ experience (based on the year of authorization) in performing MR-MPS-

SW implementations and assessments (right) 

As it can be seen, most participants are competent/lead assessors, meaning that 

they received a specific training from an assessment institution and performed at least 6 

assessments as provisional/assistant assessors [SOFTEX 2013c]. Moreover, 2 of them 

are experienced competent/lead assessors – i.e., besides having competent/lead 

assessor’s skills, they had a specific training on statistical process control and performed 

at least 4 assessments in levels E, D, and C as competent/lead assessors [SOFTEX 

2013c]. Additionally, all the respondents were formed implementers before the release 

of version 1.2 of MR-MPS, i.e., all of them are allowed to perform implementations of 

reuse processes (after making a complementary training course, which is mandatory 

                                                 

 
8 Based on [SOFTEX 2014b] 



25 

when substantial changes are made in the model) since such processes were 

incorporated into MR-MPS-SW. 

The main findings are presented in the next subsections. A full description will 

be published as a technical report. The number of respondents who provided the 

corresponding statements is omitted in this text, but will be published in the technical 

report that is being prepared9. 

It is worth emphasizing that the same respondent may have provided more than 

one answer per question. In order to ensure the confidentiality of responses, results that 

may allow the identification of the respondent are always reported together and in 

aggregated form10. Furthermore, no gender distinction is made in the text. 

2.5.2.1 Findings from the process-specific questions 

In response to Q1 (related to the kinds of reusable assets), all respondents cited 

source code as an asset considered by organizations to be reusable, either in the form of 

libraries, frameworks, individual classes (for object-oriented systems) or even code 

routines (for systems developed in other programming paradigms). Source code is also 

the asset most often identified as reusable in organizations, and was pointed out by 

some respondents as “most useful” and/or “most suitable”. Nevertheless, respondents 

indicated that the number of reusable assets found in the reuse base of organizations is 

considerably small (2-4 assets were mentioned, in some cases). 

Document templates related to processes – such as project plan templates or 

checklists – are also usually considered to be reusable. Other kinds of assets mentioned 

are standard processes11, test scenarios, test plans, knowledge assets, business rules, and 

calculation spreadsheets. With respect to plans and test scenarios, one respondent 

mentioned that these were reused without specific adjustments for each scenario, i.e., 

their content was entirely reused in different projects. 

Regarding Q2, related to the storage of reusable assets (in GRU 2), all 

respondents mentioned that version control repositories are usually employed for this 

purpose, being SVN the most frequent implementation. Some respondents stated that 

                                                 

 
9 The numbers are used only for accounting purposes. It is believed that the contribution of studies like 

this is not the quantification, but the richness and variety of data, in accordance with [Seaman 2009]. 

10 Although this makes it difficult to perform other potentially interesting correlations between answers, 

this decision is due to the amount of participants of the study. A different choice could allow the 

identification of respondents. 

11 Considering each instantiation of a standard process as a form of reuse. 



26 

the storage mechanism varies according to the type of asset. Version control repositories 

are most common when the reusable asset is source code (but are also used in some 

implementations of reuse to store other types of assets). Other forms of storage were 

also cited: 

 Folders / directories (usually shared on the Intranet), either with or without 

controlled access, used for storing process templates documents and standard 

processes; 

 Default location (local folder, in the cloud etc.) of collaborative tools and tools with 

social network features: Sharepoint12, Google Docs/Drive13 – also used for 

knowledge assets –, and Confluence14; 

 A tool developed by the organization. 

The most cited form of making reusable assets available (Q3, also related to 

GRU 2) is by tools for integration with repositories, such as TortoiseSVN15 and 

Maven16. Other cited forms of provision were: 

 Wiki17; 

 Collaborative tools (aforementioned); 

 Directory18 informing the classification, type, and link of the reusable assets and list 

of assets available in the Intranet portal. 

For collecting information about the usage data of reusable assets (Q4, 

concerning GRU 3), some respondents cited manual ways. In one of these, the reuse 

manager is responsible for capturing such information by analyzing software projects 

and searching for reuse occurrences, storing results in an Excel spreadsheet or a sort of 

list. Another form requires that, in case any asset is reused in a project, the reuse 

manager must be informed by the project manager or by the development team. Other 

                                                 

 
12 http://office.microsoft.com/pt-br/sharepoint/ 

13 https://drive.google.com/ 

14 https://www.atlassian.com/software/confluence/ 

15 http://tortoisesvn.net/ 

16 http://maven.apache.org/ 

17 http://www.mediawiki.org/wiki/MediaWiki 

18 In this case, unlike the concept of file folder, directories are indexes of sites, usually organized into 

categories and subcategories, whose main purpose is to quickly find desired websites, searching by 

categories. An example is Yahoo! Directory (http://dir.yahoo.com/). 



27 

forms of accounting include cross-references, number of downloads, a tool developed 

by the organization, and issue trackers, like Mantis19. 

Finally, most respondents cited the use of e-mails as a form of notification to 

interested parties about changes in the status of reusable assets (Q5, related to GRU 5). 

This is the only noticed way up to that moment mentioned by some of the respondents, 

and the most frequent one to all of them. E-mails are sent manually, either to all the 

members of the organization (irrespective of being interested parties) or from a list of 

interested parties, manually maintained based on the usage data (from GRU 3). 

There are also cases in which the Wiki or the issue tracking system contains a 

record of consumers (considered as interested parties) of a given reusable asset, so that 

only these consumers are notified by e-mail (by the system) about changes in the status 

of assets. Other forms of communication are a tool developed by the organization and 

an adaptation of the concept of “followers” in social networks. In the latter, interested 

parties in a given asset must “follow” an asset in order to be informed of updates to the 

“profile” of such asset. 

Most of the participants were involved in at least one assessment that included 

the DRU process. However, the MPS-SW model allows the exclusion of DRU 3 to 

DRU 9 outcomes from the scope of the assessment (when the organization shows that it 

does not have reuse opportunities (DRU 1) or reuse capabilities (DRU 2) [SOFTEX 

2013b]). Consequently, only few assessments encompassed all the DRU outcomes. In 

this regard, one respondent stated that organizations often “prefer to claim that they do 

not have a domain of interest, in order to avoid committing to the next assessment”20. 

Another respondent affirmed that organizations frequently “state that they are not 

prepared” for such assessment. 

Regarding the context in which DRU was implemented (Q6), organizations that 

implemented the entire DRU process “had the whole development structure towards 

reuse”. The core business of one of the organizations was to “sell software that serve as 

a basis for other developments, like frameworks”: “the organization has a product line 

and several different modules that support development”. Another respondent stated 

                                                 

 
19 http://www.mantisbt.org/ 

20 According to [SOFTEX 2013b], when reuse opportunities exist but the organization lacks reuse 

capacity, it must invest in qualification, and the outcomes become mandatory in the next assessment of 

the organization in the same maturity level or above. 



28 

that “the organization was a software factory, which builds component line domains”, 

but “it was a very simple reuse, with few components in the [reuse] base”. 

Two respondents stated that they did not consider the planning and 

establishment of the reuse program as effective (Q7): one of them stated, “it stands on 

the threshold of what is expected in an assessment”. Regarding the monitoring (Q8), 

one respondent affirmed that it happens “as a protocol formality”, i.e., it is carried out 

only for the record; organizations “do not really keep up with it”. 

Regarding the way reuse proposals are made (Q9), one respondent stated that the 

analyst of the organization identifies a part of a project that could be reused in the 

future, and hence makes a request to the reuse group through a template (a Word form). 

According to the same respondent, the representation of domain models and domain 

architectures (Q10) were made in the Enterprise Architect tool21, but members “did not 

use the most appropriate notation on domain engineering”. Finally, although the 

respondent stated that domain assets were usually developed internally, no specific 

technique for their development (Q11) was mentioned. 

2.5.2.2 Other findings from the general questions on reuse processes 

The answers to the questions presented in Table 2.5 and the interview data 

provided perceptions of respondents with respect to the implementation of reuse 

processes. 

Regarding the comments made by organizations concerning the GRU and DRU 

processes (Q12), some respondents mentioned that organizations usually do not have 

problems regarding GRU, and it is “well received” by them. One respondent mentioned 

that organizations that use source code as a reusable asset consider the GRU process 

“very important”, while many organizations that perform process reuse “do not even 

realize that they are implementing GRU”, and it is “basically ‘for the record’”; thus, “it 

cannot properly be characterized as reuse”. Another respondent stated that organizations 

sometimes find it difficult to notify interested parties about changes in the status of 

assets. 

Because the GRU process is mandatory (i.e., its outcomes are not subjected to 

exclusion in the context of an assessment in particular), some organizations “reuse any 

component just to say that they have [some] reuse”. A respondent stated that 

                                                 

 
21 http://www.sparxsystems.com/products/ea/ 



29 

organizations usually consider reuse a process “of little relevance”. They get to 

implement a process, but do not have the “spirit of reuse”. 

Sometimes organizations do not see the opportunity to implement the DRU 

process, which is sometimes questioned regarding its viability when the organization is 

still not sure whether to invest for reuse. According to one respondent, the view of 

organizations about DRU is that “it is something that will take a lot of work and will 

require a high investment”, which causes them to claim that they “cannot afford to do it 

at that moment”. 

Regarding the point of view of the diverse stakeholders about reuse (Q13), some 

respondents affirmed that top management is acquainted to the GRU process, but in a 

macro level. One respondent commented that they lack a vision of how much the 

organization has gained with reuse – “such analysis, such indicator has not been 

explored the way it should be”. 

A respondent stated that when knowledge management is more widespread, 

“hierarchical levels can have access to information more easily”. Often the programmer 

does not have the necessary knowledge to decide whether it is better to reuse a 

component or not. Another respondent stated that he/she has suggested organizations to 

invest in a technical lead or architect to be responsible for selecting what will be reused. 

Such person would first make an analysis if the solution is appropriate to the context. 

The same respondent also stated that, “when a component has no associated 

documentation, the consumer can go through a trial and error activity”. However, 

“when using the component in the wrong way and seeing that it did not work [(which is 

a time-consuming task)], one can give up reusing it”. Moreover, prospective consumers 

sometimes express misgiving in reusing something that was not made by them, 

reinforcing the NIH syndrome (discussed in Section 2.4). Additionally, according to one 

of the respondents, “programmers think that, for having an effective reuse, one needs to 

first refactor the code, or code snippets”. 

With respect to the GRU and DRU aspects that are more difficult to understand 

by the organizations (Q14), one respondent affirmed that “it is difficult to make 

software development stakeholders obtain the reusable assets from a Wiki or similar 

mechanism, when there is a version control tool integrated to the development 

environment from which obtaining the assets is more practical”. Another issue is that 

organizations are “unaware” if the reuse manager role is a more managerial or a more 

technical assignment. 



30 

According to one respondent, DRU can be seen as an “additional expense for 

small enterprises that are unable to afford it”. Organizations also may see DRU as “a 

great difficulty”, and “want to try to ‘go off on tangents’”. Another respondent stated 

that organizations “do not even know what it is”. 

Concerning the most difficult tasks to be performed by the organizations (Q15), 

one respondent affirmed that he/she does not think that it is a matter of difficulty, but a 

motivation issue instead: organizations “do not see the importance” of reuse in day-to-

day activities. 

A difficulty indicated by other respondents is the logging of usage data (GRU 3), 

which often becomes error-prone, since it is made in a manual way, being very 

dependent on people. One of the respondents stated that, in most organizations, reuse 

“works in a more dynamic way”, so that a member can obtain an asset without having to 

undergo this “usage control”. A solution pointed out by the respondent would be the use 

of a tool that is able to “scavenge” the code and check for the presence of a given asset. 

When something must be developed, usually the analyst – or the developer – can 

be reluctant in exploring a huge reusable asset database for identifying which one fits 

his/her needs, and may therefore prefer to develop from scratch, which might be faster 

in his/her discretion. “When one has about half a dozen components, this is not seen as a 

problem”. However, when there is a database with a large number of assets, “analyzing 

which one best fits the needs – including items that are not well documented – and 

checking ‘the whole stuff’ is not a trivial task”. 

Some difficulties in implementing GRU 3 were also observed through the 

statements of the respondents. In the accounting of reuse data, “the probability of error 

is enormous, because it is not known what has happened at all”. According to the 

respondents, the difficulties lie both in verifying whether the asset was effectively 

reused (“deep down it is not known what the person has actually used”) and in checking 

if the reused asset was previously requested (“after [a reusable asset] that was in a 

repository is on a developer’s machine, the person uses [such asset] without [formally] 

requesting”). The latter problem is quite common when the parameter used for 

accounting is the number of downloads. According to another respondent, the number 

of downloads “is just an approximation, because a person may have downloaded it and 

not reused it in practice”. 

Reuse itself is also a difficulty in legacy systems, according to one respondent. 

“The product was not originally designed for being componentized, thus reuse happens 



31 

in a way that is not correlated to the business logic”, excluding the possibility of 

“making a business rule reusable by all the systems”. Another respondent mentioned 

that, in DRU, difficulties lie in conducting the reuse program. 

Most of the required items (Q16) involve aspects that are already mentioned 

throughout this text; thus, they will be discussed in more details in the technical report. 

When participants were asked to add any additional aspects related to the 

implementations or assessments of the GRU and DRU processes (Q17), a difficulty that 

was mentioned regarding the implementations concerns the accounting of usage data, 

i.e., “to find an efficient way of accounting”, “which is not only for meeting the model”, 

but also one “that the organization can use for ‘statistics’, so that it can start evaluating 

cost-benefit”. According to one respondent, such evaluation is the major issue, because 

“the organization wants to [perform] reuse knowing how much it is earning in return 

(e.g., in terms of reduction in rework)”. It is noteworthy that this directly impacts in 

carrying out accounting (GRU 3) and monitoring tasks. 

Concerning difficulties in evaluating reuse processes, one respondent pointed 

out difficulties in assessing the changes made to assets – in GRU 4 and its intersection 

with the Configuration Management (GCO)22 process –, because “it is difficult to assess 

whether a developer has complied or not with the established level of control” on the 

evolution of reusable assets. The respondent further stated that “the assessment of 

communication between interested parties (GRU 5) is not trivial”. 

Finally, participants were asked (on Q18) if they would like to comment on 

anything else that. Responses ranged from kinds of reusable assets chosen by 

organizations, considerations about particular domains and technologies that do not 

favor reuse in organizations, and lack of adequate tool support. 

Some of the respondents stated that they do not considered appropriate to treat 

knowledge assets and document templates as reusable assets (GRU 1), for different 

reasons: either they think that the management of the GRU process is laborious/onerous 

(given the high number of assets and the high frequency of use), or they think that, by 

using such kinds of assets, the benefits arising from reuse are not well noticeable. 

Additionally, although standard processes and knowledge assets have been seen 

in implementations of GRU, some respondents disagree with this approach because 

these assets are already addressed in other processes of the same MR-MPS maturity 

                                                 

 
22 This process is comprised in MR-MPS level F (one level before level E) [SOFTEX 2012]. 



32 

level – Organizational Process Definition (DFP) and Human Resource Management 

(GRH), respectively –, thus not aggregating noticeable reuse results to the 

organizations. One can “end up improving knowledge management rather than making 

the implementation of a reuse process”. 

Another factor mentioned by some respondents is the need for organizational 

culture and appropriate tools/infrastructure to implement reuse processes. Most of the 

respondents mentioned the “lack of tool support” for the execution of these processes. 

One respondent stated, “the major issue is to quickly find the component you need”, 

“having adequate documentation” and “having confidence that the component will 

work”: according to him/her, “these are the complicated things in reuse”. 

The same respondent also stated that sometimes “the component works very 

well, but no one knows where it is, and the time it takes to find the component, study it 

and know how it works, depending on the size of the component, may end up giving 

rise for the developer to think that it is better to build his/her own component”. 

Still according to the respondent, in most of the organizations whose products 

have more than 5 or 10 years (i.e., legacy systems), “software has a bad cohesion, high 

coupling etc.”. He/she suggests that “the use of a technical debt tool (such as Sonar) or 

the use of a heat map of the product could help to identify critical points, and thus the 

organization could focus on the implementation of these points so that it perceives reuse 

payback faster”. 

One respondent posed that there is room for a “makeup” in accounting for usage 

data, and currently “there is no resource on the day of assessment that allows assessors 

to request for showing the projects that used the component”, because it “becomes too 

complicated to do it at that time”. 

Finally, some respondents with considerable experience in implementation 

and/or assessment stated that many organizations “have not yet understood the benefits 

of GRU”, and sometimes implement this process more “to fulfill a requirement than for 

having understood that its goal is important”. On the other hand, it was also stated that 

organizations “lack a lot of knowledge” and there is a “lack of market maturity” with 

respect to reuse. Additionally, some implementations seem to “follow a recipe”, being 

necessary to invest in “training implementers and assessors” in reuse processes. 



33 

2.6 Discussion 

Many of the findings identified in the study match the literature reports both in 

the Brazilian and worldwide scenarios, especially the lack of tool support, the lack of 

support for different reuse stakeholders, and the need for more engagement in reuse 

initiatives. 

As it can be noticed, it is necessary to provide support in the execution of 

organizational reuse processes and in software development processes. The latter 

requires support not only for the identification of opportunities for reuse, i.e., assets that 

can be reused in the context of a given project (development with reuse), but also for the 

construction of software artifacts that may be reused in the future (development for 

reuse), through indicators that guide the development of reusable assets. 

The fact that some organizations store their reusable assets in version control 

repositories has also been observed in other studies, such as [Lucrédio et al. 2008] – in 

this study, the authors suggest that this may contribute to the failure of the efforts in 

fostering reuse. In this context, it is noteworthy that each type of repository has features 

aimed at ensuring the better functioning for their intended purpose, and an inappropriate 

technology selection can hinder the adoption and implementation of reuse processes. 

Reuse repositories and configuration management repositories have different purposes 

(the former, for instance, is optimized for searching operations, and should only contain 

releases of the assets), and this must be taken into account when instantiating a 

repository for an organization. 

As mentioned before, the programmer often does not have the necessary 

knowledge to decide whether it is better or not to reuse a component, and which one fits 

his/her needs. A huge reusable asset database to explore, the size of the asset, the time it 

takes to find and study it and the lack of associated documentation are aggravating 

factors, which makes him/her prefer to develop from scratch. One respondent explicitly 

pointed out that the major issue in reuse is “to quickly find the component you need”, 

besides “having adequate documentation” and “having confidence that the component 

will work”. 

Thus, in software development with reuse, developers need to be able to (i) 

explore reuse repositories in an intuitive way, so that they can easily identify candidate 

assets and analyze their dependencies, (ii) compare assets that are similar in their 

purpose, in order to select the one(s) that best fit(s) the needs in a given context (e.g., a 



34 

nonfunctional requirement that must be met in a software project), and (iii) understand 

assets in terms of their properties, structure, behavior and evolution, so that they can be 

reused more easily and with more confidence. 

With respect to the tool support, although the tools mentioned in the study 

partially assist GRU activities, organizations demand for applications that support the 

execution of these activities in an integrated way, allowing communication with other 

tools (e.g., configuration management tools) for more effective, visible, and reliable 

results. 

For instance, as mentioned, it is difficult to make stakeholders obtain reusable 

assets from a specific mechanism, when the version control tool is already integrated to 

the development environment. Because reuse works in a more dynamic way in most 

organizations (i.e., without a strict control), one respondent cited the need for a tool to 

“scavenge” the code and check for the presence of a given component, thus providing 

more awareness of the current reuse scenario. Besides, such tool would also help to 

assess whether developers comply with the level of control previously established when 

evolving reusable assets, instead of creating blocking policies that may cause adverse 

effects. 

It was also noted that, in many cases, notifications about changes in the status of 

assets are triggered without any distinction of actual interested parties. This may 

compromise the effectiveness of communication, leading stakeholders to ignore 

important notifications, depending on the frequency of reception of irrelevant 

information. Information overloading may also adversely affect the perceived benefits 

of reuse by these stakeholders. Another problem related to these notifications occurs 

when the maintenance of the list of interested parties and the sending of e-mails are 

performed manually, becoming an error-prone approach. This can be partially due to the 

limitations on tracking which team members reused which assets (i.e., collecting usage 

data, as specified in GRU 3), thus hindering communication. 

Top management also needs more awareness and visibility of relevant 

information of the reuse process. Particularly, a vision of how much the organization 

has gained (or saved) in reuse is necessary, but other metrics can also be relevant for 

reuse initiatives. An issue pointed out in [Benedicenti et al. 1996] is that many 

organizations that manage to introduce reuse fail in tracking and controlling its 

evolution, especially if compared with organization objectives and mission. 



35 

The importance of finding what managers and developers need to understand 

about reuse is highlighted in [Kim & Stohr 1998]. Management needs to be able to 

measure and control the impact of a software reuse program. In other words, the value 

of reuse must be somehow established and communicated to managers [Kim & Stohr 

1998], so that they can be aware and become committed to reuse initiatives. Moreover, 

for a better acceptance of reuse-oriented changes in stakeholders’ usual activities with 

less impact, suitable mechanisms must be identified and developed. Particularly, 

because some necessary steps for implementing reuse may be challenging, 

organizations should try to accomplish them in a progressive way, in order to avoid 

resistance and allow for a better acceptance by the stakeholders, besides preventing 

cognitive overload. 

An appropriate awareness of the reuse scenario is intrinsically correlated to 

monitoring. For communicating results in an effective way, monitoring mechanisms are 

crucial. The ways for collecting and logging information about the usage data (GRU 3) 

are often error-prone, since most approaches do it in a manual way, being very 

dependent on people. This can be one of the reasons why organizations do not keep up 

with monitoring practices, besides the lack of understanding the importance of such 

monitoring in conducting a reuse program. 

Organizations do not see the opportunity to implement development for reuse; 

however, based on the responses related to not implementing a DRU process, a proper 

analysis of the reuse opportunities along with the aforementioned improvements in a 

reuse program may be able to overcome this scenario. Legacy systems that were not 

originally designed for being componentized can be gradually refactored according to 

the organizations’ needs (which can be identified, highlighted, and communicated 

through visual support, e.g., a heat map or a technical debt tool, as mentioned by a 

respondent). This can be done with the support of software metrics (e.g., cohesion and 

coupling). Assets can also benefit from useful recommendations during their 

development, for making them more reusable. 

In this sense, when it comes to development for reuse, developers need to be 

aware of (i) how to develop reusable solutions, i.e., what must be taken into account for 

increasing the chances of reuse and avoiding problems that may hamper it, (ii) how to 

evaluate and reengineer existing solutions for promoting their reuse when appropriate, 

and (iii) how development with reuse can accelerate development for reuse, i.e., reusing 

existing assets for building reusable assets. 



36 

It is important to highlight some limitations of the conducted study: (i) the 

information about the organizations were obtained by implementers and assessors, and 

may represent a particular point of view of the respondents; (ii) the data analysis was 

performed by the interviewer himself, and there may have been problems of 

interpretation in the analysis of responses (however, the points on which there was 

uncertainty were confirmed with the respondents); (iii) it stands out that the results, 

while comprehensive, are not generalizable; and finally, (iv) the whole study (including 

the interviews and the analysis) was conducted using the Portuguese language; thus, 

some English translation issues may cause deviations in the interpretation of the data. 

It is believed that the observations of the presented study can be used as input 

for both research initiatives and the development of tool support for the implementation 

of reuse processes in software organizations. A technical report with the interview 

material and the full analysis will be prepared as a future work. 

2.7 Final Remarks 

Over the last decades, there has been a lot of progress from both industry and 

academic research towards systematic reuse, exploring its potential for obtaining 

significant gains in software development productivity and quality. Moreover, some 

quality standards and maturity models evidence the need for reuse processes. 

Nevertheless, despite the efforts undertaken in software reuse research, state-of-the-

practice indicates that several software organizations still find difficulties for achieving 

systematic reuse in practice. 

Several difficulties and barriers (both cultural and technological) occur when 

implementing organizational processes that involve activities related to reuse, as well as 

when selecting or developing appropriate solutions for the implementation of these 

processes, as pointed out by literature reports [Sá et al. 1997] [Lucrédio et al. 2008] 

[Silva Filho et al. 2008]. Interestingly, many of the identified problems in Brazilian 

organizations recur in the worldwide scenario over time, as can be seen in works such as 

[Morisio et al. 2002]. 

As it can be noticed from the findings of the conducted study, several 

respondents mentioned the lack of understanding as one of the main reasons for the 

problems with reuse implementations. Such lack of understanding varies in terms of 

understanding the need for reuse, understanding reuse benefits, understanding reuse 

tasks, as well as tool support for executing such tasks, so that they can be performed 



37 

more efficiently. It must be highlighted that the lack of relevant information and 

understanding of a reusable asset and its surroundings can also aggravate the NIH 

syndrome. 

To this end, the application of perception and awareness techniques can be 

useful. For instance, visualization metaphors can represent reuse information, so that 

users can interact with and manipulate the corresponding data, as well as obtain answers 

to reuse tasks more quickly, besides decreasing the cognitive overload. Software 

visualization resources and techniques play an important role on awareness and 

comprehension, and can be used for supporting a software reuse program, especially in 

terms of software reuse tasks. This topic is covered in the next chapter. 



38 

CHAPTER 3 – SOFTWARE VISUALIZATION 

This chapter presents the main concepts related to software 

visualization. It also describes how visualization resources and 

techniques can benefit software reuse, as well as how related works 

identified from the state-of-the-art have been addressing this issue. 

3.1 Contextualization 

The large amount and diversity of data generated throughout software 

development is often difficult to manage and monitor. Organizations have sought for 

techniques that allow not only to store and process such data, but also to exploit them in 

order to extract relevant information to support decision-making processes and allow 

increasing the quality of their services, processes, and products. 

The quality and relevance of decision making heavily depend on the 

understanding, interpretation, and aggregation of organizational data; such factors can 

become critical while implementing and evaluating organizational strategies, thereby 

becoming a competitive edge. There is a need for appropriate models and mechanisms 

for analyzing and monitoring data about software processes and products, as well as 

studies on how the available resources can support understanding such data. 

If data sources with evolution information of software development, such as 

repositories of version control systems (VCS) are also taken into account, software 

gains a dimension in time, which increases even further the mass of generated data. In 

addition to that, there are other data sources, such as issue trackers, measure databases 

etc., which bring a greater diversity on the nature of data. In order to deal with this 

scenario, software development requires appropriate mechanisms and tool support that 

can assist in the extraction and analysis of these data and allow their understanding 

[Schots et al. 2012]. However, such understanding is not an easy task. 

According to Diehl (2007), 75% of all information from the real world is 

perceived visually [Diehl 2007]. On the other hand, as stated by Brooks Jr. (1987), 

software is very difficult to visualize; the reality of software is not inherently embedded 

in space [Brooks Jr. 1987]; hence, it has no ready geometric representation. One of the 

obstacles for visualizing software information is that data are abstract and, therefore, 



39 

have no associated physical structure [Chen 2006]. Thus, it is necessary to consider (i) 

the use of visual abstractions that are appropriate to the nature of data and their 

relationships, (ii) representation techniques that allow to emphasize what is relevant in a 

given context, and (iii) different forms of interaction, allowing to perform exploratory 

(and, therefore, richer) analyses [Schots & Werner 2012] [Schots et al. 2012]. 

In this context, software visualization techniques aim to provide a better and 

faster understanding of the structure, behavior, and evolution of software processes and 

products [Diehl 2007]. It can be defined as the use of information visualization 

techniques [Chen 2006] applied to software, i.e., as a branch of information 

visualization. Data are represented by means of visual metaphors for facilitating the 

comprehension of different scenarios and contexts, as well as the detection of 

underlying patterns and the creation of analogies [Lanza & Marinescu 2006] [Diehl 

2007]. 

Software visualization has been exploited as a way to assist software 

development activities that involve human reasoning, helping people to deal with the 

large amount and variety of information by providing appropriate abstractions [Lanza & 

Marinescu 2006] [Diehl 2007]. Software visualization research focuses on the use of 

computational resources for accelerating and optimizing users’ perception, 

understanding, and assimilation of information of software and about software, by 

stimulating the human cognitive capacity (derived from users’ memory, perception and 

reasoning). Perception is the processing of sensory information and thus part of human 

cognition, which also includes awareness, reasoning, and learning [Diehl 2007]. 

Several strategies and techniques have been proposed and developed for the 

representation and interaction with the visual metaphors. Some of these techniques are 

listed in a previous work [Oliveira 2011], and a more comprehensive set are listed in a 

technical report being prepared. Software visualization tools make use of these 

techniques in order to provide a richer representation and exploration of the underlying 

data, thus better supporting software comprehension and correlated tasks. 

In this regard, Diehl (2007) states that, in order to make visualizations effective 

in their goal, it is important to keep in mind that the visual metaphors and 

representations to be used must be adapted to the stakeholders’ perceptive abilities, not 

the opposite (as it usually occurs) [Diehl 2007]. 

Some of the software engineering fields that can be supported by visualization 

include requirements engineering [Cooper et al. 2009], software architecture and design 



40 

[Lanza & Marinescu 2006] [Gallagher et al. 2008] [Schots et al. 2010], software 

measurement [Lanza & Marinescu 2006], software evolution [Wettel & Lanza 2008] 

[Werner et al. 2011], software maintenance, reverse engineering and reengineering 

[Koschke 2003] [Telea et al. 2010], among others. Software engineering education can 

also benefit from the use of visual metaphors and other interactive approaches to allow 

exploration of concepts and enhance learning [Rodrigues & Werner 2011]. One can also 

highlight the inherent multidisciplinary of the software visualization topic, since it 

integrates several computer science disciplines, such as data mining, software 

engineering, computer graphics and human-computer interaction. 

Mukherjea & Foley state that visualization is particularly important for allowing 

people to use perceptual reasoning (rather than cognitive reasoning) in task-solving 

[Mukherjea & Foley 1996]. In this sense, it is desirable to make an explicit description 

of the supported tasks, in addition to the usual understanding goal, so that potential 

users with matching information needs can identify these visualizations easily. 

3.2 The Role of Visualization in Awareness and Comprehension 

Since research in software engineering is steadily expanding and investigating 

different methodologies, processes and techniques, it is also necessary to provide 

stakeholders of the software development process with a sense of what happens in the 

scenario in which they are involved, as well as means to explore and understand 

software artifacts of interest and their properties [Schots et al. 2012]. This requires 

appropriate awareness and comprehension resources. 

Although these concepts are correlated, there is a subtle difference between 

them. According to [Shi et al. 2011], awareness is “the state or ability to perceive, to 

feel, or to be conscious of events, objects or sensory patterns”, but in this level of 

consciousness, an observer can confirm sense data without necessarily implying 

understanding or comprehending. Similarly, program comprehension also encompasses 

the software development life cycle, but it focuses mainly on software artifacts, rather 

than the process and its variables. In other words, awareness is related to cognitive 

reactions to a condition/event (being aware of it), while comprehension involves 

assimilation of knowledge (understanding a fact) [Schots et al. 2012]. 

Enhancing awareness and understanding of software information and the 

software itself requires the identification of adequate abstractions according to the 

comprehension needs [Schots et al. 2012]. The choice of the visualization abstractions 



41 

and techniques for representing the data, as well as the interaction techniques to be 

employed, heavily depends on contextual information, e.g., the nature of data, the 

visualization constraints, and the task to be supported (e.g., selecting the most suitable 

assets from a set of reusable assets). Awareness and comprehension concepts are 

discussed with more details in the next subsections, along with a brief argument on the 

role of visualization. 

3.2.1 On the Awareness of the Software Development Life Cycle 

The concept of awareness is present in many of today’s systems. Context-aware 

systems offer new opportunities for application developers and for end users by 

gathering context data and adapting systems behavior accordingly [Baldauf et al. 2007]. 

In the software development scenario, awareness can be characterized as “an 

understanding of the activities of others, which provides a context for one’s own 

activities” [Dourish & Bellotti 1992]. Many researchers have recognized awareness as 

an essential part of collaborative software development and collaborative work in 

general [Treude & Storey 2010]. 

Awareness mechanisms allow software development stakeholders to be 

percipient of what goes on in the development scenario. Each mechanism has its 

specific purpose, i.e., aims at supporting a particular set of development tasks (e.g., 

providing information about the detection of potential conflicts in collaborative 

development, supporting parallel tasks in geographically distributed development, and 

so on), thus providing different levels of awareness according to the context. Moreover, 

as stated by [Treude & Storey 2010], depending on the context of the task at hand, the 

required granularity of awareness can vary significantly. 

The inclusion of awareness mechanisms should take into account the tools most 

commonly used by stakeholders in their usual, daily activities, in order to ease the 

adoption and use of such mechanisms. For instance, among software developers, the use 

of IDEs is very common, and most of them are extensible by plug-in systems. Thus, 

developing awareness facilities as IDE plug-ins can benefit from the available IDE 

features, including integration with other tools [Hattori 2010] [Schots et al. 2012]. 

The use of visualizations can enrich development environments to promote 

awareness [Hattori 2010]. Awareness information can be delivered by means of visual 

resources especially employed to this end, e.g., dashboards [Treude & Storey 2010] that 

can summarize important development facts. One important aspect that must be taken 



42 

into account is the evaluation of the tradeoff between the usefulness of the visual cues 

and the level of distraction they may cause [Hattori 2010]. 

In [Ripley et al. 2007], a 3D (three-dimensional) visualization is presented for 

providing project managers with a comprehensive view of all project activities, allowing 

them to intelligently steer development and adjust task assignments. The screenshot 

shown in Figure 3.1 presents a snapshot of all ongoing changes taking place in a set of 

workspaces at a particular time [Ripley et al. 2007]. 

The stacks of cylinders with the most recent changes are placed in the front of 

the view and, as time elapses, stacks for workspaces with less recent activity start 

moving to the back. In the artifact mode, each stack of cylinders represents an artifact, 

and each cylinder in the stack represents changes to that artifact made by a workspace. 

In the developer mode, a stack of cylinders represents a developer’s workspace. 

 

Figure 3.1 – 3D workspace visualization [Ripley et al. 2007] 

Another subarea that has emerged is visual analytics, considered as “the science 

of analytical reasoning facilitated by interactive visual interfaces” [Thomas & Cook 

2006]. Its goal is to increase insight into data through the combination of automatic 

analysis methods with human background knowledge and intuition [Keim et al. 2008]. 



43 

3.2.2 Program Comprehension and Visualization 

Program comprehension is a vital software engineering activity. It is necessary 

to facilitate reuse, inspection, maintenance, reverse engineering, reengineering, 

migration, and extension of existing software systems [Wong et al. 2007], among other 

software engineering practices. Particularly, it plays a crucial role in software 

maintenance: according to [Telea et al. 2010], about 40% of the maintenance budget is 

used for understanding source code. 

The mapping of entities, from the software systems domain to graphical 

representations, aims to support comprehension and development [Gallagher et al. 

2008]. In fact, many works that aim at increasing program comprehension make use of 

visual metaphors, by applying software visualization concepts and techniques. Such 

works usually try to represent software through a particular point of view, helping 

stakeholders to focus on the tasks being performed. Duru et al. (2013) state that 

software visualization tools allow users to synthesize and make sense of vast amounts of 

information (e.g., regarding the inner organization of software modules and the 

interactions between each other) [Duru et al. 2013]. 

An illustrating example of a software visualization tool is EvolTrack [Werner et 

al. 2011], an Eclipse-based extensible mechanism that combines multiple views to 

provide a better comprehension of the software evolution life cycle through different 

viewpoints. Its data source and visualization plug-ins allow performing different 

comprehension tasks, e.g., architectural conformance and co-evolution analyses, social 

network analysis, and tracking evolution of measurements. Figure 3.2 shows EvolTrack 

and its plug-ins PREViA (for architectural model conformance analyses over time) and 

SocialNetwork (for socio-technical network analyses) [Werner et al. 2011]. 

 

Figure 3.2 – EvolTrack and plug-ins PREViA and SocialNetwork [Werner et al. 2011] 



44 

Another illustrating example is the CodeCity tool [Wettel & Lanza 2008], 

presented in Figure 3.3. It displays source code information mapped into a city 

metaphor. The visual properties of the city artifacts reflect metric values of classes and 

packages (in the figure, the number of methods maps to the buildings’ height and the 

number of attributes to their base size). The brown (darker) buildings represent the 

classes and the blue (lighter) districts represent the packages. 

 

Figure 3.3 – The city metaphor presented in CodeCity [Wettel & Lanza 2008] 

This figure illustrates a version of a system called Jmol. The visualization allows 

to easily identify outliers, such as the two large platforms (wide and short) in the 

foreground representing the classes Token and JmolConstants, which define many 

attributes (large base) and few methods (reduced height), or the “skyscraper” 

representing the class Viewer with a considerably high number of methods and a much 

lower number of attributes [Wettel & Lanza 2008]. 

3.2.3 Awareness and Comprehension Challenges 

The creation of tools, techniques, and methodologies to support the manipulation 

of large data sets has been receiving special attention of both scientific and industrial 

communities, in order to discover new ways of dealing with the underlying information, 

including learning purposes, identification of patterns, decision-making support, among 

others. However, making use of computing resources to enhance awareness and 

understanding (of software information and the software itself) is still a challenge in 

software/systems engineering. It involves the identification of suitable mechanisms, 

adequate abstractions, and studies on stimulation of the human perceptive and cognitive 

abilities [Schots et al. 2012]. 



45 

Among the grand challenges identified by the Brazilian Computer Society for 

the years 2006-2016 [Brazilian Computer Society 2006], the following somehow relate 

to these topics: 

 The management of information in large volumes of distributed multimedia data, in 

order to develop solutions for the processing, retrieval and dissemination of relevant 

information, both narrative and descriptive, from the exponential growth of 

multimedia data; 

 The computational modeling of complex systems (artificial, natural and socio-

cultural) and human-nature interactions, particularly the creation of new algorithms 

and techniques in scientific visualization to enable visually capturing the complexity 

of the modeled objects and their interactions; 

 The quality of technological development, which poses that systems must be 

available, accurate, secure, scalable, persistent, and ubiquitous – one of the research 

topics in this sense is the development of tools for supporting the process of 

implementation and evolution of software. 

There is an increasing demand on how to obtain, handle/process, visualize, 

manipulate, and understand information, particularly data and information about 

software systems. Research topics that tackle this issue have the potential to deliver 

promising results, as well as ease and increase the quality of software processes and 

products. In this sense, some challenges in awareness and comprehension highlighted in 

[Schots et al. 2012] are listed as follows: 

 General Comprehension/Awareness Challenges 

 Use software tools to seamlessly collect rich data sets on software 

comprehension activities: Kagdi & Maletic (2008) highlight the importance of 

automatic data collection mechanisms (e.g., eye tracking and activity logging) 

on software comprehension studies [Kagdi & Maletic 2008]. This can be cheaper 

and more reliable (with respect to data quality) than questionnaires, interviews 

and think aloud protocols. IDEs and VCS repositories provide means to collect 

this type of data. The challenge lies in associating low level (fine-grained) 

monitoring of actions on software engineering tools with the cognitive actions 

being executed (e.g., reading, searching or modifying the code). Data mining 

techniques (sequence and process mining) can help to achieve this. 



46 

 Build specialized, personalized visualizations according to the comprehension 

needs: Software visualizations should present a comprehensive view of the 

objects under analysis, based on the needs identified in industry and education. 

 Provide evidence regarding correlations involving people’s profiles with respect 

to quality attributes on program comprehension: There is little evidence on how 

(and whether) previous knowledge, skills, and abilities correlate with the 

efficiency and efficacy of understanding program artifacts. An example is to 

evaluate the influence of developers’ level of expertise on how efficiently they 

understand code [Von Mayrhauser & Vans 1995]. Studies on stimulation of the 

human perceptive and cognitive abilities are welcome for understanding 

scenarios like this [Novais et al. 2012]. 

 Identify and develop suitable mechanisms and adequate abstractions: If an 

awareness/comprehension mechanism is not useful in its purpose, it will not be 

used in practice. It can be, among other reasons, due to its lack of flexibility and 

integration with other mechanisms. Thus, new tools and visualizations need to 

take this into account. 

 Strengthen and increase the group of researchers interested in software 

visualization, awareness, and related areas: Despite the large number of studies 

undertaken involving software visualization, the Brazilian community in the area 

is still scattered. Attempts for establishing a joint research agenda are already in 

progress, aiming to allow the construction of a collaborative body of knowledge 

on software visualization and awareness, besides providing relevant solutions to 

the community as a whole. 

 Industry-Related Challenges 

 Understand the real needs of the software development industry stakeholders in 

terms of awareness and comprehension: As one of the responsibilities of 

academia is to provide solutions to existing problems in industry, more studies 

should be conducted for identifying research opportunities. An example would 

be by performing primary studies, such as surveys and action-research. 

 Evaluate the quality of existing data sources and identify relevant data: The 

industry is increasingly realizing the importance of having data on the execution 

of their processes and metrics regarding the product, so that such data can be 

used to improve the performance of their activities and the quality of the final 



47 

product. However, it is necessary to ensure that (i) the data are collected, (ii) the 

data collected are useful and appropriate, and (iii) the data collected allow the 

analysis and improvement of processes and products. 

 Bridge the gap and encourage interaction between academia and industry: 

Though this challenge is also pertinent for several other areas, research in 

software visualization and awareness lack evidence of their theories through 

results of studies performed in real settings. Research initiatives involving 

industry people with flexible formats could serve as a first step in this direction. 

Some potential results of such initiatives are the establishment of partnerships 

and exchange of human resources towards a holistic training for both 

communities. 

As it can be seen, these challenges comprise software/systems engineering in 

general. Some of these challenges are expected to be addressed in the context of this 

work, focusing specifically on software reuse. 

3.3 Software Visualization and Reuse 

As mentioned in Chapter 2, introducing reuse in an organization may require 

new ways of thinking about software development. In order to achieve the 

acceptance/consciousness and successful adoption and institutionalization of software 

reuse, it is important to take into account how to provide appropriate reuse awareness. 

Awareness mechanisms allow stakeholders to be percipient of what goes on in the 

development scenario [Treude & Storey 2010] [Schots et al. 2012], and can provide 

them with the necessary information and support for performing their reuse-related 

tasks. 

One of the ways to increase reuse awareness is by employing visualization 

resources and techniques. It is known that, in general, every visualization system 

supports understanding of one or more aspects of a software system, and this 

understanding process in turn supports a particular engineering activity or task [Maletic 

et al. 2002], such as requirements engineering, software design, or coding. It is believed 

that most of these software engineering tasks can also be visually supported by software 

reuse. Visualization resources can be used for allowing awareness and comprehension 

of reuse elements and their surroundings. 

For instance, to reuse a software asset, stakeholders need to understand what it 

does, how it works, and how it can be reused; however, this is difficult in practice 



48 

[Marshall 2001] [Marshall et al. 2003]. If software engineers cannot understand assets, 

they will not be able to reuse them [Frakes & Fox 1996] [Alonso & Frakes 2000]. In 

contrast, a proper understanding can help developers to decide whether and how the 

asset can be reused [Marshall 2001] [Marshall et al. 2003], and visualization may play 

an important role in this context. 

Several works aim to assist software engineering stakeholders in their day-to-

day activities, but little is known on the role of visualizations in supporting software 

reuse tasks. Although existing visualization approaches intend to support somehow 

software reuse, literature lacks of a solid and comprehensive body of knowledge of 

software visualizations targeted to reuse. Consequently, stakeholders may not be able to 

choose reuse-oriented visualizations properly (i.e., based on their quality and concrete 

evidence on their actual effectiveness) for a given scenario. 

In this sense, an informal literature review (first step of the research 

methodology presented in Section 1.5) was conducted for collecting preliminary 

information and providing the initial/basic knowledge about the research topic. This 

served as a basis for a secondary study (a quasi-systematic review), i.e., a more 

comprehensive study for characterizing the state-of-the-art (second step of the research 

methodology), aiming to identify software visualizations targeted to support reuse-

related tasks. 

All the details about the secondary study, including the full protocol description 

and the details on the analysis, are described in [Schots et al. 2014]. The next 

subsections present the approaches and tools identified by means of the informal 

literature review, as well as a framework that was created for categorizing visualizations 

and a brief overview of the planning and execution of the quasi-systematic review. An 

overview of the analysis and the discussion of results are presented in Section 3.4. 

3.3.1 Findings from the Informal Literature Review 

During the informal literature review, a number of works related to visualization 

and reuse were found, but some of them are not related to software development. An 

example is ALOCOM [Klerkx et al. 2006], which aims to visualize a large repository of 

learning objects in the form of small reusable content components. Such components 

are created by disaggregating legacy content, and some metadata are added to each 

component. The visualization gives an overview of the components in the repository, 

including how they are put together, in terms of “is part of” and “has part” relations. 



49 

The concept of component is very small-grained: examples include images, definitions, 

slides, and text fragments. Thus, the semantics of what can be characterized as a 

reusable asset is very wide. There are several other works along these lines; thus, for the 

sake of the scope, it was decided to focus the analysis of related works on software 

development. 

Dy-re (Dynamic reuse) [Biddle et al. 1999] supports programming for reuse by 

displaying dynamic information of the internal structure of the software under 

development. It aims to make it easy to detect patterns of usage and patterns of 

dependence within a program – these patterns may help the programmer to determine 

how best to articulate the structure of a program using components that will be useful 

and independent for later reuse in other contexts [Biddle et al. 1999]. 

Dyno [Biddle et al. 1999] [Marshall 2001] [Marshall et al. 2003] is a tool for 

helping developers in reusing Java code, by means of a view based on their experience 

of using such code. It allows the use of visualization templates written in Java, which 

can be generic (for any data type) or specific (for certain data types). Developers can 

write their own templates. According to [Marshall 2001], the developer himself/herself 

must map visualizations to data, i.e., must inform “which method in the component 

maps to which sequence”, and this can be a one-to-one or a many-to-one mapping. The 

author recognizes that this can be a problem, since “a developer may not know enough 

to know which methods should map to which sequence” [Marshall 2001]. 

Alonso and Frakes (2000) propose an architecture for visualizing reusable 

components from a software library, along with an example implementation. The 

architecture is based on two architectural styles: (i) pipes and filters, and (ii) repository. 

The repository stores and manages the assets and their metadata; the visual 

representation displays the data using a visualization metaphor; finally, the intermediate 

representation enables data interchange between the repository and the visualization 

[Alonso & Frakes 2000]. There is a strong dependency of the search input query, which 

indicates that the usefulness of the results is closely related to the quality of the search. 

The Variant Analysis approach [Duszynski et al. 2011] focuses on recovering 

and visualizing information about commonalities and differences in the source code of 

multiple similar software systems (delivering quantitative information about similarities 

across system variants). By identifying parts suitable for transformation into reusable 

assets and planning necessary implementation steps, it aims at supporting the reuse 



50 

potential assessment and the migration to systematic software reuse, besides providing 

an overview of commonality distribution in the whole analyzed system family. 

These publications compounded an initial data set that served as a preliminary 

input of control for the quasi-systematic review. In addition, the need for organizing the 

information from the findings motivated the extension of a framework for categorizing 

visualization approaches. This framework is presented as follows, instantiated to the 

software reuse scenario. 

3.3.2 An Extended Framework for Categorizing Visualization Approaches 

In order to identify the set of data to be extracted from the findings, this work 

uses the five dimensions of software visualization from [Maletic et al. 2002]. Other 

researchers have been using such dimensions for classifying their visualization tools 

(e.g. [Ripley et al. 2007]). The dimensions reflect the why, who, where, what, and how 

of the software visualization [Maletic et al. 2002]. 

In order to encompass other aspects related to the findings, two additional, 

complementary dimensions are proposed and used in this work: one related to the 

requirements of the visualization approaches (which) and other related to evidence on 

their use (worthwhile). All the dimensions are depicted in Figure 3.4. 

 

Figure 3.4 – Dimensions of software visualizations (extended from [Maletic et al. 

2002]) 

Details on the dimensions and their corresponding information fields are 

described in the next subsections. Such dimensions are used in the quasi-systematic 

review for better organizing the findings [Schots et al. 2014]. 



51 

3.3.2.1 Task – why is the visualization needed? 

This dimension indicates what particular software engineering tasks are 

supported by the software visualization system [Maletic et al. 2002]. In order to 

understand why each of the visualizations is needed in the reuse scenario, it is important 

to identify which problems, motivations, or issues leaded to the development of such 

approach. In this sense, the following fields are used in this work: 

 Approach motivation/Assumptions 

 Approach goals 

 Visualizations’ reuse-specific goals 

Besides identifying which are the supported tasks, one important aspect that can 

be relevant is when – i.e., in which software engineering activities and stages of the 

development process – the visualization can be used. Particularly in this work, the 

purpose is to identify the software engineering activities (in which there are reuse 

opportunities) that are somehow supported by the software visualizations. This can 

provide an overview of current tools’ coverage, as well as identify opportunities for 

research and improvements. 

Although this could be considered as an additional dimension (when is it 

visualized?), it was decided to keep it along with the task dimension (in which the 

supported tasks are identified), so that both can provide complementary information. 

Thus, this work resorts to the following fields: 

 Software engineering activities addressed by the visualizations 

 Reuse-related tasks supported by the visualizations 

3.3.2.2 Audience – who will use the visualization? 

The audience dimension defines the attributes of the users of the visualization 

system [Maletic et al. 2002]. As stated in Section 3.1, in order to make visualizations 

effective in their goal, it is noteworthy to keep in mind that the representations and 

visual metaphors must be adapted to the stakeholders’ perception abilities, not the 

opposite [Diehl 2007]. The audience is represented in this work by the following field: 

 Visualizations’ audience (stakeholders who can benefit from the visualizations) 



52 

3.3.2.3 Target – what is the data source to represent? 

The target of a software visualization system defines which (low level) aspects 

of the software are visualized, i.e., the work product, artifact, or part of the environment 

of the software system [Maletic et al. 2002]. Examples include architecture, design, 

algorithm, source code, data, execution/trace information etc. Other types of target 

source data are measurements and metrics extracted from software, process information, 

and documentation; this type of information can support the software process and team 

management activities [Maletic et al. 2002]. 

Software development surroundings themselves also provide several aspects that 

can be visualized. The aspects related to this dimension are described in this work by 

the following fields: 

 Visualized items/data (what is visualized) 

 Source of visualized items/data 

 Collection procedure/method of visualized items/data 

3.3.2.4 Representation – how to represent the data? 

This dimension shows how the visualization is constructed based on the 

available information [Maletic et al. 2002]. According to [Few 2009], one of the aspects 

on which the effectiveness of information visualization hinges is the visualizations’ 

ability to represent information clearly and accurately. In this work, the fields used for 

depicting this dimension are: 

 Visualization metaphors used (how it is visualized) 

 Data-to-visualization mapping (input/output) 

 Visualization strategies and techniques 

3.3.2.5 Medium – where to present the visualization? 

The medium is where the visualization is rendered. The user must interact and 

perceive the visualization from some technology. Each medium has different 

characteristics and in consequence is suited for different tasks [Maletic et al. 2002]. 

Some of today’s software visualization tools do not even exploit the graphics power of 

an average PC or laptop [Diehl 2007]. Moreover, the medium dictates how interactions 

may occur, and the effectiveness of visualizations also relies on the humans’ ability to 

interact with them to figure out what the information means [Few 2009]. 



53 

In this work, such dimension is comprised by the following fields: 

 Device and/or environment used for displaying the visualizations (where it is 

visualized) 

 Resources used for interacting with the visualizations 

3.3.2.6 Requirements – which resources are required by or used in the 

visualization? 

An important consideration in any interactive visualization system is 

performance, in particular responsiveness to changes triggered by direct manipulation of 

images [Bavoil et al. 2005]. The use of certain visualizations may become costly, not 

only in terms of processing but also due to specific hardware and software solutions 

which they depend on. This “cost” can be expressed in terms of the visualizations’ 

hardware and software requirements, besides the programming languages, application 

programming interfaces (APIs) and frameworks reused for building it. For capturing 

information of this new dimension, the following fields are used: 

 Hardware and software requirements 

 Programming languages, APIs and frameworks used for building the visualization 

3.3.2.7 Evidence – are the proposed visualizations worthwhile? 

Software visualization tools are continuously being built by researchers and 

software development organizations [Sensalire et al. 2009]. However, according to 

these authors, many of the tool developers perform very limited or no evaluation at all 

of their tools. As a result, as stated by [Mulholland 1997], it may become unclear how 

effective such visualization tools are, either for students or professional programmers; 

moreover, there are some concerns on whether lessons in successive designs of software 

visualization tools, or whether the application of new technologies (e.g., 3D animation 

and the internet) has become the primary goal, rather than the true goal of making 

computer programs easier to understand [Mulholland 1997]. 

In order to determine if visualizations are worthwhile, i.e., effective in helping 

their target users, it is desirable that they are exposed to a proper evaluation [Sensalire et 

al. 2009]. Revealing how software visualization contributes to software understanding 

“requires a systematic investigation of the relationship between cognitive processes 

underlying software comprehension and the software visualization techniques” [Duru et 

al. 2013]. 



54 

Thus, for providing an insight of the visualizations’ worthiness beforehand, this 

dimension aims at characterizing which kinds of evaluations and assessment were 

carried out with the visualization (if any), as well as any indication (or identified 

limitations) for its use. This can be a useful indication for people interested in making 

use of the visualization. 

Because quantitative evaluations that involve humans can be very time-

consuming, at least qualitative evaluations should be performed during the design of 

visualization tools or posthoc [Diehl 2007]. For instance, two criteria that can be used 

for evaluating the mapping of data to visual metaphors are expressiveness and 

effectiveness [Mackinlay 1986] [Maletic et al. 2002]. 

The former refers to the capability of the metaphor to visually represent all the 

information to be visualized (e.g., if the number of visual parameters available in the 

metaphor for displaying information is equal to or greater than the number of data 

values to be visualized). The latter relates to the efficacy of the metaphor as a means of 

representing the information, and can be further distinguished in effectiveness regarding 

the information passing as visually perceived, regarding aesthetic concerns etc. 

[Mackinlay 1986] [Maletic et al. 2002]. 

According to Diehl (2007), typical problems with evaluations of visualization 

techniques are the use of toy data sets and the generation of visual artifacts that suggest 

nonexistent relations; but, above all, many evaluations are biased because they have 

been done by the developers of the visualization [Diehl 2007]. The author also states 

that the lack of empirical studies is a shortcoming not only of software visualization 

research, but also of software engineering and computer science in general, in 

accordance with [Tichy 1998]. 

Therefore, for describing this new dimension, the following fields are included 

in this work: 

 Visualization evaluation methods 

 Application scenarios of the visualizations 

 Evaluated aspects 

 Visualization evaluation results/outcomes 

3.3.3 Outline of the Secondary Study (Quasi-Systematic Review) 

Since this study aims mainly at characterizing the state-of-the-art, it is performed 

by means of a quasi-systematic review [Travassos et al. 2008]. This kind of study is 



55 

also known as systematic mapping study, i.e., a study that aims to identify and 

categorize the research in a fairly broad topic area [Kitchenham et al. 2009]. However, 

since this study must explore the same rigor and formalism for the methodological 

phases of protocol preparation and running (except for the fact that no meta-analysis in 

principle can be applied), the quasi-systematic literature review denomination seems to 

be more appropriate [Travassos et al. 2008]. 

The conducted secondary study aims at characterizing and identifying 

visualization approaches that can be used for somehow supporting software reuse, i.e., 

regardless of the focus of support. The study goals are described in the Goal-Question-

Metric (GQM) format [Basili et al. 1994] as follows: 

Analyze tools and approaches described in publications 

For the purpose of characterizing 

With respect to visualizations for supporting software reuse 

Under the point of view of the researchers 

In the context of software development tasks and organizational tasks 

The objects of this study are the publications that present visualizations 

supporting software reuse. The expected results are (i) the identification of 

visualizations that can be used for supporting software reuse, as well as their features 

and limitations, and (ii) the establishment of a solid body of knowledge on 

visualizations for software reuse. Based on the findings, it is also expected to identify 

desirable features for novel approaches. 

The research questions are partially inspired by the work of Maletic et al. 

(2002), and are decomposed into primary (PQ), secondary (SQ) and tertiary (TQ) 

questions, as follows: 

 PQ: Which visualization approaches have been proposed to support software reuse? 

○ SQ1: How do visualizations support software reuse? 

■ TQ1.1: Which software engineering activities are addressed by the 

visualizations? 

■ TQ1.2: Which reuse-related tasks are supported by these visualizations? 

○ SQ2: To which stakeholders are these visualizations intended/targeted? 

○ SQ3: Which items/data are visually represented? 

■ TQ3.1: Where do these items/data come from? 

■ TQ3.2: How are these items/data collected? 

○ SQ4: Which visualization metaphors are used? 



56 

■ TQ4.1: How are data mapped to the visualizations? 

■ TQ4.2: Which visualization strategies and techniques are employed? 

○ SQ5: Where are the visualizations displayed? 

■ TQ5.1: Which resources can be used for interacting with the visualizations? 

○ SQ6: Which hardware/software resources are needed to deploy and execute the 

visualization tools? 

■ TQ6.1: Which programming languages, APIs, and frameworks are used? 

○ SQ7: Which methods are used for assessing the quality23 of the visualizations (if 

any)? 

■ TQ7.1: In which scenarios are the visualizations employed (if any)? 

■ TQ7.2: Which aspects of the visualizations are evaluated (if any)? 

■ TQ7.3: What are the results/outcomes of the conducted evaluations (if any)? 

The research questions are related to the categorizing information presented in 

Section 3.3.2, according to the mapping presented in Table 3.1. 

Table 3.1 – Mapping between research questions and information to be extracted 

Task 

(why) 

Approach motivation/Assumptions (SQ1) 

Approach goals (SQ1) 

Visualizations’ reuse-specific goals (SQ1) 

Software engineering activities addressed by the visualizations (TQ1.1) 

Reuse-related tasks supported by the visualizations (TQ1.2) 

Audience 

(who) 

Visualizations’ audience (stakeholders who can benefit from the visualizations) 

(SQ2) 

Target 

(what) 

Visualized items/data (what is visualized) (SQ3) 

Source of visualized items/data (TQ3.1) 

Collection procedure/method of visualized items/data (TQ3.2) 

Representation 

(how) 

Visualization metaphors used (how it is visualized) (SQ4) 

Data-to-visualization mapping (input/output) (TQ4.1) 

Visualization strategies and techniques (TQ4.2) 

Medium 

(where) 

Device and/or environment used for displaying the visualizations (where it is 

visualized) (SQ5) 

Resources used for interacting with the visualizations (TQ5.1) 

Requirements 

(which) 

Hardware and software requirements (SQ6) 

Programming languages, APIs, and frameworks used for building the visualization 
(TQ6.1) 

Evidence 

(worthwhile) 

Visualization evaluation methods (SQ7) 

Application scenarios of the visualizations (TQ7.1) 

Evaluated aspects (TQ7.2) 

Visualization evaluation results/outcomes (TQ 7.3) 

The chosen search engine for carrying out the review is Scopus24, due to its 

well-known stability, reliability, interoperability with different referencing systems, and 

                                                 

 
23 Quality evaluation/assessment encompasses any quality attributes, such as effectiveness, efficacy, 

amongst others. 



57 

high coverage – its database indexes most of the publications that are available in 

different digital libraries or other search engines (e.g., Compendex, IEEE Xplore, ACM 

Digital Library, Springer, Web of Science etc.) [Santa Isabel 2011]. Besides, it indexes 

relevant journals and proceedings from the main software engineering conferences that 

comprise software reuse as a topic of interest. Examples of such conferences include: 

 International Conference on Software Reuse (ICSR); 

 International Conference on Software Maintenance (ICSM); 

 European Conference on Software Maintenance and Reengineering (CSMR); 

 International Conference on Information Reuse and Integration (IRI); 

 International Conference on Program Comprehension (ICPC); 

 International Conference on Software Engineering (ICSE). 

 etc. 

Since ACM is the only digital library that contains two of the control 

publications, it was decided to partially overcome this limitation by visiting the ACM 

Author Profile Page25 of the respective authors and searching for the search string terms 

in the titles, abstracts and keywords of each listed publication. This decision was taken 

because the research described in these publications belongs to a specific research group 

and contains a set of related works (in terms of goals and features). More details on this 

issue are discussed in [Schots et al. 2014]. 

Because Portuguese is the native language of the researchers involved in this 

study, it was decided that publications in Portuguese should be analyzed as well. The 

following conferences were considered relevant for the purpose of this research: 

 Brazilian Symposium on Software Engineering (SBES); 

 Brazilian Symposium on Software Components, Architectures and Reuse 

(SBCARS) and its predecessor Workshop on Component-Based Development 

(WDBC); 

 Brazilian Symposium on Software Quality (SBQS). 

Given that the Brazilian digital library (BDBComp26) did not index all the 

proceedings from any of these conferences (until the date of creation of the research 

                                                                                                                                               

 
24 http://www.scopus.com/ 

25 See http://www.acm.org/publications/acm-author-profile-page for details (checked in November 30, 

2013). 

26 http://www.lbd.dcc.ufmg.br/bdbcomp/ 



58 

protocol), a manual search was required, following the same selection procedure 

(described in [Schots et al. 2014]). 

The search string used was ((software OR system OR program OR asset) AND 

(reuse OR reusability OR reusable)) AND (visual OR visualization OR visualisation). 

Details on the definition of the search string can be found in [Schots et al. 2014]. 

Although a large number of publications were obtained, it was decided not to constrain 

the search string, due to the exploratory nature of this study. 

A Portuguese version of the search string was also built: ((software OR sistema 

OR programa OR ativo) AND (reuso OR reúso OR reutilização OR reusabilidade OR 

reusável OR reutilizável)) AND (visual OR visualização). However, no results were 

found in the search engine through this search string. Thus, only the manual search on 

the identified sources should be performed for this language. 

The manual search was performed in the following Brazilian proceedings: 

 Brazilian Symposium on Software Engineering (SBES): from 1987 (1st edition) 

to 2012 (26th edition) (including); 

 Brazilian Symposium on Software Components, Architectures and Reuse 

(SBCARS): from 2007 (1st edition) to 2012 (6th edition) (including); 

 Workshop on Component-Based Development (WDBC): from 2002 (2nd 

edition)27 to 2006 (6th edition) (including); 

 Brazilian Symposium on Software Quality (SBQS): from 2002 (1st edition) to 

2012 (11th edition) (including). 

The search results are listed in Table 3.2. 

Table 3.2 – Study selection data (manual search) 

 SBES WDBC/SBCARS SBQS 

Title and abstract reading 556 158 315 

Number of accepted publications 30 42 26 

Number of rejected publications 526 116 289 

Number of duplicate publications 0 0 0 

Full reading 30 42 26 

Number of accepted publications 0 0 0 

Number of rejected publications 30 42 26 

Number of duplicate publications 0 0 0 

                                                 

 
27 The first edition of WDBC has no proceedings; selected works evaluated by the program committee 

were invited for publication in a book: Gimenes, I. M. S., Huzita, E. H. M. (2005). Component-Based 

Development: Concepts and Techniques [Desenvolvimento baseado em componentes: conceitos e 

técnicas] (in Portuguese), 1st ed., 304p., Ciência Moderna. 



59 

As it can be seen, from the 1030 analyzed publications, no one was selected. 

Most of the publications selected during the title/abstract reading (98) were related to 

software reuse; however, in the full reading, it was noticed that no publication mentions 

the use of visualization resources with the goal of supporting software reuse. 

Regarding the search engines, the searches were performed on October 1st, 2012 

at 3PM local time (UTC/GMT -3) in both the Scopus search engine and the selected 

ACM Author Profile Pages. Although no time constraint was set, it is believed from the 

search results that the publications were obtained in the range between 1980 and 

September 2012. However, publications that had not been indexed until the date of 

search may have been added to the digital libraries afterwards. 

In total, 1159 publications were retrieved from Scopus by performing the search 

with the chosen search string. The publications were exported from this search engine 

and formatted in tables. The search performed on the ACM Author Profile Pages was 

conducted in a different way: all the publications listed in the pages of each key author 

identified from the control publications (as discussed in [Schots et al. 2014]) were 

manually exported, and their title, authors and keywords were extracted using regular 

expressions in a text editing tool (Notepad++). After that, duplicates were semi-

automatically identified and removed, resulting in 304 results. Then, a semi-automatic 

search was performed using the search string terms, and 6 publications were returned. 

Table 3.3 summarizes the study selection stages in terms of accepted, rejected, 

and duplicate publications. From this point, a M.Sc. student (referred to as second 

researcher) supported the selection stages listed in this table. 

Table 3.3 – Study selection data (search engines) 

 Scopus ACM 

 
1st 

researcher 

2nd 

researcher 

Both 

researchers 

Title reading 1159 1159 6 

Number of accepted publications 411 320 6 

Number of rejected publications 740 831 0 

Number of duplicate publications 8 8 0 

Abstract reading 411 320 6 

Number of accepted publications 77 45 6 

Number of rejected publications 326 275 0 

Number of duplicate publications 8 0 0 

Full reading 77 45 6 

Number of accepted publications 29 19 5 

Number of rejected publications 47 26 0 

Number of duplicate publications 1 0 1 



60 

During the consensus stage (for conflict resolution), both researchers selected 19 

publications, so these did not need to be reanalyzed. From the 15 publications selected 

only by the first researcher, 13 were included after discussion, and 2 were rejected. 

From the 5 publications selected only by the second researcher, 2 were included after 

discussion, and 3 were rejected (being 1 by a third researcher, since consensus had not 

been achieved). Details on the consensus stage can be found in [Schots et al. 2014]. 

Beyond one of the control publications that was manually added (because it was 

not indexed by any academic search engine), another related publication [Anslow et al. 

2004] was manually added. It was found based on the citations of the ACM key authors. 

It was agreed in the consensus stage to include it, along with the control publications 

previously included. In total, 36 publications were selected, describing 34 approach 

proposals. They are listed in [Schots et al. 2014]. 

3.4 Discussion 

Regarding the way visualizations aim to support software reuse (SQ1), it was 

noticed that ever since the first identified works were published, there was already a 

concern on supporting reuse of a variety of artifacts [Mancoridis et al. 1993] 

[Constantopoulos et al. 1995]. It can also be noticed that most approach goals are 

artifact-oriented, not taking into account the dynamics of reuse in an organization (i.e., 

correlating projects, assets, users/developers and the relationship between these core 

elements). 

Although approaches somehow encompass diverse software engineering 

activities (TQ1.1), it can be noticed that only a few of them present integration among 

different activities. Particularly, in software development for and with reuse, it is 

relevant not only to understand assets in terms of their properties and metadata, but also 

to understand how they are being used and maintained, in order to increase reuse 

confidence. Another concern about the approaches is the lack of integration with 

development environments that can provide interfaces to other activities. 

There is support for a variety of reuse tasks (TQ1.2), and understanding assets is 

by far the most supported one. This is indeed expected, since understanding is a likely 

benefit in employing visualizations. Nevertheless, research on using visualization for 

restructuring assets for reuse is still much underexploited: the identified works are very 

specific, with limited customizability and integration support. 



61 

In terms of the different aspects that can be the focus of comprehension, most 

approaches support understanding the structure of an asset. Evolution information about 

reusable assets is a particular absence of existing works – the only work found deals 

with comparing refinement sets of different versions of feature models, and it is based 

on a trace repository; no other evolution aspects are taken into account by any approach. 

Creating a modular architecture (including repositories and visualizations) for 

supporting different stages of the analysis process (e.g., [Anslow et al. 2004]) may give 

more flexibility to the approaches, allowing new functionalities to be added and, 

consequently more support for software engineering activities and tasks. 

Although there is a reasonable variety of stakeholder support (SQ2), only a few 

works support more than one kind of stakeholder simultaneously. The lack of multi-

stakeholder approaches hamper the evaluation of how well organization’s goals related 

to reuse are being accomplished, under the perspectives of each reuse stakeholder (e.g., 

producers, consumers and reuse managers). 

Particularly, the only approach that mentions support for managers [Mancoridis 

et al. 1993] states that the visualization is targeted to developers, but actions that could 

eventually be performed by managers are pointed out. However, since it only presents 

technical details about a software project, it does not seem feasible for the reality of 

project management (and top management), which is a key role in reuse initiatives. 

The majority of the visualized items and data (SQ3) are source code artifacts 

(object-oriented entities, such as classes and relationships, or software components). In 

spite of this imbalance, there are many different kinds of artifacts (from different 

software development stages) that can be visualized, such as design artifacts, 

requirements, and web services. 

There are few approaches for visualizing software repositories with the intention 

to promote reuse (providing relevant reuse data), and no repository information or 

metadata are visually represented aiming to increase awareness. According to [Orso et 

al. 2000], approaches that employ reuse repositories must store not only the reusable 

assets, but also the information about them (usually called metadata), e.g., a short 

description of their functionality and non-functional requirements. Understanding a 

reuse repository beyond its structure (e.g., in terms of how its assets have been used) 

may improve reuse planning and considerably increase the chances of reuse. 

It is interesting to observe that the data sources (TQ3.1) are usually the source 

code of a program and databases. Only a few approaches combine information from 



62 

different sources (e.g., [Kelleher 2005]), and some are compatible with a limited set of 

data types. Although it is known that several kinds of information may be used for 

supporting reuse, it was noticed that some common data sources are not explored by any 

of the works (e.g., VCS repositories, issue trackers etc.). Moreover, although many 

assets have additional related data available online, such data are usually underexplored. 

Other possibilities for the use of data should also be explored in the reuse 

scenario. Evolution information, for instance, can be relevant since it allows assessing 

an asset’s stability and frequency of updates (i.e., how active the development 

community is), supporting the decision making regarding its reuse. Projects’ history is 

also useful for analyzing projects in which there have been reuse attempts and, from 

those, which were successful and why. These sources also allow identifying new assets 

candidate to reuse. Social information (e.g., who developed/reused what) seems to be 

important as well, and may be quite relevant for supporting reuse decisions, but this is 

also not well exploited. 

Since each visualization technique may have some constraints, each collection 

procedure (TQ3.2) must deal with this issue and make the proper arrangements. For 

instance, in [Kelleher 2005], some format conversions are mentioned in order to make 

the data ready to be represented by the intended visualization. During the data collection 

procedure, the source may still require some transformations to have the data set in the 

correct format to be used by different representations. Some authors also defend the use 

of intermediary formats for storing the collected data (e.g., [Alonso & Frakes 2000] and 

[Anslow et al. 2004]) in order to make them reusable in different visualizations. 

Regarding the representation of data (SQ4), as expected, different abstractions 

are used for representing different data. Although several types of abstractions are used, 

publications lack a discussion on how/why a given metaphor was chosen and, more 

importantly, whether it is effective or not in its purpose. The mapping between data and 

visualizations (TQ4.1) is barely described in most of the publications. Some do not even 

mention how data maps to visualization, so the reader/user has to “guess” it, which 

sometimes can be risky and lead to wrong interpretations of data. 

Moreover, although several visualization strategies and techniques are used 

(TQ4.2), only a few approaches make a comprehensive use of them. This does not mean 

that every possible technique should be employed, but some approaches may require 

more interaction facilities, which may increase their usability. 



63 

In this scenario, customizable approaches may support different perception 

needs and give more flexibility to the user, in order to tackle a wider range of software 

engineering tasks. However, there is a lack of mechanisms that offer flexibility to 

software stakeholders in customizing their visualizations, so one can focus on relevant 

data and information to improve the understanding of their activities (as already stated 

in [Silva et al. 2012]). In the other hand, letting the user decide which visualization to 

use may not be adequate, as he/she may not have experience with the metaphors or may 

not know which metaphors better fit the structure to be visualized (as discussed in 

Section 3.3.1). 

In [Marshall 2001], for instance, the amount of required mapping information 

that the user needs to supply was intended to be minimized, but the user must map 

visualizations to data. As mentioned in Section 3.3.1, the author recognizes that this can 

be a problem, as the purpose is to understand the component, and “a developer may not 

know enough to know which methods should map to which sequence”. However, there 

is no tool support for this task. According to the author, “it is bordering on the 

impossible for a tool to be able to automatically create mappings from one arbitrary 

name to another arbitrary name, so it is necessary for the developer to say which method 

in the component maps to which sequence”, and this can be a one-to-one or a many-to-

one mapping [Marshall 2001]. Nevertheless, there should be at least some kind of 

support for filtering inappropriate visualizations according to underlying restrictions 

associated with the data. 

The flexibility may also be compromised due to some approach restrictions. In 

[Marshall et al. 2003], the collected information for creating visualizations as a 

complement for documentation is mostly based on the developers’ experiences of using 

the components, and creating visualizations “does require some prior knowledge of the 

component and its important features and uses (i.e., knowing what to focus on in the 

visualization)” [Marshall et al. 2003]. This means that “any configuration is better left 

to experienced users who wish to create visualizations of that component for other 

developers”. Nevertheless, there does not seem to be any support for either the 

developer or other users in creating, choosing, or selecting visualizations. 

Some works try to generate flexible visualizations, but they usually require 

expertise knowledge (e.g., programming skills for configuring/mapping views and data) 

for stakeholders to operate them. A list of works in this regard can be found in [Silva et 



64 

al. 2012]. When an approach makes an assumption of a particular technical knowledge 

for creating the visualizations, it may potentially inhibit some stakeholders to use it. 

Regardless of the number of occurrences for each of the strategies, it is unwise 

to affirm that certain techniques are more important than others. Visualization strategies 

and techniques must be chosen according to the goals. Moreover, the available data 

must meet the representation constraints associated to the employed visualizations. 

From the approaches that use computers as a medium for displaying information 

(SQ5), only a few explicitly mention that they work in (or are integrated with) a web 

environment. Depending on the focus of the task and the sources of data, web 

environments may be more appropriate, since computers are usually equipped with web 

browsers, not requiring any additional installation procedure. Moreover, in spite of the 

existence of these web-based approaches, it cannot be stated that they are supported on 

multiple devices, since some (such as smartphones and tablets) contain displaying and 

interaction constraints that must be accounted for when designing visualizations. 

Additionally, even among more recent approaches, none mentions or focuses on 

mobile devices as an alternative to execute and interact with the visualizations. They 

can be useful for monitoring-related activities for some stakeholders (e.g., managers and 

top management, who may not access a computer all the time, and are often “on the go” 

for business issues). 

Regarding the resources used for interacting with the visualizations (TQ5.1), it is 

not surprising that mouse and keyboard are the main ones, as current information 

visualization systems are still largely focused on these peripherals for interacting with 

data [Lee et al. 2012]. 

In spite of that, there has been a constantly growing interest in other research 

areas for incorporating other natural forms of interaction such as touch, speech, 

gestures, handwriting, and vision. However, these new forms of interaction need to 

“follow the basic rules of interaction design, which means well-defined modes of 

expression, a clear conceptual model of the way they interact with the system, their 

consequences, and means of navigating unintended consequences” [Norman 2010]. 

According to the same author, because gesturing is a natural, automatic 

behavior, systems also have to “be tuned to avoid false responses to movements that 

were not intended to be system inputs”. Thus, as an interaction technique, gestures 

“need time to be better developed”, so that interaction designers can “understand how 

best to deploy them” [Norman 2010]. 



65 

Software and hardware requirements (SQ6) are not discussed properly in the 

publications, which hampers the proper evaluation of the feasibility of the approaches to 

particular contexts. The same occurs with information about programming languages, 

APIs, and frameworks (TQ6.1), which would help evaluate how up-to-date a tool is, as 

well as to identify any potential integration constraint. It can be noticed that some of the 

technologies used by the approaches are already in disuse. 

As mentioned previously, a particular concern is the lack of integration with 

development environments: this hampers integration with other tools, and may require 

additional efforts from stakeholders to cope with reuse tasks. IDEs have an enormous 

amount of information about the developer and his/her system, and using the IDE as the 

source of information is the closest way to understand the developer’s intentions 

[Robbes & Lanza 2006]. An effective integration with existing IDEs could provide 

useful information for each approach purpose. 

Finally, in the evaluation dimension, it was observed that the majority of the 

works does not present a proper evaluation on their use (SQ7): some of them do not 

present any at all. This can be partially explained by the lack of demand for evidence in 

publications (a scenario that has been changing in the last years). In many cases, the 

evaluation is done by the authors themselves, which is subjective and may bring some 

bias. The absence of proper evaluations may raise questions as regards to meeting the 

purpose to which the approaches were proposed/constructed. This can be seen as a 

major downside. 

Moreover, the reported data on the evaluations in general lack more useful 

details, so that it cannot be understood in which scenarios they have been conducted 

(TQ7.1), which aspects have been evaluated and why (TQ7.2), how the analysis has 

been made and which strengths and opportunities for improvements have been 

identified (TQ7.3). Recent works present a proper experimental soundness that helps to 

understand the identified limitations, so that other researches aiming to support reuse 

can use their evaluation report as a basis. 

An interesting finding is that there is a balance between the evaluation scenarios 

(TQ7.1), since not only academic projects are used, but open source projects are also 

taken into account (which allows the verification of results), as well as 

commercial/industrial (thus strengthening the interaction with industry). Still, the field 

lacks studies on whether the perceptive and cognitive abilities of the stakeholders in 

carrying out software reuse tasks are properly stimulated. Particularly, since industry 



66 

stakeholders can directly benefit from the results of such studies, experiments in 

industry are strongly recommended for strengthening interaction with academia. 

Some limitations of this study include: (i) the chosen search string, which may 

have not captured some relevant related work; (ii) the scope of analysis, which was 

based solely on the content of the retrieved publications (i.e., no other source was taken 

into account); (iii) the lack of variety of search engines used, which may not be 

representative, and (iv) the publication selection and the data analysis, which were made 

from the viewpoint of the researchers, and may be biased. 

More details on the analysis and the quasi-systematic review process as a whole 

can be found in [Schots et al. 2014]. 

3.5 Final Remarks 

Software visualization can be a useful resource for supporting software reuse 

demands, especially the ones related to awareness and comprehension. In spite of that, 

as shown in this chapter, its potential has not yet been thoroughly explored, i.e., there is 

room for research and development in this regard. Although there are publications in the 

literature that propose visualization approaches geared specifically for software reuse, 

few approaches aim at assisting reuse management as a whole, i.e., providing the 

necessary support to carry on a range of software reuse tasks. 

The software engineering community can use the results found in the quasi-

systematic review as a starting point for future research directions that can be addressed 

when choosing, instantiating, or developing visualization-based approaches for 

supporting software reuse. Besides, the presented information can be used as a body of 

knowledge not only to support the decision making regarding the choice of visualization 

approaches for software reuse, but also to conduct other secondary studies on software 

visualization applied to another field of interest (e.g., software maintenance). This study 

can also be seen as a summarized catalog of the approaches, whose further information 

can be obtained from the corresponding original publications. 

The identified limitations of the current findings and the unexploited research 

opportunities point out directions and desirable features for a novel approach for 

providing awareness and visualization support to activities related to software reuse. 

Such approach is presented in the next chapter. 



67 

CHAPTER 4 – PROPOSED APPROACH: THE APPRAISER 

ENVIRONMENT 

This chapter introduces the approach proposed in this work (called 

APPRAiSER), which uses visualization resources for supporting 

software reuse tasks. The environment that concretizes the approach 

and its elements are presented along with some aspects about their 

implementation. 

4.1 Introduction 

Based in the literature reports and the semi-structured interviews (both described 

in Chapter 2), some issues in implementing a reuse program were identified. These 

issues allow the identification of a number of desirable features for an environment to 

support software reuse. However, dealing with all these issues would not be possible in 

the context of a single thesis. 

For illustration purposes, the Odyssey environment28, developed by the Software 

Reuse team at COPPE/UFRJ, comprises a number of Undergraduate Final Projects, 

M.Sc. dissertations and Ph.D. theses since its inception, which resulted in several 

publications (e.g., [Braga et al. 2006], [Blois et al. 2006] and [Fernandes et al. 2011]) 

and research collaborations (e.g., [Mello et al. 2014]). 

In fact, based on the results from the quasi-systematic review, it can be noticed 

that some of the identified works have addressed (even partially) part of the identified 

issues. For instance, Ali (2009) supports the understanding of Java software libraries in 

terms of their structure [Ali 2009], while in [Biddle et al. 1999] the support is also given 

in terms of understanding behavior. However, despite the limitations of these 

approaches (discussed in Section 3.4), it turns out that they focus on individual 

problems, which may not be effective, since the effective implementation of reuse 

initiatives requires dealing with other activities that are in some ways interdependent. 

Moreover, the performed research could not identify any work trying to address 

in an integrated way a number of reuse tasks in which visualization and comprehension 

                                                 

 
28 http://reuse.cos.ufrj.br/odyssey 



68 

aspects seem to be important, especially regarding the exploration of a reuse repository 

as a whole (searching for a reusable assets or analyzing how a given asset has been 

reused) and the collection of information from data sources that can provide additional 

information for reuse. 

As discussed in Chapter 2, it is necessary to provide visualization metaphors for 

representing reuse data, so that stakeholders can interact with and manipulate such data 

and obtain answers to their tasks quickly, besides decreasing the cognitive overload. In 

this sense, this work aims to define and implement an interactive visualization approach 

that supports introducing, instigating, and monitoring software reuse initiatives. This is 

accomplished by assisting stakeholders in awareness and comprehension aspects related 

to executing some software reuse tasks, such as exploring a reuse repository, obtaining 

and understanding information regarding reusable assets, and monitoring reuse 

initiatives. 

The realization of the proposed approach (third step of the research methodology 

presented in Section 1.5) is achieved through an environment called APPRAiSER: an 

Approach for Perceiving and Promoting Reuse by Awareness in Software Engineering 

and Reengineering [Schots 2014]. An appraiser “has the knowledge and expertise 

necessary to estimate the value of an asset, or the likelihood of an event occurring, and 

the cost of such an occurrence”29, which relate to the expectations of this work. 

APPRAiSER aims to assist the execution of some tasks related to software 

reuse, both at the organizational level and the project level. At the organizational level, 

it focuses on supporting the management of assets and their surroundings, as well as 

monitoring reuse initiatives. At the project level, APPRAiSER aims to support the 

search and selection of assets to reuse, as well as the understanding of such assets and 

their properties. Moreover, it supports the reengineering of existing assets for reuse. 

Regarding reuse stakeholders, it is expected to allow: 

 developers to better explore a reuse repository and its assets, accessing all the 

available information about them (when developing with reuse) and better 

understand how reusable their developed assets are, and realize how to improve 

their assets for future reuse (when developing for reuse); 

                                                 

 
29 http://www.investopedia.com/terms/a/appraiser.asp 



69 

 reuse managers to evaluate assets candidate to reuse and the reuse repository as a 

whole (e.g., in order to examine possible reasons why a given asset is not being 

reused and whether it should be discontinued), as well as identify experts (producers 

and consumers) on a reusable asset; and 

 all stakeholders to monitor the progress of reuse initiatives and be aware of how 

reuse can help achieving some development goals with less effort and time, 

increasing their efficiency and efficacy. 

Through the APPRAiSER environment, it is expected to provide reuse 

awareness to stakeholders through visualization resources that can help them be aware 

of the reuse scenario as a whole and perform reuse tasks more accurately. To this end, 

this work also uses and extends some academic (Undergraduate and Master) projects. 

It must be emphasized that it is not assumed that the proposed environment is 

sufficient to address all the issues, since there are several non-technical aspects related 

to a successful reuse program (as mentioned in Chapter 2). Thus, they are in no way 

intended to exhaust the corresponding issues, but just a way of approaching them. 

Moreover, although it is believed that the use of APPRAiSER can contribute to dealing 

with some non-technical aspects, this work focuses only on some technical aspects of a 

reuse initiative. 

It is known that there are several kinds of reusable assets. However, as stated in 

Section 2.5.2.2, using source code as reusable assets allows the benefits arising from 

reuse to be more noticeable by organizations. Moreover, reuse of source code artifacts is 

still on the mainstream of software development [Schots & Werner 2013]. Thus, in this 

work, APPRAiSER focuses mainly on object-oriented source code artifacts (including 

frameworks and libraries, assuming that they are packaged somehow). 

4.2 APPRAiSER Elements 

Since visualization tools become more useful when they operate in an 

environment that can provide integration with other tools and resources [Werner et al. 

2011], the APPRAiSER environment comprises a suite of elements/tools30, which are 

briefly described in the next subsections. An overview on how these tools are integrated 

is presented in Figure 4.1. 

                                                 

 
30 Most of these tools were or are being developed in collaboration with other students, as described later. 



70 

 

Figure 4.1 – APPRAiSER Overview 

Figure 4.2, in turn, presents in a nutshell a mapping between the supported 

stakeholders, the tools, and the reuse tasks they are supposed to meet (based on the tasks 

listed in Table 2.1), in order to allow a better understanding of the expected benefits of 

the approach. Although other stakeholders may benefit from the approach features, the 

focus of this work are the ones depicted in this figure. Moreover, as stated in Section 

2.3, a given task may be executed with a different focus by each kind of stakeholder. 

 

Figure 4.2 – Mapping between stakeholders, reuse tasks and APPRAiSER tools 

Details on the each of the APPRAiSER elements are discussed in the next 

subsections. 

4.2.1 Repository Miner 

As mentioned in Chapter 2, software reuse can be sometimes restrained by the 

loss or overlook of relevant information. Moreover, as stated in Section 3.4, some 



71 

common data sources are underestimated. It is important to consider that an asset of 

good quality may not be reused due to the lack of information about it. Such 

information is important to ensure that they can be retrieved according to the 

developer’s needs [Hadji et al. 2008]. 

In this sense, the Repository Miner mechanism is responsible for mining 

software repositories, both organizational (internal) and external, searching for different 

kinds of reuse-related information, including evolution, social, and metadata 

information, which is delivered to the tools that compose the APPRAiSER environment 

and the Metrics Extractor mechanism. 

Three submodules compose the Repository Miner, as follows: 

 The Reuse Repository Miner collects assets and their metadata from reuse 

repositories, supporting the maintenance of reuse initiatives. It provides social 

information regarding producers (organization, developers, contact information, 

website), as well as assets’ descriptions, licenses, dependencies, among others. 

 The VCS Miner captures information from VCS repositories, such as commits, 

authors, dates, log messages and so on. According to the repository layouts, it can 

also obtain additional information, such as the number and frequency of releases, 

among others. Moreover, it allows analyzing projects’ history for identifying reuse 

occurrences, which can indicate (i) how assets present in the reuse repository are 

being reused, and (ii) assets that are frequently reused and can be suggested as 

candidate assets to the reuse repository (depending on organizational criteria). 

 The Issue Tracker Miner obtains issues (such as reported problems and feature 

requests) from issue tracker repositories. It also collects metadata regarding the 

issues’ status, priority, start and due date, percentage of work done and interested 

parties. 

Among the Repository Miner submodules, the VCS Miner is the most critical in 

terms of interchangeability, since there are several software projects stored in different 

version control repository technologies, such as CVS, SVN, Git, and Mercurial. The 

diversity of such technologies would require specific connectors to be implemented. To 

overcome this limitation and gather historical information from different VCSs, 

EvolTrack-VCS connector [Werner et al. 2011] will be incorporated to APPRAiSER. It 

makes use of the Maven SCM API, which provides mechanisms for accessing version 

control repositories via generic interfaces. EvolTrack-VCS also aims to provide 

extensibility, so that other VCSs can be added over time, requiring only the 



72 

implementation of some interfaces. Currently, the connector communicates with 12 

popular (commercial and open source) VCSs [Werner et al. 2011]. 

The Reuse Repository Miner uses the Maven API for accessing the open source 

Maven Repository31 and for creating a local repository for the organization. This 

decision was made due to the large variety of artifacts of this repository (around 72,978 

artifacts and 628,615 versions)32 and due to the technology stability. The 

communication with Maven repositories is made through the REST (Representational 

State Transfer) API. An existing implementation [Chaves 2013] will be adapted and 

integrated to APPRAiSER. 

The Issue Tracker Miner, in turn, will use the Redmine REST API33, assuming 

the use of the Redmine issue tracker system, also based in an existing implementation 

[Queiroz et al. 2012]. It is intended to reuse a more generic and comprehensive solution, 

such as Mylyn API connectors34; however, a deeper analysis is required to this end. 

A kernel module will orchestrate the flow of information between the 

APPRAiSER modules and specify the required interfaces to be implemented by plug-

ins. All the process can be triggered by the Repository Miner, which keeps listening to 

software repositories periodically seeking for new data35. Repository Miner mechanisms 

can also be mere observers, being activated by triggers or hooks – some data providers 

(such as VCS repositories) implement such features. 

It is intended to implement the data interchange between most of the modules 

using REST and JSON (JavaScript Object Notation)36 solutions, since they are 

lightweight and offer a more human-friendly way of representing data. Besides, this 

allows data to be reused in different visualizations (as discussed in Section 3.4). 

Although JSON is derived from JavaScript, it can be read and written by several 

programming languages. 

                                                 

 
31 http://search.maven.org/ 

32 http://search.maven.org/#stats (data from March 13, 2014). 

33 http://www.redmine.org/projects/redmine/wiki/Rest_api 

34 https://wiki.eclipse.org/Mylyn/Integrator_Reference#Tasks_API 

35 EvolTrack-VCS, for instance, can operate in two built-in modes of extraction: (i) real-time mode, in 

which the connector searches for a new version (if any) in the repository to add it immediately to the 

evolution flow, and (ii) traditional mode (real-time option off), only working with previously selected 

versions [Werner et al. 2011]. 

36 http://json.org/ 



73 

It is also intended to incorporate additional data from Github, through the Github 

API37. Particularly, source code data can be analyzed through an Abstract Syntax Tree 

(AST), which organizes the source code in a tree representation, allowing the creation 

of links between pieces of code. Eclipse provides an AST implementation. 

4.2.2 Metrics Extractor 

The Metrics Extractor mechanism is responsible for handling and manipulating 

the input from the Repository Miner, making the necessary calculations and 

aggregations. It is not embedded into the Repository Miner so that their particular 

operations can be performed separately, allowing reuse of the same “raw” data provided 

by each of them. 

The current implementation of the Metrics Extractor is based on Metrics238 

Eclipse plug-in, whose modules responsible for reading the metrics and extracting the 

measurements were reused [Palmieri et al. 2013]. This plug-in was chosen because it is 

easy to reuse, it is open source, and it allows the inclusion of new metrics, in addition to 

providing a large number of metrics that can support reusability assessment (e.g., lack 

of cohesion, depth of inheritance tree and number of children). 

In order to effectively understand a metric value, one must need to look at some 

reference point, i.e., thresholds [Lanza & Marinescu 2006], which can be based on 

statistical information or a “common sense” (i.e., implicitly given by observations). 

Because there can be specific organizational parameters or other impact factors, 

thresholds can be defined/obtained in three different ways: (i) based on metrics datasets 

(such as COMETS [Couto et al. 2013] [Oliveira et al. 2014]), (ii) based on calculated 

values from organization’s data (e.g., obtained from the Repository Miner), and (iii) 

customized values, manually informed by the organization. 

The composition of metrics and thresholds characterizes an evaluation plan, 

inspired by the detection strategies found in [Lanza & Marinescu 2006]. It consists of a 

set of comparative associations between measures and thresholds that work as a “rule” 

that characterizes a particular situation. If the result of all measure-threshold 

comparisons is true, this indicates the occurrence of the specified situation [Palmieri et 

al. 2013]. 

                                                 

 
37 http://developer.github.com/v3/ 

38 http://metrics2.sourceforge.net/ 



74 

Both the information related to the metrics extraction and the evaluation plans 

are stored in a database, which serves as a bridge between the Metrics Extractor and 

APPRAiSER tools, sharing the data required by the visualizations. The steps of 

extracting data and metadata can be accomplished through data mining techniques. 

For allowing stakeholders to create their own evaluation plans, as well as reuse 

(and customize) previously existing plans, a GUI was implemented in the Eclipse IDE 

[Palmieri et al. 2013]. A web GUI is going to be implemented as well. Currently, such 

plans are used for analyzing assets and projects developed in Java. Figure 4.3 displays 

the selection and creation of an evaluation plan. 

 

Figure 4.3 – An example of Evaluation Plan in Eclipse [Palmieri et al. 2013] 

In order to provide an up-to-date status of the reuse scenario, all the integrated 

visualizations must be automatically updated (in real time or in configured intervals), 

displaying metric value changes. For real-time updating of the visualization tools, the 

Observer pattern is used, so that views are notified and updated in an event occurrence 

(such as changes performed in another view or changes in metric values), if desired. 

4.2.3 GraphVCS 

Visualizing a project evolution can facilitate comprehension and support 

decision-making by the development team, as well as support the execution of more 

specific tasks, such as configuration management audits, thus complementing VCS 

client tools. In this sense, GraphVCS [Pereira & Schots 2011] aims at providing a better 

comprehension of the evolution of versioned software projects, using visualization 



75 

resources and techniques to allow exploring the structure of software repositories and 

facilitate the identification of potential problems. 

The repository structure is represented in GraphVCS through visual graphs, in 

which each operation commit and project milestones (tags) are represented as nodes, 

while edges represent the main line of development (trunk) or its derivations (branches). 

The tool allows pan and zoom operations, as well as drill-down to a given version. In 

order to facilitate the location of project information, a search tool is integrated with the 

visualization features, allowing to filter the displayed information according to their 

relevance. This facilitates the exhibition of details on demand, and allows for 

maintaining context without losing the focus of the task. The search can be performed 

by date, version ID/number, commit messages, author, and file. A commit statistics 

view is also displayed for providing additional information, such as commit frequency. 

In terms of software reuse tasks, a useful resource for evaluating reusable assets 

is their history, which is usually stored in VCS repositories. Such information is 

relevant because it allows assessing assets’ stability and frequency of updates (i.e., how 

active the development community is), supporting the decision making regarding their 

reuse. 

As mentioned in Section 3.4, projects’ history is also useful for analyzing 

projects in which there has been reuse attempts and, from those, which were successful 

and why. It also supports identifying new assets candidate to reuse. Thus, GraphVCS 

can be integrated to the APPRAiSER environment for supporting these needs. 

A proof of concept of GraphVCS approach was implemented using the 

Subversion version control system. By integrating GraphVCS with APPRAiSER, the 

repository implementation will become VCS-independent, enabling communication 

with different types of repository. For the generation of visualization, the Prefuse39 

visualization library is used. A graph layout implementation was extended in order to 

display trunks and branches in a more intuitive way. For the statistics view, the 

JFreeChart40 library is used. 

Figure 4.4 shows an excerpt of the tool, demonstrating the search for a given 

commit message. The project committers (listed on the left) can be used as filtering 

criteria. Commit activity is shown on the bottom left. 

                                                 

 
39 http://www.prefuse.org/ 

40 http://www.jfree.org/jfreechart/ 



76 

 

Figure 4.4 – GraphVCS Screenshot [Pereira & Schots 2011] 

4.2.4 Context-Aware Visualization Engine (CAVE) 

As stated in Section 3.2, enhancing awareness and understanding of software 

information and the software itself requires the identification of adequate abstractions 

according to the comprehension needs [Schots et al. 2012]. The choice of the 

visualization abstractions and techniques for representing the data, as well as the 

interaction techniques to be employed, heavily depends on contextual information, e.g., 

the nature of data, the visualization constraints, and the task to be supported (e.g., 

selecting the most suitable asset from a set of reusable assets) [Queiroz et al. 2013]. 

Specific visualizations must be built in order to better represent an asset and its 

peculiarities, so that one can be able to focus on small-scale as well as large-scale 

entities. For analyzing these assets, a crucial point is to define appropriate visual 

metaphors. To this end, some factors must be considered, such as the reuse task context 

being performed and the stakeholder’s profile. 

An approach for supporting and improving reuse must provide visual means to 

explore assets in order to allow a better understanding of their structure, behavior, 

history information, and so on. This can also support the decision regarding the asset 

reusability. Such approach must support evaluating an asset using a set of visualizations 

and the data obtained by the Repository Miner. 

In this sense, CAVE (Context-Aware Visualization Engine) [Vasconcelos et al. 

2013] [Schots 2014] is a mechanism for selecting visualizations according to the 

contextual information. In the Zooming Browser (described in Section 4.2.7), CAVE 

can be invoked to depict assets according to the available data and user tasks. The 

integration with the Repository Miner allows assets of different granularity levels. 



77 

CAVE allows to analyze and compare properties of the reusable assets. For 

instance, in cases where more than one component fits the user needs, this can support 

the decision making regarding which component to reuse. With respect to suitability of 

visualizations, a study was performed for correlating types of task and types of 

visualization [Queiroz et al. 2013], aiming to allow better visualization choices. 

The CAVE engine is going to be implemented by a M.Sc. student [Vasconcelos 

et al. 2013] using the D3.js framework41 for the visualization features. A context-aware 

feature model (for mapping context information and rules) is being modeled in the 

Odyssey environment [Fernandes et al. 2011]. The implemented visualization 

metaphors will be stored in a separate repository, as presented in Figure 4.1. 

4.2.4.1 Visualization Feature Model 

There are several visualization strategies and techniques available, and it is not a 

simple task to choose a visualization that will meet all the expectations and represent 

everything needed [Vasconcelos et al. 2014a]. As mentioned in Section 3.4, although 

there are mechanisms that offer flexibility in customizing visualizations, letting the user 

decide by himself/herself which visualization to use may not be adequate, as he/she may 

not have experience with the metaphors or may not know which metaphors better fit the 

structure to be visualized. 

To this end, a feature model that encompasses these elements and their 

associated rules is being constructed [Vasconcelos et al. 2014a], in order to avoid 

mistakes when mapping visual abstractions to data. By allowing to select only the 

necessary features, visualizations can be composed with less effort. 

A domain analysis has been carried out in the context of this work, in order to 

identify different characteristics in visualizations, organizing them into the feature 

model for easing their selection and organization. In APPRAiSER, the feature model 

serves as input for CAVE. 

The adopted methodology for feature analysis is based on two steps: (i) an 

informal literature review for identifying a set of visualization and interaction elements, 

and (ii) the quasi-systematic review [Schots et al. 2014] that is used for confirming the 

use of the already classified elements and for complementing the model with new 

candidates. Although the object of investigation of the latter step was restricted to 

                                                 

 
41 http://d3js.org/ 



78 

visualization approaches that have been proposed to support reuse, such a literature 

review enabled to gather some initial knowledge from software engineering researches. 

By analyzing the visualization elements, the results obtained from the quasi-

systematic literature review point out some interesting findings. For instance, from 34 

approaches selected in 36 publications, 6 visualization and interaction elements were 

mentioned simultaneously in more than 10 approaches, namely: Selection, Navigation, 

Drill-Down, Clustering, Highlighting, and Labeling. More details can be found in 

[Schots et al. 2014]. A total of 53 elements were extracted from the feature analysis 

process. 

Aiming at structuring the feature model, the Odyssey-FEX notation [Blois et al. 

2006] is used, due to the researchers’ previous knowledge on its syntax and to its wide-

scope representation model, comprising characteristics such as category, variability, and 

optionality. 

For better structuring the model, some categories were defined to group similar 

elements. Although all the elements are identified based on works that present 

visualizations, some were strictly applied regarding interaction functionalities 

(Interaction category). Another group of visualization techniques was interpreted as an 

alternative for presenting different visualizations (Presentation category). Finally, the 

third proposed group was related only to changing the exhibition mode (Information 

Visualization category). These categories led to the creation of three corresponding 

high-level, conceptual features. 

After all the elements have been mapped and organized in the feature model, the 

next phase is the selection of features in order to build a visualization. A wizard (under 

development by an Undergraduate student) supports the manual selection of such 

features. In CAVE, this process is intended to be automatized, as described in 

[Vasconcelos et al. 2014a]. 

Figure 4.5 shows the most recent version of the feature model. It is being 

modeled in the Odyssey environment [Fernandes et al. 2011] with the support of a 

M.Sc. student, and will be exported through the Odyssey-XMI facility, also serving as 

input for CAVE. 



79 

 

Figure 4.5 – Information Visualization Feature Model [Vasconcelos et al. 2014a] 

4.2.5 ReuseDashboard 

According to Frakes & Terry (1994), as organizations implement software reuse 

programs to improve productivity and quality, they must be able to measure their 

progress and identify the most effective reuse strategies [Frakes & Terry 1994]. This 

can be achieved by choosing and using the proper software metrics for supporting reuse 

monitoring. However, a metric alone cannot help to answer all the questions: metrics 

must be used in combination in order to provide relevant information [Lanza & 

Marinescu 2006]. 



80 

To this end, dashboards can be useful by giving a high-level overview of the 

project status, besides providing peripheral awareness, among other benefits. They are 

intended to provide information at a glance and to allow easy navigation to more 

complete information [Treude & Storey 2010]. 

In this sense, the ReuseDashboard [Palmieri et al. 2013] is an interactive 

mechanism geared to software reuse programs, which uses metrics and visual analytics 

for communicating reuse results in a fast and effective way. It aims at stimulating the 

engagement of stakeholders, providing both high- and low-level relevant information. 

Based on the identification and extraction of reuse-related metrics from software 

projects, along with their established thresholds defined in the evaluation plan 

(described in Section 4.2.2), the ReuseDashboard presents a multi-device visualization 

of the extracted measures and analysis results. Concerning the visualization suitability, 

ReuseDashboard allows choosing different metrics and visualizations according to the 

stakeholder profile. 

For presenting information, ReuseDashboard uses two technologies: Java EE for 

the server side, and the Ext JS framework42 for the client side. This framework was 

chosen because of its HTML 5 features that allow for a rich interaction with visual 

objects, besides having several types of graphics that are used in the ReuseDashboard 

visualization [Palmieri et al. 2013]. 

Figure 4.6 illustrates the visualizations of metrics that inform the flexibility of 

the code of a given component. Deviations from the evaluation plan are shown at the 

bottom, pointing items in which problems were detected. 

ReuseDashboard offers a web-based visualization of the metrics, which allows it 

to be accessed from web browsers and mobile devices, besides any IDE with a web 

browser view, such as Eclipse. The metrics are sent from Eclipse to the dashboard 

through a websocket43. 

                                                 

 
42 http://www.sencha.com/products/extjs/ 

43 http://dev.w3.org/html5/websockets/ 



81 

 

Figure 4.6 – ReuseDashboard screenshot [Palmieri et al. 2013] 

4.2.6 Rec4Reuse 

In the development for reuse, some properties and characteristics that make an 

asset to be a candidate to reuse (e.g., [Poulin 1994]) can be evaluated, and some 

feedback can be provided (e.g., in terms of tips) in order to assist the developer to meet 

those properties and characteristics. The evaluation of these properties, among others, 

can denote the assets’ degree of reusability, and the evaluation results may indicate the 

need to make some adjustments in the code in order to make it more reusable. Such 

adjustments can be made by means of refactoring. 

In this sense, Rec4Reuse [Vital & Krause 2013] aims to (i) identify problems in 

the source code of a software project that may affect its reusability, based on software 

metrics, and (ii) propose (through recommendations [Robillard et al. 2010]) refactorings 

that allow increasing its potential to be reused. It provides contextual suggestions for 

creating and refactoring reusable assets, in order to help developers to be aware of 

desirable properties of the assets (e.g., low number of external dependencies, flexibility, 

and generality), supporting development for reuse. 

Rec4Reuse evaluates the reusability in terms of software metrics. Its 

maintenance support is limited to assessing and increasing reusability, providing 



82 

awareness of problems to software developers. For visual support on other maintenance 

tasks (e.g., fixing asset problems reported by users), one must resort to CAVE 

(presented in Section 4.2.4). 

The approach is not intended to perform refactorings automatically. Firstly, it is 

believed that the judgment of the applicability of the refactoring should be done by the 

developers. Even among reuse candidates, not everything should be refactored for reuse, 

because the costs may outweigh the benefits in some cases, i.e., they may affect other 

software properties or nonfunctional requirements (such as performance). Another 

reason is that there are several available solutions that automate refactoring, some of 

which are already integrated into IDEs. These reasons make automatic refactorings for 

reuse a potential hindrance in software development. 

The process performed by the approach consists of the following steps [Vital & 

Krause 2013]: after selecting a project for analysis, source code files are read by a 

parser that creates a parse tree to represent them; for each node of the tree, metrics are 

calculated according to its type (e.g., class, attribute, method, etc.); the metric analysis is 

inspired in the detection strategies (discussed in Section 4.2.2), and indicates that there 

may be problems for reuse; when a deviation from an expected metric value is 

observed, one or more problems are associated with this metric; and finally, each type 

of problem has one or more associated solutions. The solutions are refactorings that aim 

to increase reusability. After these steps, developers should decide, for each software 

project, which refactorings must take place, and which ones must not. 

In order to establish the relationship between reuse problems and possible 

solutions, a study was performed that maps each problem with its detection metrics and 

refactoring actions that allow for an increase in the software reusability [Vital & Krause 

2013]. Problems that prevent the reuse of software (which can be considered as bad-

smells) are associated with possible refactoring solutions. 

As a proof of concept, an IDE plug-in for Eclipse was developed. The parser 

framework used is JaxMe JavaSource (JaxMe JS), which creates abstractions of the 

Java source code structure for manipulating it. An Eclipse view lists all the reuse 

problems identified by the Rec4Reuse approach, along with their corresponding 

refactoring recommendations for supporting developers to decide which refactoring 

may actually be performed. Figure 4.7 shows a screenshot of the tool integrated to the 

Eclipse IDE. The problems view, shown at the bottom, presents the identified problems, 

grouped by type. Recommendations are presented through small snippets. 



83 

 

Figure 4.7 – Rec4Reuse screenshot [Vital & Krause 2013] 

After configuring the plug-in in the IDE, developers have the option to enable 

the evaluation of each of their projects individually. Such “recommendation request” is 

necessary because not all projects need reuse recommendations. After recommendations 

are activated, they are provided automatically to the developer (push mode [Robillard et 

al. 2010]). Currently, Rec4Reuse always assumes that the developer is not aware of the 

refactoring opportunities, but allows him/her to ignore non-applicable 

recommendations. Ignored recommendations are kept in a separate list so that they can 

be presented in a report. 

4.2.7 Zooming Browser 

As mentioned in Section 3.4, none of the analyzed visualization approaches aims 

to support the dynamics of software reuse in terms of software projects, assets and users 

and the relationship between these core elements. Information about these elements 

must be objective, avoiding misinterpretation, so that developers can be aware of the 

asset with which they will work. 

The Zooming Browser [Schots 2014] aims at enabling stakeholders to quickly 

search, navigate, and browse the contents of the reuse repository and its surrounding 

elements. It provides basic reuse information along with other information that supports 

reuse awareness. Aiming to avoid information overloading, it uses semantic zooming 

for presenting the reusable assets’ contextual information in different levels of detail 



84 

(zoom levels). All the elements can also be highlighted, filtered, expanded/collapsed 

and drilled-down to their raw format (source code, document etc.) or to a visual 

metaphor (as described in Section 4.2.4) in order to be explored with more details. 

The high-level mode (activated by zooming out) displays an overview of the 

main high-level elements of the approach: users, VCS repositories (which contain 

software projects), and the reuse repository (which contains reusable assets). Users and 

repositories are linked according to reuse data. The low-level mode (activated by 

zooming into a particular location) presents assets, users, and projects along with their 

connections (surroundings, as depicted in Figure 4.8) and supplementary information, 

all displayed on demand. 

The Zooming Browser allows analyzing assets by applying specific visual filters 

that can help to obtain repository-related information (e.g., represent size by “asset age”, 

filter by number of access, use different colors for representing the asset stability etc.). 

This is particularly helpful for repository maintenance. In addition, the Zooming 

Browser can indicate relevant assets (which can also be obtained by retrieval 

mechanisms), supporting development with reuse, based on the user profile, previous 

searches and previous reuses. Assets can be recommended in terms of domain similarity 

and other relevant properties. The Zooming Browser also allows uploading candidate 

assets to be posteriorly evaluated and included in the reuse repository. 

Multiple views are suitable and relevant for both the kind of task being 

performed and the stakeholder’s role in the reuse scenario. The Zooming Browser 

makes use of multi-perspective views [Wu & Storey 2000], in which the stakeholder 

uses a main view for general comprehension tasks and, in certain contexts or activities, 

can make use of auxiliary views for additional exploration tasks. For a consistent 

interaction pattern, changes in one view are propagated to the other associated views. 

The supplementary information presented in the Zooming Browser is 

categorized into four perspectives that change according to the active viewpoint, as 

described in the following subsections. The Zooming Browser visualizations are 

intended to be implemented with the D3.js framework, while user forms and other 

integrations will be made with Java EE. 



85 

 

Figure 4.8 – Core elements and their surroundings 

4.2.7.1 Overview 

The overview perspective presents general information of the core elements. The 

asset-centric viewpoint shows its status (available, discontinued etc.), metadata (size, 

type, notation/programming language etc.), and users’ ratings. User-centric information 

comprises the status (active, inactive etc.), role(s) (reuse manager, developer etc.) and 

ratings (based on developed assets’ ratings). The project-centric viewpoint shows the 

project status (in progress, finished, aborted etc.) and the percentage of finished tasks. 

4.2.7.2 Statistics 

Increasing the visibility of results achieved through reuse not only stimulates 

developers to integrate reuse in their daily development activities, but also encourages 

managers in endorsing it. The evaluation of how well organization’s goals are being 

accomplished relies on the selection of an appropriate set of metrics, along with 

effective measurement practices for collecting such metrics [Benedicenti et al. 1996] 

[Lanza & Marinescu 2006]. For instance, statistics about reuse, numbers of hits and 

percentage of code reused can help analyzing an asset’s reuse history [Alonso & Frakes 

2000], supporting the management of the reuse repository and its assets. 

In the statistics perspective of the Zooming Browser, the asset-centric viewpoint 

shows the number of views (based on selection), the number of reuse intentions (based 

on downloads), and the number of effective reuses (based on the projects’ VCS that 

reused the asset). The user-centric viewpoint shows this information (user-oriented), in 

addition to the number of assets developed by him/her and the number of users who 

collaborated with him/her in assets’ development. The project-centric viewpoint 

presents the number of reused assets (based on VCS history), the number of effectively 

reused assets (based on their releases), and the number of users who added assets to the 



86 

project. Stakeholders navigating through the Zooming Browser will have a “minimalist 

view” of the ReuseDashboard, whose information is automatically updated from based 

on user interactions. 

4.2.7.3 History 

In the history perspective of the Zooming Browser, the asset-centric viewpoint 

presents the asset’s development history (based on its VCS repository, if any) and its 

release history (semantic versioning) based on public release repositories (e.g., Maven), 

and VCS tags, depending on their semantics. The user-centric viewpoint shows his/her 

reuse timeline history (based on actions performed in the reuse repository and/or the 

VCS repositories, if any). The project-centric viewpoint presents its development 

history and release history. 

VCS information can be drilled-down to GraphVCS, which presents a 

visualization of the project’s history, e.g., highlighting project versions in which an 

asset is present, for understanding the reuse context. Project information is obtained 

both from the organization’s portfolio and open source projects. The reasons are 

twofold. In the beginning of a reuse program, it is unlikely to find enough information 

about an asset (that encourages its reuse) on local configuration management systems. 

On the other hand, experiences from the organization itself (even if a reuse program has 

not yet been established) are essential for promoting reuse. 

Although these sources of information complement each other, they are handled 

separately since they allow for different kinds of insight. The fact that an asset is widely 

reused in open source projects may give more confidence in reusing it, while an asset 

reused in the organization’s projects (successfully or not) gives a clue of the chances of 

success/failure based on such previous experiences. 

4.2.7.4 Issues and Opportunities for Improvement 

The issues perspective provides information primarily extracted from issue 

tracking systems that complements the history perspective, by displaying issues that 

affect reusable assets and their surroundings. In the asset-centric viewpoint, reported 

issues related to an asset (e.g., problems and feature requests) are shown. The user-

centric viewpoint shows issues reported by the user and issues in which he/she is 

involved. The project-centric viewpoint depicts issues related to the project and its 

reusable assets. 



87 

For implementation assets, this perspective also indicates code metrics whose 

values may negatively impact the asset’s reusability (based on customized thresholds or 

calculated values). Developers can drill down to the source code (if available) for using 

Rec4Reuse. In the context of the APPRAiSER environment, it will support 

development for reuse and reengineering for reuse. 

4.3 Other Architectural and Implementation Aspects 

Figure 4.9 summarizes the information of the APPRAiSER tools in terms of a 

conceptual model of their main elements and the main relationships between these 

elements. Some of these relationships (such as the ones presented in Figure 4.8) were 

omitted for a matter of simplicity. 

 

Figure 4.9 – APPRAiSER Conceptual Model 

There are several demands that must be taken into account for supporting and 

improving software reuse with visualizations. It is worth highlighting that some 

requirements can be fulfilled in many different ways, which brings up the need for a 

flexible architecture that allows interoperability and seamless integration of its modules. 

As discussed in Section 3.4, a modular architecture allows new functionalities to be 

added and, consequently, more support for software engineering and reuse tasks. 

As mentioned previously, a primary concern on the APPRAiSER architecture is 

flexibility. All the conceptual elements and their connections are going to be 

concretized in terms of well-defined interfaces, in order to allow their easy interchange 

without impacting the implementation. For instance, one can choose to use a different 



88 

reuse repository. By implementing a reuse repository connector conforming to the 

interfaces required by APPRAiSER, communication occurs seamlessly. Analogously, if 

one needs to include new metrics or add new visualizations, it is just a matter of 

implementing the corresponding interfaces – for instance, methods that allow metrics to 

be recalculated (or visualizations to update themselves) when required. 

Since development for/with reuse may already represent a change in the daily 

routine of those developers, any additional external tool involves adopting new 

technologies, whose issues may hinder the establishment of a reuse program. The 

integration of a tool suite in an IDE also facilitates the adoption of the tool among 

developers [Mariani & Pastore 2011]. In this sense, developing plug-ins can benefit 

from the IDE’s available features and allow integration with other tools, since the 

interaction among the environment resources usually occurs through a plug-in 

architecture. 

The Eclipse IDE was chosen for integration with APPRAiSER, because it is 

designed as a modular platform, with the ability to install, use, and develop plug-ins to 

extend the core functionality. Besides its widely used plug-in architecture, it also has a 

robust and extensible event notification system. Experiences with previous works in 

developing Eclipse plug-ins [Oliveira 2011] [Werner et al. 2011] are also an influencing 

factor. 

Eclipse extension points and extensions are used for achieving the flexibility to 

add connector plug-ins. Extension points defines a contact on how other plug-ins can 

contribute, so that a plug-in that implements a given functionality may contribute to (or 

receive contributions from) other plug-ins. In other words, plug-ins that define 

extension points open themselves up for other plug-ins. The Eclipse IDE also allows to 

dynamically link plug-ins together at runtime. 

4.4 Final Remarks 

The APPRAiSER environment is being built based on the issues and limitations 

identified from both state-of-the-art and state-of-the-practice. It comprises a set of tools 

that aim at visually supporting reuse stakeholders (especially reuse managers and 

developers) in performing reuse tasks. 

As mentioned previously, APPRAiSER aims at promoting software reuse in a 

progressive way, so that cultural barriers can be gradually overcome and all 

stakeholders can become committed with the reuse initiatives by perceiving the benefits 



89 

brought by them, without causing cognitive overload. In this sense, Table 4.1 presents a 

suggestion on how APPRAiSER and its tools could be used in different stages of reuse 

initiatives, i.e., the expectations with its use. 

Table 4.1 – The use of APPRAiSER in different stages of reuse initiatives 

 Initial stages Intermediate stages Advanced stages 

ReuseDashboard 

Support awareness and 

communication of first 

reuse achievements, 

communicating results in 

a fast and effective way. 

Keep stakeholders’ 

motivation and help 

institutionalizing a reuse 

program. 

Provide data for 

supporting decision-

making. 

GraphVCS 

Support finding 

occurrences of candidate 

reusable assets, helping 

to populate the reuse 

repository and 

stimulating further reuse. 

Support deeper analyses 

of the assets’ history, 

when the organization is 

already used to the reuse 

practices. 

Support identifying 

kinds of projects in 

which assets are usually 

reused, for identifying 

domains with more reuse 

potential. 

Zooming Browser 

Provide information 

about reusable assets in a 

centralized way, easing 

and stimulating their 

reuse. 

Support exploring the 

reuse repository, 

avoiding user 

disorientation when 

there are a reasonable 

number of reusable 

assets. 

Understand and explore 

relationships between 

users, assets, and 

projects, while avoiding 

information overloading 

(when the reuse 

repository contains many 

reusable assets). 

Rec4Reuse 
Help evaluating the 

reusability of assets. 

Help developers in 

refactoring candidate 

reusable assets and 

understanding how to 

increase assets’ 

reusability. 

Provide useful 

recommendations in 

development for reuse, 

when development with 

reuse is well established 

in the organization. 

CAVE 

Help understanding 

underlying details (e.g., 

structure) of assets, in 

order to [better] reuse 

them. 

Help choosing between 

reusable assets, when 

there is more than one 

asset that fits a given 

need, and potentially 

detecting refactoring 

opportunities. 

Help understanding 

bottlenecks in the reuse 

of specific assets. 

The APPRAiSER 

environment as a 

whole 

Help engaging 

stakeholders in the 

establishment of a reuse 

program. 

Help identifying key 

consumers and domains 

in which there are more 

reuse opportunities, 

towards consolidating a 

reuse program. 

Provide information for 

supporting continuous 

improvement of reuse 

activities and processes. 

All the APPRAiSER tools were or are being developed under the supervision of 

the author of this work, who also collaborated to the development of some of them (e.g., 

[Werner et al. 2011]). In order to integrate the tools to APPRAiSER, some 

implementation changes need to be performed. Table 4.2 presents the current stage of 



90 

each tool and the necessary modifications (to be performed by the author of this work) 

for the integration to the environment. 

Table 4.2 – APPRAiSER tools: current status and necessary modifications 

Tool Current Status Modifications 

ReuseDashboard 

Partially implemented, but 

the current implementation 

has some device issues44. 

Fix the device issues, maybe changing the 

visualization framework in use45. 

GraphVCS Fully implemented. 

Since its original goal is to support 

comprehension of VCS repositories, it will be 

extended for displaying relevant evolution 

information regarding the reusable assets. 

Zooming Browser 

Not implemented yet. It is 

being implemented by the 

author of this work. 

It will be integrated “as is”. 

Rec4Reuse Fully implemented. It will be integrated “as is”. 

CAVE 

Not implemented yet. It is 

being implemented by a 

M.Sc. student. The feature 

model, in turn, is already 

under development by the 

author of this work along 

with the M.Sc. student. 

It will be integrated “as is”. 

Repository Miner Fully implemented. 

The submodules must be integrated in order to 

provide the required information, using REST 

and JSON formats. 

Metrics Extractor 

The evaluation plan is fully 

implemented (GUI for the 

IDE), but the mechanism for 

extracting metrics has some 

implementation problems. 

Implement a web GUI for the evaluation plan 

and fix the mechanism for extracting metrics. 

Depending on the progress of the research, 

additional metrics must be implemented. 

All the tools -- 

Adapt their architecture for making them 

depend on the Repository Miner and Metrics 

Extractor mechanisms. 

Although there are other application settings to which this approach might be 

useful, these examples can give an insight of the benefits that APPRAiSER awareness 

resources can bring in the reuse context. 

The next chapter presents the current stage of the research, as well as the 

planning of the next steps. 

                                                 

 
44 Although the presentation of the visualization is compatible with mobile and desktop platforms, there is 

limited interactivity on mobile devices, due to the framework currently used. 

45 The visualization can incorporate the features provided by the Sencha Touch framework 

(http://www.sencha.com/products/touch), which allows porting web applications written in Ext JS to 

mobile platforms. Another possibility is to replace all the visualization by another framework, e.g., D3.js. 



91 

CHAPTER 5 – CONCLUSION 

This chapter presents the current contributions and some expected 

results from this work, as well as its current stage and the planned 

next steps for its conclusion. 

5.1 Epilogue 

Software reuse provides several benefits throughout the software development 

process, such as the decrease of implementation efforts, the reduction on time-to-

market, and the amortization of test and inspection costs, favoring an increase of 

quality. Nevertheless, organizations still find difficulties in implementing reuse due to 

several reasons, including technical and non-technical aspects. It can be noticed, though, 

that many of these difficulties, if not most of them, are recurring throughout the years. 

Findings from literature reports and a study (described in Chapter 2) showed that 

a frequent issue is the lack of understanding, not only in terms of the potential benefits 

of software reuse – which may lead to a lack of incentives from top management –, but 

also in performing reuse tasks. The lack of a proper tool support for executing such 

tasks is also a usual complaint. 

In order to achieve the acceptance/consciousness and successful adoption of 

software reuse, it is important to take into account how to better provide appropriate 

reuse awareness. Awareness mechanisms can provide stakeholders with the necessary 

information and support for performing their reuse-related tasks. One of the ways to 

increase such awareness is by employing visualization resources and techniques. 

In this sense, a comprehensive study (described in Chapter 3) was conducted for 

identifying software visualization approaches targeted to reuse-related tasks. Results 

pointed out that no work so far addresses a number of reuse tasks in an integrated way, 

and the existing ones that address particular tasks are limited in terms of collecting 

information from different data sources and supporting the customization and selection 

of visualizations. Besides, most of them do not provide evidence on their effectiveness. 

To this end, this thesis proposal (presented in Chapter 4) aims to define an 

interactive visualization approach that assist stakeholders (mainly reuse managers and 

developers) in executing software reuse tasks, such as exploring a reuse repository, 



92 

obtaining and understanding information regarding the three main identified elements 

(reusable assets, users, and projects), and monitoring reuse initiatives. The realization of 

the proposed approach is being achieved through the implementation of the 

APPRAiSER environment and its integrated tools, which provide stakeholders with 

different visualization mechanisms suited for their day-to-day tasks. Its architecture 

contemplates elements for gathering, processing and visually presenting information 

that is relevant for software reuse. 

5.2 Expected Results and Contributions 

The main expected result from the thesis is to assist software development 

stakeholders in carrying out software reuse tasks, providing them with the necessary 

awareness through visualizations, thereby helping them to achieve the expected benefits 

from reuse. In this regard, the current contributions of this research are: 

 A primary study on issues related to software reuse in some Brazilian organizations 

(Section 2.5.2): The results from the semi-structured interviews conducted with 

Brazilian implementers and assessors of MR-MPS-SW allowed the definition of 

some reuse tasks that need more support. This can be used not only for other 

research initiatives, but also for the development of additional tool support for the 

implementation of reuse processes in software organizations. 

 A secondary study on visualization approaches geared to software reuse (Section 

3.3.3): The results from the quasi-systematic review can be used as a starting point 

for future research directions to be addressed by the software engineering 

community when choosing, instantiating, or developing visualization-based 

approaches for supporting software reuse. Besides, the presented information can be 

used as a body of knowledge to support decision making regarding the choice of 

visualization approaches for software reuse. 

Other contributions from the thesis that are expected to be accomplished are: 

 The implementation of Zooming Browser and the APPRAiSER architecture. 

 The extension and integration of existing tools to the APPRAiSER environment. 

 A survey for mapping which data can be relevant to which stakeholders (described 

in Section 5.4.1). 

 Evidence on the use of APPRAiSER, through experimental evaluations (described 

in Section 5.4.2). 



93 

Although not considered as a contribution, the framework extension for 

categorizing visualization approaches (presented in Section 3.3.2), with the two new 

dimensions and the definition of research questions for all dimensions, can guide 

researchers in terms of (i) aspects that must be taken into account for novel approaches, 

and (ii) information that should ideally be described in publications. Such framework 

may also support the conduction of other secondary studies on software visualization 

applied to another field of interest (e.g., software maintenance), providing useful 

information regarding visualization approaches. 

Regarding the awareness and comprehension challenges listed in Section 3.2.3, 

the listed contributions aim to address the following ones in the context of this work: 

 The semi-structured interviews and the survey, as well as potential experiments on 

industry, represent a step towards understanding the real needs of the software 

development industry stakeholders in terms of awareness and comprehension, and 

bridging the gap and encouraging interaction between academia and industry. 

 In terms of identifying and developing suitable mechanisms and adequate 

abstractions and building specialized, personalized visualizations according to the 

comprehension needs, APPRAiSER and its integrated tools are expected to provide 

adequate abstractions that are useful in their purposes (i.e., supporting reuse tasks), 

allowing users to customize them according to their needs. 

 The APPRAiSER Repository Miner and Metrics Extractor mechanisms, along with 

the survey, allow evaluating the quality of existing data sources and identifying 

relevant data. Such mechanisms also address the use of software tools to seamlessly 

collect rich data sets on software comprehension activities, in addition to an activity 

logging mechanism that is expected to be built or reused for supporting the 

evaluation of APPRAiSER. 

5.3 Current Stage 

The research methodology of this work, presented in Section 1.5, comprises five 

steps. The informal literature review (Section 3.3.1) and the quasi-systematic review 

(Section 3.3.3) – planned in the first step (Collect preliminary information) and part of 

the second step (Characterize the state-of-the-art), respectively – have been performed. 

Nevertheless, as mentioned in Section 1.5, the literature must be reviewed continuously 

for providing subsides for enriching the definition of the topic and the proposed 



94 

solution. Thus, the first step is executed iteratively, and the second step is going to be 

re-executed afterwards. 

Still in the second step of the research (Characterize the state-of-the-practice), 

two primary studies were planned: the semi-structured interviews (which were 

performed and presented in Section 2.5.2), and (ii) surveys with researchers and 

practitioners (which are going to be performed, as described in Section 5.4.1). 

The third step of the research (Propose and develop the approach) has been 

partially achieved. As described in Section 4.4, some of the APPRAiSER tools are 

already implemented, but need to be adapted (e.g., ReuseDashboard, Repository Miner 

and Metrics Extractor) or extended (e.g., GraphVCS) in order to be integrated to the 

environment. Other tools are still going to be developed (e.g., Zooming Browser and 

CAVE – the latter by a M.Sc. student). 

Details on the fourth step (Evaluate the proposed approach) are described in 

Section 5.4.2. Based on the evaluation results and feedback, the fifth step (Improve the 

proposed approach) will take place, by making the necessary adjustments and the 

identified improvements, if applicable. 

5.3.1 Research Achievements 

The conduction of this research allowed the following research achievements: 

 Publications and research projects about the APPRAiSER tools: 

 The VCS Miner uses an infrastructure previously developed [Werner et al. 2011] 

in collaboration with the author of this work. 

 The Reuse Repository Miner was inspired in MPS-Reuse [Chaves 2013], an 

Undergraduate Final Project at UERJ) advised by the author of this work. 

 The Issue Tracker Miner was produced in the context of an Undergraduate 

Research at COPPE/UFRJ [Queiroz et al. 2012]. 

 GraphVCS was presented in [Pereira & Schots 2011] and developed in the 

context of an Undergraduate Final Project at UERJ advised by the author of this 

work. 

 Rec4Reuse was also built in the context of an Undergraduate Final Project [Vital 

& Krause 2013] at UERJ advised by the author of this work. 

 CAVE is part of an ongoing M.Sc. thesis at COPPE/UFRJ being developed in the 

context of this work, and some preliminary results focusing on the use of a 



95 

context model for supporting context-aware visualizations are described in 

[Vasconcelos et al. 2013]. 

 The first prototype of ReuseDashboard is described in [Palmieri et al. 2013], in 

the context of a M.Sc. thesis proposal. 

 Research on software visualization: 

 The research on software visualization allowed the identification of awareness 

and comprehension challenges in a special track of the Brazilian Symposium on 

Software Engineering (SBES) [Schots et al. 2012]. 

 Additionally, an introductory tutorial in software visualization was presented at 

the Brazilian Conference on Software (CBSoft) [Schots & Werner 2012]. 

 Performed studies: 

 The preliminary results from the semi-structured interviews are described in 

[Schots & Werner 2013]. A technical report will soon be prepared. 

 A preliminary study on mapping visualizations according to the focus of analysis 

was developed in the context of an Undergraduate Research [Queiroz et al. 

2013]. 

 The full protocol and the results from the quasi-systematic review are described 

in a technical report [Schots et al. 2014]. 

 Details on the construction of the feature model for information visualization 

that supports CAVE are described in [Vasconcelos et al. 2014a], and a technical 

report is being prepared. 

 Research proposal: 

 The research proposal [Schots 2014] will be presented at the Doctoral 

Symposium of the 36th International Conference on Software Engineering. 

5.4 Next Steps and Schedule 

Besides the tool development and extensions activities (as described in Table 

4.2), the following subsections describe the next steps for concluding this research. 

5.4.1 Survey with software reuse researchers and practitioners 

Some aspects must be taken into account in order to provide relevant 

information to stakeholders, such as: (i) which software metrics are indicated to 



96 

summarize the reuse characteristics of a reusable asset (depending on the type of asset), 

and (ii) which metadata a stakeholder needs to analyze for considering reusing an asset. 

In order to identify which reuse metrics and metadata information are relevant, 

an initial set of metrics and metadata related to reusable assets (mostly reusable 

software components) was collected in an ad-hoc way from the literature and from 

previous experiences in implementing reuse processes. 

From this initial set, a survey (part of the second step of the research 

methodology) is intended to be conducted with worldwide software reuse researchers 

and industry practitioners in software organizations that implemented reuse processes, 

aiming to evaluate these and other metrics and metadata as regards to their relevance in 

facilitating the identification, documentation and evaluation of reusable assets in 

general. 

In addition to evaluating the relevance of metrics and metadata, the survey also 

aims at obtaining feedback regarding which kinds of metadata can be important for 

which stakeholders, based on a mapping that is in progress in conjunction with a M.Sc. 

student at COPPE/UFRJ [Vasconcelos et al. 2013]. This can be useful for 

recommending assets in terms of domain similarity and other relevant properties (as 

mentioned in Section 4.2.7). Furthermore, the survey will help validating some findings 

from the quasi-systematic review and interviews. 

5.4.2 Approach Evaluation 

The evaluation of the approach (fourth step of the research methodology) 

involves the planning and execution of experimental studies. The evaluation will assess 

quantitatively and qualitatively whether the perceptive and cognitive abilities of the 

stakeholders in carrying out software reuse tasks are properly stimulated, increasing 

efficiency and efficacy, while decreasing the effort and time spent on such tasks. 

Regarding the evaluation scenario, an ideal setting would be the use of 

APPRAiSER tools in software development organizations that are implementing reuse 

processes and/or aim to institutionalize a reuse program. However, this depends on the 

availability and interest of organizations at the time of the evaluation. Another 

shortcoming is that a proper evaluation of the use of APPRAiSER would require much 

time for verifying if the expected benefits were effectively achieved, due to their long-

term nature. 



97 

Although it is believed that an evaluation over time seems to be unfeasible in the 

context of a Ph.D. thesis, it is expected to investigate the use of APPRAiSER by 

stakeholders who are used to reuse practices, so that they can qualitatively evaluate the 

feasibility and adequacy of the environment and its supporting tools, based on the 

following hypothesis: the execution of reuse tasks with the use of visualizations can be 

performed more efficiently and with more efficacy than the execution of such tasks 

without visual support. 

In principle, participants will be divided into two groups. Each group will carry 

out the same tasks, but one will be supported by APPRAiSER visualizations, while the 

other will use other usual tools without visualization support – or no tool at all, if the 

focus of evaluation is based solely on the contribution of the visualization (in a similar 

format to [Oliveira 2011]). The time spent, the efficiency and the efficacy of each 

participant/group will be analyzed quantitatively. Other nonfunctional features may also 

be subject to evaluation, as well as qualitative aspects of the tools (based on 

participants’ opinion, as described in some studies in the literature [Schots et al. 2014]). 

The focus of evaluation of each tool is based on the tasks they aim to support (as 

depicted in Figure 4.2). A scenario that involves the execution of such tasks will be set 

up to this end. The evaluation of each APPRAiSER tool separately may be based on the 

following focuses: 

 GraphVCS and its support for analyzing a repository evolution can be evaluated 

from two perspectives: (i) the projects’ history, allowing the identification of 

successful and unsuccessful reuse attempts, and (ii) the reusable asset’s history, 

allowing the analysis of its stability and frequency of updates. The evaluation will 

focus on the ease of use, time spent for answering evolution questions related to 

reuse, and correctness of answers. 

 The visualization feature model will follow an evaluation methodology based on 

two steps: (i) verifying the feature model syntax and semantics by using a feature 

model checklist [Mello et al. 2014], and (ii) carrying out a peer review method. In 

the latter step, aiming at checking both the visualization aspects and the feature 

model notation, experts from both areas will participate in the review. These experts 

are already selected and the review is being prepared. After the CAVE tool itself is 

implemented, a qualitative evaluation will focus on its customizability of 

visualizations and data, as well as its support in understanding reusable assets, while 



98 

a quantitative evaluation may be based on answering questions related to detailed 

information of reusable assets, as well as the correctness of such answers. 

 Concerning the ReuseDashboard, an experiment for evaluating the effectiveness in 

monitoring a reuse program can be set in terms of the creation of an evaluation plan 

and, from it, the analysis and monitoring of reuse metrics and reusable assets, 

allowing the identification of problems in the implementation of a reuse program. 

To this end, three fictitious scenarios over time will be set up and presented to the 

participants. The evaluation will take into account items such as the ease in 

interpreting the visual information, the time spent in being aware of a change and in 

analyzing such change, and the decisions taken (which will be compared both 

comparatively and based on a template of expected decisions). 

 Regarding Rec4Reuse, an evaluation is intended to be performed using the source 

code of open source components that were designed to be reused, aiming to identify 

potential reuse issues and indicate which refactorings may be applied in order to 

increase its reusability. Participants of the study will be asked if the 

recommendations given by the approach are easy to understand and relevant (i.e., if 

they actually help to observe reuse-related properties that otherwise would remain 

unnoticed). Moreover, a report generated by Rec4Reuse will be used to evaluate 

which suggestions were mostly ignored and which of them were accomplished. 

 Finally, Zooming Browser will be evaluated in terms of the time spent in answering 

questions related to reuse management and reusable assets, as well as the 

correctness of such answers. Some aforementioned qualitative aspects are also 

intended to be evaluated. The questions will be made in terms of the tasks supported 

by Zooming Browser (i.e., identify experts on a reusable asset, explore the reuse 

repository and obtaining general information about a reusable asset). 

For all the approaches, an observational study is intended for capturing firsthand 

behaviors and interactions that might not be noticed otherwise [Seaman 1999]. 

Interaction log analysis techniques are also intended for enriching the data [Seaman 

1999]. To this end, an activity logging mechanism can be developed or reused, as 

suggested in [Kagdi & Maletic 2008]. 

5.4.3 Expected Targets for Publications 

During the conduction of this research, its results are expected to be published in 

correlated conferences, such as: International Conference on Software Engineering 



99 

(ICSE), International Conference on Software Reuse (ICSR), International Conference 

on Program Comprehension (ICPC), International Conference on Software Maintenance 

(ICSM), Working Conference on Software Visualization (VISSOFT), Mining Software 

Repositories (MSR), European Conference on Software Maintenance and 

Reengineering (CSMR) and Brazilian Symposium on Software Engineering (SBES), 

among other possibilities. 

Correlated journals will also be targeted for publications, such as the Journal on 

Software Maintenance and Evolution (JSME), IEEE Software, IEEE Transactions on 

Software Engineering, ACM Transactions on Software Engineering and Methodology 

(TOSEM), among others. 

5.4.4 Schedule 

Table 5.1 presents the planning of the next activities for concluding this work. 

Table 5.1 – Schedule of the next steps 

Activities 
2014 2015 

04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 

Informal literature review                   

Execution of a new round of the 

quasi-systematic review 
                  

Integrate Repository Miner 

submodules 
                  

Fix and evolve the Metrics 

Extractor 
                  

Implement the Zooming Browser                   

Extend GraphVCS for displaying 

reuse information 
                  

Fix ReuseDashboard device issues                   

Integrate APPRAiSER tools                   

Planning of evaluations (including 

the survey) 
                  

Execution of evaluations and 

analysis of results 
                  

Implementation of potential 

improvements 
                  

Writing of publications with 

research results 
                  

Thesis writing                   

Ph.D. defense                   



100 

REFERENCES 

[Ali 2009] Ali, J. (2009). “Cognitive support through visualization and focus 

specification for understanding large class libraries”. Journal of Visual Languages 

and Computing, v. 20, n. 1, pp. 50-59. 

[Alonso & Frakes 2000] Alonso, O., Frakes, W. B. (2000). “Visualization of Reusable 

Software Assets”. In: 6th International Conference on Software Reuse (ICSR 2000), 

Vienna, Austria, pp. 251-265, June. 

[Anslow et al. 2004] Anslow, C., Marshall, S., Noble, J., Biddle, R. (2004). “Software 

visualization tools for component reuse”. In: 2nd Workshop on Method Engineering 

for Object-Oriented and Component-Based Development, 19th Annual ACM 

Conference on Object-Oriented Programming, Systems, Languages, and 

Applications (OOPSLA 2004), Vancouver, Canada, pp. 1-11, October . 

[Baldauf et al. 2007] Baldauf, M., Dustdar, S., Rosenberg, F. (2007). “A survey on 

context-aware systems”. International Journal of Ad Hoc and Ubiquitous Computing 

(IJAHUC), v. 2, n. 4, pp. 263-277. 

[Basili et al. 1994] Basili, V., Caldiera, G., Rombach, H. (1994). “Goal Question Metric 

Paradigm”, Encyclopedia of Software Engineering, v. 1, edited by John J. Marciniak, 

John Wiley & Sons, pp. 528-532. 

[Bavoil et al. 2005] Bavoil, L., Callahan, S. P., Crossno, P. J., Freire, J., Scheidegger, C. 

E., Silva, C. T., Vo, H. T. (2005). “Vistrails: Enabling interactive multiple-view 

visualizations”. In: IEEE Visualization (IEEE VIS 2005), Minneapolis, USA, pp. 

135-142, October. 

[Benedicenti et al. 1996] Benedicenti, L., Succi, G., Valerio, A., Vernazza, T. (1996). 

“Monitoring the efficiency of a reuse program”. SIGAPP Applied Computing 

Review, v. 4, n. 2, pp. 8-14, September. 

[Biddle et al. 1999] Biddle, R., Marshall, S., Miller-Williams, J., Tempero, E. (1999). 

“Reuse of debuggers for visualization of reuse”. In: Proceedings of the 5th 

Symposium on Software Reusability (SSR 1999), Los Angeles, USA, pp. 92-100, 

May. 



101 

[Blois et al. 2006] Blois, A. P. T. B., Oliveira, R. F., Maia, N., Werner, C., Becker, K. 

(2006). “Variability modeling in a component-based domain engineering process”. 

Reuse of Off-the-Shelf Components, pp. 395-398. Springer Berlin Heidelberg. 

[Braga et al. 2006] Braga, R. M. M., Werner, C. M. L., Mattoso, M. (2006). “Odyssey-

Search: A Multi-Agent System for Component Information Search and Retrieval”. 

Journal of Systems and Software, v. 79, n. 2, pp. 204-215, February. 

[Brazilian Computer Society 2006] Brazilian Computer Society (2006). “Grand 

Challenges of Computing Research in Brazil – 2006-2016”. Available at 

http://www.sbc.org.br/. 

[Brooks Jr. 1987] Brooks, Frederick P. (1987). “No Silver Bullet: Essence and 

Accidents of Software Engineering”. Computer, v. 20, n. 4, pp. 10-19, April. 

[Caldiera & Basili 1991] Caldiera, G., Basili, V. R. (1991). “Identifying and qualifying 

reusable software components”. Computer, v. 24, n. 2, pp. 61-70, February. 

[Card & Comer 1994] Card, D., Comer, E. (1994). “Why do so many reuse programs 

fail?” IEEE Software, v. 11, n. 5, pp. 114-115, September. 

[Chaves 2013] Chaves, V. B. C. (2013. “MPS-Reuse: A tool for supporting the 

execution of reuse management tasks and reusable assets management” [MPS-Reuse: 

Uma ferramenta de apoio à execução de tarefas de gerência de reutilização e à gestão 

de ativos reutilizáveis] (in Portuguese). Undergraduate Final Project, Universidade 

do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil. 

[Chen 2006] Chen, C. (2006). Information Visualization: Beyond the Horizon. 2nd ed. 

Springer. 

[Clements & Northrop 2002] Clements, P., Northrop, L. (2002). Software product lines. 

Addison-Wesley, Boston. 

[CMMI Product Team 2010] CMMI Product Team (2010). “CMMI for Development, 

Version 1.3”, Technical Report CMU/SEI-2010-TR-033, Software Engineering 

Institute, Carnegie Mellon University, Pittsburgh, USA. Available at 

http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm. 

[Constantopoulos et al. 1995] Constantopoulos, P., Jarke, M., Mylopoulos, J., Vassiliou, 

Y. (1995). “The software information base: A server for reuse”. The VLDB Journal, 

v. 4, n. 1, pp. 1-43. 



102 

[Cooper et al. 2009] Cooper, J. R., Lee, S.-W., Gandhi, R. A., Gotel, O. (2009). 

“Requirements Engineering Visualization: A Survey on the State-of-the-Art”. In: 4th 

International Workshop on Requirements Engineering Visualization (REV 2009), 

Atlanta, USA, pp. 46-55. 

[Couto et al. 2013] Couto, C., Maffort, C., Garcia, R. Valente, M. T. (2013). 

“COMETS: A Dataset for Empirical Research on Software Evolution Using Source 

Code Metrics and Time Series Analysis”. SIGSOFT Software Engineering Notes, v. 

38, n. 1, pp. 1-3, January. 

[Diehl 2007] Diehl, S. (2007). Software Visualization: Visualizing the Structure, 

Behaviour, and Evolution of Software, 1st ed., Springer-Verlag Heidelberg New 

York. 

[Dourish & Bellotti 1992] Dourish, P., Bellotti, V. (1992). “Awareness and 

Coordination in Shared Workspaces”. In: 1992 ACM Conference on Computer-

Supported Cooperative Work (CSCW 1992), Toronto, Canada, pp. 107-114, 

November. 

[Duru et al. 2013] Duru, H. A., Çakır, M. P., İşler, V. (2013). “How Does Software 

Visualization Contribute to Software Comprehension? A Grounded Theory 

Approach”. International Journal of Human-Computer Interaction, v. 29, n. 11, pp. 

743-763, November. 

[Duszynski et al. 2011] Duszynski, S., Knodel, J. Becker, M (2011). “Analyzing the 

source code of multiple software variants for reuse potential”. In: Proceedings of the 

18th Working Conference on Reverse Engineering (WCRE 2011), Limerick, Ireland, 

pp. 303-307, October. 

[Fernandes et al. 2011] Fernandes, P., Werner, C., Teixeira, E. (2011). “An Approach 

for Feature Modeling of Context-Aware Software Product Line”. Journal of 

Universal Computer Science, v. 17, n. 5, pp. 807-829, March. 

[Few 2009] Few, S. (2009). Now You See it: Simple Visualization Techniques for 

Quantitative Analysis, 1st ed., Analytics Press, 327p. 

[Fowler & Highsmith 2001] Fowler, M., Highsmith, J. (2001). “The agile 

manifesto”. Software Development, v. 9, n. 8, pp. 28-35. 



103 

[Frakes & Fox 1995] Frakes, W. B., Fox, C. J. (1995). “Sixteen questions about 

software reuse”. Communications of the ACM, v. 38, n. 6, pp. 75-87, June. 

[Frakes & Fox 1996] Frakes, W., Fox, C. (1996). “Quality Improvement Using a 

Software Reuse Failure Modes Model”. IEEE Transactions on Software 

Engineering, v. 22, n. 4, pp. 274-279, April. 

[Frakes & Kang 2005] Frakes, W. B., Kang, K. (2005). “Software reuse research: Status 

and future”. IEEE Transactions on Software Engineering, v. 31, n. 7, pp. 529-536. 

[Frakes & Terry 1994] Frakes, W., Terry, C. (1994). “Reuse Level Metrics”. In: 3rd 

International Conference on Software Reuse (ICSR 1994), Rio de Janeiro, Brazil, pp. 

139-148, November. 

[Gallagher et al. 2008] Gallagher, K., Hatch, A., Munro, M. (2008), “Software 

Architecture Visualization: An Evaluation Framework and its Application”, IEEE 

Transactions on Software Engineering, v. 34, n. 2, pp. 260-270. 

[Gill 2006] Gill, N. S. (2006). “Importance of Software Component Characterization for 

Better Software Reusability”. SIGSOFT Software Engineering Notes, v. 31, n. 1, pp. 

1-3, January. 

[Griss et al. 1994] Griss, M. L., Favaro, J., Walton, P. (1994). “Managerial and 

organizational issues – Starting and Running a Software Reuse Program”. In: 

Schäfer, W., Prieto-Díaz, R., Matsumoto, M. (eds.), Software Reusability, pp. 51-78, 

Ellis Horwood Ltd. 

[Gutwin et al. 2004] Gutwin, C., Penner, R., Schneider, K. A. (2004). “Group 

Awareness in Distributed Software Development”. In: ACM Conference on 

Computer Supported Cooperative Work (CSCW 2004), Chicago, USA, pp. 72-81, 

November. 

[Hadji et al. 2008] Hadji, H. B., Kim. S. K., Choi, H. J. (2008). “A Representation 

Model for Reusable Assets to Support User Context”. In: 4th International 

Symposium on Service-Oriented System Engineering, Jhongli, Taiwan, pp. 91-96, 

December. 

[Haefliger et al. 2008] Haefliger, S., von Krogh, G., Spaeth, S. (2008). “Code Reuse in 

Open Source Software”. Management Science, v. 54, n. 1, pp. 180-193, January. 



104 

[Hattori 2010] Hattori, L. (2010). “Enhancing collaboration of multi-developer projects 

with synchronous changes”. In: 32nd ACM/IEEE International Conference on 

Software Engineering, Cape Town, South Africa, pp. 377-380, May. 

[Holmes 2008] Holmes, R. (2008). “Pragmatic software reuse”. Ph.D. Thesis, 

University of Calgary, Calgary, Canada, November. 

[Hooper & Chester 1991] Hooper, J. W., Chester, R. O. (1991). “Software Reuse: 

Guidelines and Methods”, Springer, 180p. 

[IEEE 2010] IEEE (2010). “IEEE Std. 1517-2010: IEEE Standard for Information 

Technology – System and Software Life Cycle Processes – Reuse Processes”, 39p, 

Institute of Electrical and Electronics Engineers. 

[ISO/IEC 2008] ISO/IEC (2008). “ISO/IEC 12207:2008 – Systems and software 

engineering – Software life cycle processes”, 123p, International Organization for 

Standardization and the International Electrotechnical Commission, Geneva, 

Switzerland. 

[ISO/IEC 2012] ISO/IEC (2012). “ISO/IEC 15504-5:2012 – Process assessment, Part 5: 

An exemplar software life cycle process assessment model”, 196p, International 

Organization for Standardization and the International Electrotechnical Commission, 

Geneva, Switzerland. 

[Kagdi & Maletic 2008] Kagdi, H., Maletic, J. I. (2008). “Expressiveness and 

effectiveness of program comprehension: Thoughts on future research directions”. 

In: Proceedings of the IEEE Frontiers of Software Maintenance (FoSM 2008), 

Beijing, China, pp. 31-37, October. 

[Kang et al. 1990] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., Peterson, A. S. 

(1990). Feature-oriented domain analysis (FODA) feasibility study (No. CMU/SEI-

90-TR-21). Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, 

USA. 

[Keim et al. 2008] Keim, D. A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, 

H. (2008). “Visual analytics: Scope and challenges”. In: Simoff, S. J., Böhlen, M. H., 

Mazeika, A. (eds.), Visual Data Mining, pp. 76-90, Springer Berlin Heidelberg. 

[Kelleher 2005] Kelleher, J. (2005). “A reusable traceability framework using patterns”. 

In: Proceedings of the 3rd International Workshop on Traceability in Emerging 



105 

Forms of Software Engineering (TEFSE 2005), Long Beach, USA, pp. 50-55, 

November. 

[Kim & Stohr 1998] Kim, Y., Stohr, E.A. (1998). “Software reuse: survey and research 

directions”. Journal of Management Information Systems, v. 14, n. 4, pp. 113-147, 

March. 

[Kitchenham et al. 2009] Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., 

Bailey, J., Linkman, S. (2009). “Systematic literature reviews in software 

engineering – A systematic literature review”, Information and Software Technology, 

v. 51, n. 1, pp. 7-15, January. 

[Klerkx et al. 2006] Klerkx, J., Verbert, K., Duval, E. (2006). “Visualizing Reuse: More 

than Meets the Eye”. In: 6th International Conference on Knowledge Management 

(I-KNOW), Graz, Austria, pp. 489-497. 

[Koschke 2003] Koschke, R. (2003). “Software visualization in software maintenance, 

reverse engineering, and re-engineering: a research survey,” Journal of Software 

Maintenance and Evolution: Research and Practice, v. 15, n. 2, pp. 87-109. 

[Krueger 1992] Krueger, C. W. (1992). “Software reuse”. ACM Computing Surveys, v. 

24, n. 2, pp. 131-183, June. 

[Lanza & Marinescu 2006] Lanza, M., Marinescu, R. (2006). Object-Oriented Metrics 

in Practice. Springer-Verlag Berlin Heidelberg. 

[Lee et al. 2012] Lee, B., Isenberg, P., Riche, N. H., Carpendale, S. (2012). “Beyond 

Mouse and Keyboard: Expanding Design Considerations for Information 

Visualization Interactions”. IEEE Transactions on Visualization and Computer 

Graphics, v. 18, n. 12, pp. 2689-2698, December. 

[Lucrédio et al. 2008] Lucrédio, D., Brito, K. S., Alvaro, A., Garcia, V. C., Almeida, E. 

S., Fortes, R. P. M., Meira, S. L. (2008). “Software reuse: The Brazilian industry 

scenario”. Journal of Systems and Software, v. 81, n. 6, pp. 996-1013, June. 

[Mackinlay 1986] Mackinlay, J. D. (1986). “Automating the design of graphical 

presentation of relational information”. ACM Transaction on Graphics, v. 5, n. 2, pp. 

110-141, April. 

[Maletic et al. 2002] Maletic, J. I., Marcus, A., Collard, M. L. (2002). “A task oriented 

view of software visualization”. In: Proceedings of the 1st International Workshop 



106 

on Visualizing Software for Understanding and Analysis (VISSOFT 2002), Paris, 

France, pp. 32-40, June. 

[Mancoridis et al. 1993] Mancoridis, S., Holt, R. C., Penny, D. A. (1993). “Conceptual 

framework for software development”. In: Proceedings of the 1993 ACM Computer 

Science Conference, Indianapolis, USA, pp. 74-80, February. 

[Mariani & Pastore 2011] Mariani, L., Pastore, F. (2011). “Supporting plug-in mashes 

to ease tool integration”. In: 1st Workshop on Developing Tools as Plug-ins (TOPI 

2011), Cape Town, Africa, pp. 1-4, May. 

[Marshall 2001] Marshall, S. (2001). “Using and Visualizing Reusable Code: Position 

Paper for Software Visualization Workshop”. In: Workshop on Software 

Visualization, 2001 ACM SIGPLAN Conference on Object-Oriented Programming, 

Systems, Languages, and Applications (OOPSLA 2001), Tampa, USA, pp. 1-4, 

October. 

[Marshall et al. 2003] Marshall, S. Jackson, K., Anslow, C., Biddle, R. (2003). “Aspects 

to visualising reusable components”. In: Proceedings of the Australasian Symposium 

on Information Visualisation (InVis.au 2003), Adelaide, Australia, pp. 81-88, 

February. 

[Mello et al. 2014] Mello, R. M., Teixeira, E. N., Schots, M., Werner, C. M. L., 

Travassos, G. H. (2014). “Verification of Software Product Line Artefacts: A 

Checklist to Support Feature Model Inspections”. Journal of Universal Computer 

Science (J.UCS) (to appear). 

[Mili et al. 1995] Mili, H., Mili, F., Mili, A. (1995). “Reusing software: Issues and 

research directions”. IEEE Transactions on Software Engineering, v. 21. n. 6, pp. 

528-562. 

[Moore & Bailin 1991] Moore, J. M., Bailin, S. C. (1991). “Domain Analysis: 

Framework for reuse”. In: Prieto-Díaz, R., Arango, G. (eds.), Domain Analysis and 

Software System Modeling, pp. 179-202, IEEE Computer Society Press, Los 

Alamitos, USA. 

[Morisio et al. 2002] Morisio, M., Ezran, M. and Tully, C. (2002). Success and failure 

factors in software reuse. IEEE Transactions on Software Engineering, v. 28, n. 4, 

pp. 340-357. 



107 

[Mukherjea & Foley 1996] Mukherjea, S., Foley, J. (1996). “Requirements and 

Architecture of an Information Visualization Tool”. In: Database Issues for Data 

Visualization, Springer Berlin/Heidelberg, pp. 57-75. 

[Mulholland 1997] Mulholland, P. (1997). “Using a fine-grained comparative 

evaluation technique to understand and design software visualization tools”. In: 7th 

Workshop on Empirical Studies of Programmers, Alexandria, USA, pp. 91-108, 

October. 

[Naur & Randell 1968] Naur, P., Randell, B. (1968). “Software Engineering”, Scientific 

Affairs Division, NATO, Brussels, Garmisch, Germany, Report on a conference 

sponsored by the NATO Science Committee, October. 

[Norman 2010] Norman, D. A. (2010). “Natural User Interfaces Are Not Natural”. 

Interactions, v. 17, n. 3, pp. 6-10, May. 

[Novais et al. 2012] Novais, R., Nunes, C., Lima, C., Cirilo, E., Dantas, F., Garcia, A., 

Mendonça, M. (2012). “On the proactive and interactive visualization for feature 

evolution comprehension: An industrial investigation”. In: 34th International 

Conference on Software Engineering (ICSE 2012) – Software Engineering in 

Practice (SEIP) Track, Zürich, Switzerland, pp. 1044-1053, June. 

[Oliveira 2011] Oliveira, M. S. (2011). “PREViA: An Approach for Visualizing the 

Evolution of Software Models” [PREViA: Uma Abordagem para a Visualização da 

Evolução de Modelos de Software] (in Portuguese). M.Sc. Thesis, COPPE/UFRJ, 

Rio de Janeiro, Brazil, March. 

[Oliveira et al. 2014] Oliveira, P., Valente, M. T., Lima, F. P. (2014). “Extracting 

relative thresholds for source code metrics”. In: 1st Software Evolution Week - IEEE 

Conference on Software Maintenance, Reengineering and Reverse Engineering 

(CSMR-WCRE 2014), Antwerp, Belgium, pp. 254-263, February. 

[Orso et al. 2000] Orso, A., Harrold, M. J., Rosenblum, D. S. (2000). “Component 

Metadata for Software Engineering Tasks”, 2nd International Workshop on 

Engineering Distributed Objects, Davis, USA, pp. 126-140, November. 

[Palmieri et al. 2013] Palmieri, M., Schots, M., Werner, C. (2013). “ReuseDashboard: 

Supporting Stakeholders in Monitoring Software Reuse Programs” 

[ReuseDashboard: Apoiando Stakeholders na Monitoração de Programas de 



108 

Reutilização de Software] (in Portuguese). In: 1st Brazilian Workshop on Software 

Visualization, Evolution, and Maintenance (VEM 2013), Brasília, Brazil, pp. 54-61, 

September. 

[Pereira & Schots 2011] Pereira, T. A., Schots, M. (2011). “GraphVCS: An Approach 

for Visualizing and Understanding Version Control Repositories” [GraphVCS: Uma 

Abordagem para a Visualização e Compreensão de Repositórios de Controle de 

Versão] (in Portuguese). In: 1st Brazilian Workshop on Software Visualization 

(WBVS 2011), São Paulo, Brazil, pp. 1-8. 

[Poulin et al. 1993] Poulin, J. S., Caruso, J. M., Hancock, D. R. (1993). “The Business 

Case for Software Reuse”. IBM Systems Journal, v. 32, n. 4, pp. 567-594, October. 

[Poulin 1994] Poulin, J. S. (1994). “Measuring Software Reusability”. In: 3rd 

International Conference on Software Reuse (ICSR 1994), Rio de Janeiro, Brazil, pp. 

126-138, November. 

[Prieto-Díaz & Arango 1991] Prieto-Díaz, R., Arango, G. F. (1991). Domain Analysis 

and Software Systems Modeling. IEEE Computer Society Press. 

[Queiroz et al. 2012] Queiroz, A. R., Oliveira, M. S., Werner, C. M. L. (2012). 

“Supporting Project Management through Visual Analytics of Scenario Data” [Apoio 

ao Gerenciamento de Projetos por Meio da Análise Visual de Dados de Cenários]. 

In: XXXIV Jornada Giulio Massarani de Iniciação Científica, Tecnológica, Artística 

e Cultural UFRJ, pp. 229. 

[Queiroz et al. 2013] Queiroz, A. R., Oliveira, M. S., Werner, C. M. L. (2013). 

“Systematic Support for the Choice of Information Visualizations based on 

Representation Constraints” [Apoio Sistemático à Escolha de Visualizações de 

Informação Baseada em Restrições de Representação]. In: XXXV Jornada Giulio 

Massarani de Iniciação Científica, Tecnológica, Artística e Cultural UFRJ, pp. 102. 

[Ripley et al. 2007] Ripley, R. M., Sarma, A., Van der Hoek, A. (2007). “A 

Visualization for Software Project Awareness and Evolution”. In: Proceedings of the 

4th IEEE International Workshop on Visualizing Software for Understanding and 

Analysis (VISSOFT 2007), Banff, Canada, pp. 137-144, June. 



109 

[Robbes & Lanza 2006] Robbes, R., Lanza, M. (2006). “Change-Based Software 

Evolution”. In: Proceedings of the 2nd International ERCIM Workshop on Software 

Evolution (EVOL 2006), Lille, France, pp. 159-164, April. 

[Robillard et al. 2010] Robillard, M., Walker, R., Zimmermann, T. (2010). 

“Recommendation System for Software Engineering”. IEEE Software, v. 27, n. 4, 

pp. 80-86, July. 

[Rocha et al. 2007] Rocha, A. R. C., Montoni, M., Weber, K. C., Araujo, E. E. R. 

(2007). “A Nationwide Program for Software Process Improvement in Brazil”. In: 

6th International Conference on Quality of Information and Communications 

Technology (QUATIC 2007), Lisbon, Portugal, pp. 167-176, September. 

[Rodrigues & Werner 2011] Rodrigues, C. S. C., Werner, C. M. L. (2011). “Making the 

comprehension of software architecture attractive”. In: 24th IEEE-CS Conference on 

Software Engineering Education and Training (CSEE&T 2011), Honolulu, Hawaii, 

pp. 416-420. 

[Sá et al. 1997] Sá, M. L. B., Werner, C. M. L., Goldman, I. (1997). “Introduction of 

Reuse in a Brazilian Enterprise on Software Production” [Introdução da Reutilização 

em uma Empresa Brasileira de Produção de Software] (in Portuguese). In: 11th 

Brazilian Symposium on Software Engineering (SBES 1997), Fortaleza, Brazil, pp. 

233-248, October. 

[Sametinger 1997] Sametinger, J. (1997). Software Engineering with Reusable 

Components. Ed. 1997. Springer-Berlin, 288p. 

[Santa Isabel 2011] Santa Isabel, S. L. (2011). “Selection of Testing Approaches for 

Web Applications” [Seleção de Abordagens de Teste para Aplicações Web] (in 

Portuguese). M.Sc. Thesis, COPPE/UFRJ, Rio de Janeiro, Brazil, July. 

[Santos et al. 2009] Santos, G., Zanetti, D., Maciel, M., Simões, C. A., Werner, C., 

Rocha, A. R. (2009). “The Experience of the Implementation of Reuse Management 

and Development for Reuse Processes in Synapsis-Brazil” [A Experiência de 

Implantação dos Processos Gerência de Reutilização e Desenvolvimento para 

Reutilização na Synapsis-Brasil] (in Portuguese). In: Proceedings of the 5th Annual 

Workshop of MPS (WAMPS), Campinas, Brazil, pp. 128-135, October. 



110 

[Schmidt 1999] Schmidt, D. C. 1999. “Why software reuse has failed and how to make 

it work for you”. C++ Report, SIGS Publications Group, January. 

[Schots et al. 2010] Schots, M., Silva, M. A., Murta, L. G. P., Werner, C. M. L. (2010). 

“Adherence Checking between Conceptual and Emerging Architectures by Using the 

PREViA Approach” [Verificação de Aderência entre Arquiteturas Conceituais e 

Emergentes Utilizando a Abordagem PREViA] (in Portuguese). In: 7th Brazilian 

Workshop on Modern Software Maintenance (WMSWM 2010), Belém, Brazil, pp 1-

8, June. 

[Schots & Werner 2012] Schots, M., Werner, C. (2012). “Exploiting the Intangible: An 

Overview of Software Visualization and its Applications” [Explorando o Intangível: 

Um Panorama da Visualização de Software e suas Aplicações] (in Portuguese). 

Tutorial. In: III Brazilian Congress on Software: Theory and Practice (CBSoft 2012), 

Natal, Brazil. 

[Schots et al. 2012] Schots, M., Werner, C., Mendonça, M. (2012). “Awareness and 

Comprehension in Software/Systems Engineering Practice and Education: Trends 

and Research Directions”. In: 26th Brazilian Symposium on Software Engineering 

(SBES), Natal, Brazil, pp. 186-190. 

[Schots & Werner 2013] Schots, M., Werner, C. (2013). “Characterizing the 

Implementation of MR-MPS-SW Reuse Processes: Preliminary Results” 

[Caracterizando a Implementação de Processos de Reutilização do MR-MPS-SW: 

Resultados Preliminares]. In: Proceedings of the 9th Annual Workshop of MPS 

(WAMPS 2013), Campinas, Brazil, pp. 44-53, October. 

[Schots 2014] Schots, M. (2014). “On the Use of Visualization for Supporting Software 

Reuse”. In: 36th International Conference on Software Engineering (ICSE 2014), 

Doctoral Symposium, Hyderabad, India, pp. 694-697, June (to appear). 

[Schots et al. 2014] Schots, M., Vasconcelos, R., Werner, C. (2014). “A Quasi-

Systematic Review on Software Visualization Approaches for Software Reuse”, 

Technical Report, COPPE/UFRJ, Rio de Janeiro, Brazil (to appear). 

[Seaman 1999] Seaman, C. B. (1999). “Qualitative methods in empirical studies of 

software engineering”. IEEE Transactions on Software Engineering, v. 25, n. 4, pp. 

557-572, July. 



111 

[Seaman 2009] Seaman, C. (2009). “Using Qualitative Methods in Empirical Studies of 

Software Engineering”. Short course. In: VI Experimental Software Engineering 

Latin American Workshop (ESELAW 2009), São Carlos, Brazil, November. 

[Selby 2005] Selby, R. W. (2005). “Enabling reuse-based software development of 

large-scale systems”. IEEE Transactions on Software Engineering, v. 31, n. 6, pp. 

495-510, June. 

[Sensalire et al. 2009] Sensalire, M., Ogao, P., Telea, A. (2009). “Evaluation of 

software visualization tools: Lessons learned”. In: 5th IEEE International Workshop 

on Visualizing Software for Understanding and Analysis (VISSOFT 2009), 

Edmonton, Canada, pp. 19-26, September. 

[Sherif & Vinze 2003] Sherif, K., Vinze, A. (2003). “Barriers to adoption of software 

reuse: A qualitative study”. Information & Management, v. 41, n. 2, pp. 159-175, 

December. 

[Shi et al. 2011] Shi, Z., Wang, X., Yue, J. (2011) “Cognitive Cycle in Mind Model 

CAM”. International Journal of Intelligence Science, v. 1, n. 2, pp. 25-34. 

[Silva et al. 2012] Silva, M., Schots, M., Werner, C. (2012). “Supporting Software 

Maintenance Activities through a Software Visualization Product Line 

Infrastructure”. In: 9th Workshop on Modern Software Maintenance (WMSWM 

2012), Fortaleza, Brazil, pp. 1-8, June. 

[Silva Filho et al. 2008] Silva Filho, R. C., Katsurayama, A. E., Santos, G., Murta, L., 

Rocha, A. R. C. (2008). “Deploying Software Reuse Management at COPPE/UFRJ 

Software Engineering Laboratory”. In: 1st Workshop on Software Reuse Efforts 

(WSRE), 2nd RiSE Summer School on Software Product Lines (RiSS 2008), Recife, 

Brazil, pp. 1-5, November. 

[SOFTEX 2012] SOFTEX (2012). “MPS.BR – Brazilian Software Process 

Improvement – General Guide” [MPS.BR – Melhoria de Processo do Software 

Brasileiro – Guia Geral] (in Portuguese), August. Available at 

http://www.softex.br/mpsbr. 

[SOFTEX 2013a] SOFTEX (2013a). “Implementation Guide – Part 3: Reasoning for 

the Implementation of Level E of MR-MPS-SW:2012” [Guia de Implementação – 



112 

Parte 3: Fundamentação para Implementação do Nível E do MR-MPS-SW:2012] (in 

Portuguese), September. Available at http://www.softex.br/mpsbr/guias/. 

[SOFTEX 2013b] SOFTEX (2013b). “Implementation Guide – Part 5: Reasoning for 

the Implementation of Level C of MR-MPS-SW:2012” [Guia de Implementação – 

Parte 5: Fundamentação para Implementação do Nível C do MR-MPS-SW:2012] (in 

Portuguese), September. Available at http://www.softex.br/mpsbr/guias/. 

[SOFTEX 2013c] SOFTEX (2013c). “Assessment Guide”, August. Available 

at http://www.softex.br/mpsbr/english-guides/. 

[SOFTEX 2013d] SOFTEX (2013d). “MPS-SW Published Assessments” [Avaliações 

MPS-SW (Software) Publicadas] (in Portuguese), August. Available at 

http://www.softex.br/wp-content/uploads/2013/07/Avalia%C3%A7%C3%B5es-

MPS-SW.pdf. 

[SOFTEX 2014a] SOFTEX (2014a). “Authorized Institutions” [Instituições 

Autorizadas] (in Portuguese). Available at: http://www.softex.br/mpsbr/instituicoes-

autorizadas/ia/. 

[SOFTEX 2014b] SOFTEX (2014b). “Authorized Professionals” [Profissionais 

Habilitados] (in Portuguese). Available at: http://www.softex.br/mpsbr/profissionais-

habilitados-2/. 

[Telea et al. 2010] Telea, A., Ersoy, O., Voinea, L., (2010). “Visual Analytics in 

Software Maintenance: Challenges and Opportunities”. In: 1st European Symposium 

on Visual Analytics (EuroVAST), Bordeaux, France, pp. 65-70, June. 

[Thomas & Cook 2006] Thomas, J. J, Cook, K. A. (2006) “A visual analytics agenda”. 

IEEE Computer Graphics and Applications, v. 26, n. 1, pp. 10-13, January. 

[Tichy 1998] Tichy, W. F. (1998). “Should computer scientists experiment more?”, 

IEEE Computer, v. 31, n. 5, pp. 32-40, May. 

[Travassos et al. 2008] Travassos, G. H., Santos, P. S. M., Mian, P. G., Dias Neto, A. 

C., Biolchini, J. (2008). “An environment to support large scale experimentation in 

software engineering”. In: 13th IEEE International Conference on Engineering of 

Complex Computer Systems (ICECCS 2008), Belfast, Northern Ireland, pp. 193-202, 

April. 



113 

[Treude & Storey 2010] Treude, C., Storey, M.-A. (2010). “Awareness 2.0: staying 

aware of projects, developers and tasks using dashboards and feeds”. In: 32nd 

ACM/IEEE International Conference on Software Engineering (ICSE 2010), Cape 

Town, South Africa, pp. 365-374, May. 

[Vasconcelos et al. 2013] Vasconcelos, R. R., Schots, M., Werner, C. (2013). 

“Recommendations for Context-Aware Visualizations in Software Development”. 

In: 10th Workshop on Modern Software Maintenance (WMSWM 2013), Salvador, 

Brazil, pp. 41-48, July. 

[Vasconcelos et al. 2014a] Vasconcelos, R., Schots, M., Werner, C. (2014). “An 

Information Visualization Feature Model for Supporting the Selection of Software 

Visualizations”. In: 22nd International Conference on Program Comprehension 

(ICPC 2014), Early Research Achievements Track, Hyderabad, India, pp. 122-125, 

June (to appear). 

[Vital & Krause 2013] Vital, G. B., Krause, V. S. (2013). “Rec4Reuse: A system for 

performing evaluations and recommendations based on desirable properties of 

reusable software” [Rec4Reuse: Um sistema de avaliação e recomendação baseado 

em propriedades desejáveis a software reutilizável] (in Portuguese). Undergraduate 

Final Project, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 

Brazil. 

[Von Mayrhauser & Vans 1995] Von Mayrhauser, A., Vans, A. M. (1995). “Program 

comprehension during software maintenance and evolution”, Computer, v. 28, n. 8, 

pp. 44-55, August. 

[Werner et al. 2011] Werner, C., Murta, L., Schots, M., Magdaleno, A., Silva, M., 

Cepeda, R., Vahia, C. (2011). “EvolTrack: A Plug-in-Based Infrastructure for 

Visualizing Software Evolution”. In: 1st Brazilian Workshop on Software 

Visualization (WBVS 2011), São Paulo, Brazil, pp. 1-8. 

[Wettel & Lanza 2008] Wettel, R., Lanza, M. (2008). “Visual Exploration of Large-

Scale System Evolution”. In: 15th Working Conference on Reverse Engineering 

(WCRE 2008), Antwerp, Belgium, pp. 219-228, October. 

[Wong et al. 2007] Wong, K., Stroulia, E., Tonella, P. (2007). “Message from the 

Chairs”. In: 15th IEEE International Conference on Program Comprehension (ICPC 

2007), Banff, Canada, pp. ix, June. 



114 

[Wu & Storey 2000] Wu, J., Storey, M.-A. D. (2000). “A Multi-Perspective Software 

Visualization Environment”. In: Conference of the Centre for Advanced Studies on 

Collaborative Research, Mississauga, Canada, pp. 1-10, November. 

[Ye & Fischer 2000] Ye, Y., Fischer, G., Reeves, B. (2000). “Integrating Active 

Information Delivery and Reuse Repository Systems”. In: ACM SIGSOFT 

Symposium on Foundations on Software Engineering (FSE 2000), San Diego, USA, 

pp. 60-68, November. 

[Ye & Fischer 2002] Ye, Y., Fischer, G. (2002). “Supporting reuse by delivering task-

relevant and personalized information”. In: 24th International Conference on 

Software Engineering (ICSE 2002), Orlando, USA, pp. 513-523, May. 


