



ON THE USE OF VISUALIZATION FOR SUPPORTING SOFTWARE REUSE

Marcelo Schots de Oliveira

Tese de Doutorado apresentada ao Programa de

Pós-graduação em Engenharia de Sistemas e

Computação, COPPE, da Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do título de Doutor em

Engenharia de Sistemas e Computação.

Orientadora: Cláudia Maria Lima Werner

Rio de Janeiro

Dezembro de 2015



ON THE USE OF VISUALIZATION FOR SUPPORTING SOFTWARE REUSE

Marcelo Schots de Oliveira

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM

CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

__

Profa. Cláudia Maria Lima Werner, D.Sc.

__

Prof. Toacy Cavalcante de Oliveira, D.Sc.

__

Prof. Claudio Esperança, Ph.D.

__

Prof. Márcio de Oliveira Barros, D.Sc.

__

Prof. Alexandre Gonçalves Evsukoff, Ph.D.

RIO DE JANEIRO, RJ - BRASIL

DEZEMBRO DE 2015

iii


Oliveira, Marcelo Schots de

On the Use of Visualization for Supporting Software

Reuse/ Marcelo Schots de Oliveira. – Rio de Janeiro:

UFRJ/COPPE, 2015.

XV, 224 p.: il.; 29,7 cm.

Orientadora: Cláudia Maria Lima Werner

Tese (doutorado) – UFRJ/ COPPE/ Programa de

Engenharia de Sistemas e Computação, 2015.

Referências Bibliográficas: p. 165-183.

1. Software Visualization. 2. Software Reuse. 3.

Information Visualization. 4. Software Engineering. I.

Werner, Cláudia Maria Lima. II. Universidade Federal do

Rio de Janeiro, COPPE, Programa de Engenharia de

Sistemas e Computação. III. Título.

iv


“Perform your works in meekness, and you shall be loved beyond the glory of men.

However great you may be, humble yourself in all things, and you will find grace in the

presence of God. For only the power of God is great, and He is honored by the humble.

The heart of the wise is understood by wisdom, and a good ear will listen to wisdom

with all its desire.”

(Ecclus 3:19-21;31. The Holy Bible, Catholic Public Domain Version)

v


ACKNOWLEDGMENTS

The work presented in this thesis would never have been possible without the

strength and inspiration provided by God when I needed the most, besides the support

and encouragement of a number of people He has put into my life. Therefore, I must

start thanking Him. Despite all the issues, losses, and difficulties Natália and I have

been struggling with during this Ph.D. time, He is always with us. I also thank the Holy

Mary, for teaching us to “do whatever He tells us” and “reflecting about all the things in

her heart”, and for her special care of Natália and me. I must not forget to thank my

Guardian Angel, who certainly has had a lot of work during all this time!

I would also like to thank my advisor for her guidance and support since the

master course. Cláudia, many of us may not always notice your dedication and patience

with your students, but you can rest assured that I did, even when I did not demonstrate.

I cannot thank you enough for bearing with my defects and failings. I learned with you a

lot. Your valuable academic lessons go beyond the work presented in this thesis. I wish

you and your family all the best.

I am so grateful for my father Weliton, my mother Maria Helena, and my sister

Letícia, for everything I have learned from them, which made me who I am. That small-

town boy has come a long way since he left Manhumirim, because of them and their

unconditional love and support. Pai, mãe, you made the impossible so that I could make

my undergraduate course, and you have made so many sacrifices for Letícia and me that

I will never forget. I also thank my brother-in-law Robson, who is such a nice husband

to Letícia and has become such a good friend. I hope we can hang out more often.

Very special thanks go to all the members of my lovely family, who have always

believed in me, encouraged me, and cared about me. Thank you for all your prayers,

each one made the difference. Your heartfelt happiness in each of my progresses was

inspiring. My gratitude also goes to Natália’s family, for understanding our necessary

absences and constantly praying for us.

I thank the members of my dissertation committee for accepting the invitation to

evaluate my work. Márcio, thank you so much for dedicating your time for reading this

thesis so carefully, for your (positively) challenging questions, and for your pertinent

comments. Alexandre, your thoughts as “an outsider” helped me improve the

explanation of the thesis context. Claudio, I am very thankful for your enlightening,

vi


interesting, and thought-provoking considerations. Toacy, your points made me provide

a better explanation of my work. I also thank all the professors who contributed with my

academic formation throughout this journey, in many different ways, helping me define

who I should be as a professor and researcher. Thanks especially for the opportunities I

was given of teaching and cooperating with industry.

Many thanks to all the organizations where I supported and assessed the

implementation of software reuse processes since 2009. A large portion of this thesis is

motivated by your feedback about the issues that permeate an effective implementation

of reuse. I sincerely hope this work can be a guide towards some solutions, being a

starting point for other fruitful academia-industry collaborations for advancing the field.

My sincere thanks to all the volunteers who participated in the experiments I

have conducted, related or not with this thesis, for your precious time, genuine interest,

and readiness for helping me evaluate my works. I also wish to thank the open source

community, especially the authors and maintainers of the projects used in the tools built

during this thesis. Much open source software was reused (it could not be any different

in such a thesis), and all the openly available data were key to this research.

I am so grateful for the 5 years I spent at UERJ as a professor. Not only I could

teach (and learn) with brilliant, amazing students, but also I was blessed for having been

invited by some of these to be their advisor, which was such an honor and privilege for

me. All the good things we have done in these final projects and papers were thanks to

your patience and determination. You are a fundamental part of my academic trajectory.

I am also very lucky for all the professors I have known from the Computer

Science and Informatics Department at UERJ, especially Mariluci (who is now

watching over us from Heaven) and professors Alexandre Rojas, Vera, and (in the most

recent years) Leticia, resulting in very nice collaborations. I also would like to thank the

secretaries and staff at UERJ (especially Alice, such a wonderful and important person).

I also thank my colleagues from the Software Engineering research group at

COPPE/UFRJ, who were important for my academic trajectory, each in their own ways.

Special thanks to Marlon, Renan, André, and Fernanda (a High School scientific

initiation student), whose works I had the opportunity to co-supervise, even formally or

informally. Thank you for your patience with my defects and limitations. I particularly

thank Dr. Claudia Susie, for being a “jack-of-all-trades”, showing how cooperative a

person can be in the most simple (and many times unnoticed) things.

vii


Thanks to all the secretaries and staff from the Systems Engineering and

Computing Department and the Virtual and Augmented Reality Laboratory (Lab3D) at

COPPE, especially Bernadette, for being so supportive. Thanks to CNPq and CAPES

for the scholarship provided during the doctoral course. Thanks also to FAPERJ,

COPPETEC, and CAPS/SIGSOFT, for the financial support for my expenses when

presenting my research in nationwide and worldwide events.

I am thankful for having met many special people during conferences, who have

helped me with my research by sharing their opinions and thoughts. Particularly, I

would like to thank professors Carolyn Seaman, Fabian Beck, Stephan Diehl, and

Andreas Bollin, who provided personal feedback that greatly helped me improve my

works. I also thank prof. André van der Hoek for his comments in my previous work,

which were helpful for building this one. As I did in my master thesis, I also thank all

the anonymous reviewers who provided valuable feedback for improving my research.

I am deeply grateful for all my friends who have prayed and cheered for this

thesis to finish as soon as possible. Your support and comprehension surely made the

difference. I particularly thank Fr. Luiz Fernando Cintra and Fr. Pedro Barreto (for the

spiritual guidance and patience through all these years), Mirna Lewis (“Greg’s mum”,

the most amazing Canadian friend Natália and I could ever have), Dcn. Daniel

Kambalame (the WYD pilgrim from Malawi who became my true “br”, always keeping

in touch), Ivan and Italo (for supporting and encouraging me). I also thank everyone

from Tijuca and Marquês de Valença Centers for supporting me and praying for me.

Most of all, I would like to thank my lovely and wonderful wife. Natália, you are

such an inspiration for me to be a better person each day, reminding me with your life

example that happiness resides in the simplest things. Thank you for all your love, your

support, your prayers, the shared smiles and tears, every single thing. Thank you for

being so patient with me, and for loving me way more than I deserve. Belar and I love

you with all our hearts and beyond. I hope Our Lord may eliminate all the obstacles and

bless us again with more children, as we have been waiting and hoping for so long.

Last, but not least, I would like to thank my beloved angel and unborn son Belar

for watching over his dad from Heaven. Belar, you know that if I was given the chance

to choose between the doctoral title and having you here (not that these options are

mutually exclusive), I would have given up this course without thinking twice, with no

regrets.

viii


Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

O USO DE VISUALIZAÇÕES COMO APOIO À REUTILIZAÇÃO DE SOFTWARE

Marcelo Schots de Oliveira

Dezembro/2015

Orientadora: Cláudia Maria Lima Werner

Programa: Engenharia de Sistemas e Computação

A reutilização de software já é parte do dia-a-dia no desenvolvimento de

aplicações. No entanto, obstáculos técnicos e não técnicos ainda impedem sua efetiva

execução em organizações de software, incluindo a dificuldade de gerenciar e prover

visibilidade de cenários de reúso, devido à quantidade e diversidade de dados

envolvidos. Este trabalho apresenta APPRAiSER, uma abordagem que visa prover

awareness por meio de recursos de visualização da informação para apoiar a execução

de tarefas de reutilização. Algumas necessidades identificadas a partir de estudos de

caracterização do estado da arte e da prática serviram de insumo para a definição da

APPRAiSER. A abordagem é composta por ferramentas para a extração, agregação e

visualização de dados provenientes de repositórios de software, além de elementos

conceituais para a estruturação do conhecimento sobre conceitos da área. Estudos

conduzidos com profissionais da academia e da indústria mostraram que o apoio

ferramental desenvolvido provê aumento da percepção (awareness) na execução de

tarefas de reúso, e que os elementos conceituais têm potencial para auxiliar no

entendimento dos conceitos para a engenharia de ferramentas interativas de

visualização. Por fim, foram também apontadas melhorias para a abordagem.

ix


Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

ON THE USE OF VISUALIZATION FOR SUPPORTING SOFTWARE REUSE

Marcelo Schots de Oliveira

December/2015

Advisor: Cláudia Maria Lima Werner

Department: Systems Engineering and Computer Science

Software reuse has become part of the day-to-day application development.

However, some technical and non-technical obstacles still hinder its effective execution

in software organizations, including the difficulty in managing and providing visibility

of reuse scenarios, due to the amount and variety of associated data. This work presents

APPRAiSER, an approach that aims at providing awareness through information

visualization resources for supporting the execution of reuse tasks. Some needs

identified through studies for characterizing the state-of-the-art and state-of-the-practice

served as input for the definition of APPRAiSER. The approach is composed by tools

for extracting, aggregating, and visualizing data from software repositories, as well as

some conceptual elements for structuring the knowledge about concepts in the field.

Studies conducted with professionals from academia and industry showed that the

developed tool support increases awareness on the execution of reuse tasks, and the

conceptual elements have the potential to help understanding the concepts for the

engineering of interactive visualization tools. Finally, some improvements were also

pointed out for the approach.

x


SUMMARY

Chapter 1 – Introduction ... 1

1.1 Foreword .. 1

1.2 Motivation .. 2

1.3 Hypothesis and Research Questions .. 3

1.4 Goals... 4

1.5 Research Methodology ... 5

1.6 Text Structure ... 6

Chapter 2 – Software Reuse ... 8

2.1 Contextualization ... 8

2.2 Implementing Software Reuse Processes ... 11

2.3 Issues on Software Reuse Implementations ... 13

2.4 The Importance of a Holistic Reuse Awareness .. 15

2.5 Software Reuse in Practice: The Brazilian Scenario 16

2.5.1 Literature reports on software reuse implementations 16

2.5.2 A study of the software reuse scenario in Brazil 18

2.5.3 Discussion of the findings ... 22

2.6 Final Remarks .. 25

Chapter 3 – Software Visualization .. 29

3.1 Contextualization ... 29

3.2 The Role of Visualization in Awareness and Comprehension 31

3.2.1 On the awareness of the software development life cycle 32

3.2.2 Program comprehension and visualization ... 34

3.2.3 Awareness and comprehension challenges ... 36

3.3 Software Visualization and Reuse.. 38

3.3.1 Findings from the informal literature review .. 40

3.3.2 An extended framework for categorizing visualization approaches 41

3.3.3 Outline of the secondary study (quasi-systematic review) 45

3.3.4 Discussion of the findings ... 50

3.4 Final Remarks .. 55

Chapter 4 – Proposed Approach: APPRAiSER ... 58

4.1 Introduction .. 58

xi


4.2 APPRAiSER Overview .. 59

4.3 Zooming Browser ... 65

4.3.1 Design principles .. 67

4.3.2 Visualization perspectives .. 69

4.3.3 Implementation details .. 79

4.4 Repository Miner.. 81

4.4.1 On the sources of data ... 81

4.4.2 Implementation details .. 82

4.5 Visualization Feature Model .. 88

4.5.1 Domain analysis .. 89

4.5.2 Feature model elements .. 90

4.5.3 Using the feature model to define Zooming Browser features 94

4.6 Mapping Structure of Goals and Visualizations .. 96

4.6.1 The mapping structure and its application .. 97

4.7 Illustrative Scenarios .. 104

4.7.1 Making informed reuse decisions in a project 104

4.7.2 Maintaining organizational reuse repositories 106

4.8 Related Work.. 108

4.8.1 Zooming Browser ... 108

4.8.2 Repository Miner .. 113

4.8.3 Visualization Feature Model ... 116

4.8.4 Mapping Structure of Goals and Visualizations 117

4.9 Final Remarks .. 118

Chapter 5 – Evaluation ... 122

5.1 Evaluation Scope .. 122

5.2 Evaluation of the Visualization Feature Model .. 123

5.2.1 Planning .. 123

5.2.2 Execution .. 124

5.2.3 Analysis and Results ... 126

5.3 Evaluation of Zooming Browser .. 131

5.3.1 Planning .. 132

5.3.2 Execution .. 139

5.3.3 Analysis... 140

5.4 Final Remarks .. 157

xii


Chapter 6 – Conclusion .. 158

6.1 Epilogue ... 158

6.2 Contributions and Results .. 159

6.2.1 Research achievements ... 160

6.3 Open Questions and Research Agenda .. 162

References .. 165

Appendix A – Mapping Between Goals and Visualizations .. 184

Appendix B – Questionnaire for Evaluating the Visualization Feature Model 211

B.1 Part 1/5: Characterization ... 211

B.2 Part 2/5: Overview of the Visualization Feature Model 211

B.3 Part 3/5: Evaluation of the Visualization Feature Model 213

B.4 Part 4/5: Complementary Check for Clarity and Correctness 215

B.5 Part 5/5: Follow-Up .. 217

Appendix C – Instruments Used in the Zooming Browser Evaluation 218

C.1 Characterization Questionnaire .. 218

C.1.1 Part 1/3: Characterizing the participant’s background 218

C.1.2 Part 2/3: Characterizing the organization ... 219

C.1.3 Part 3/3: Characterizing the participant in the software development

context .. 220

C.2 On the Relevance of Information/Metadata for Software Reuse 220

C.3 Descriptions of Tasks ... 221

C.3.1 Reuse manager .. 221

C.3.2 Software developer ... 222

C.4 Follow-Up Questionnaire ... 223

xiii


LIST OF ILLUSTRATIONS

Figure 1.1 – Research methodology .. 5

Figure 2.1 – Distribution of respondents according to the MPS assessor levels (left),

and participants’ experience (based on the year of authorization) in implementations and

assessments (right) .. 22

Figure 3.1 – 3D workspace visualization [Ripley et al. 2007] 33

Figure 3.2 – The city metaphor presented in CodeCity [Wettel & Lanza 2008]........... 35

Figure 3.3 – EvolTrack and its plug-ins PREViA and SocialNetwork [Werner et al.

2011] ... 35

Figure 3.4 – Software visualization dimensions (extended from [Maletic et al. 2002])

[Schots & Werner 2014b] ... 43

Figure 3.5 – Organization of the secondary study results [Schots 2014c] 51

Figure 4.1 – High-level elements of APPRAiSER .. 60

Figure 4.2 – Core elements of Zooming Browser [Schots 2014a] 66

Figure 4.3 – Dashboard’s default view .. 70

Figure 4.4 – Dashboard’s view after hovering a slice of the pie chart 71

Figure 4.5 – Zooming Browser Reuse Map... 72

Figure 4.6 – One of the possible paths on the Metadata Exploration navigation flow.. 74

Figure 4.7 – History perspective (VCS Development History Graph view) 75

Figure 4.8 – History perspective (Release History Graph view) 76

Figure 4.9 – CAVE notification of an active context situation (top left part) (adapted

from [Vasconcelos 2015]) .. 78

Figure 4.10 – CAVE visualizing a project structure with Code Flowers (each bubble

represents the size of a class, in terms of lines of code (LOCs)) [Vasconcelos 2015] ... 78

Figure 4.11 – Zooming Browser overview .. 79

Figure 4.12 – Repository Miner overview ... 83

Figure 4.13 – Information flow between Repository Miner and Zooming Browser 84

Figure 4.14 – APPRAiSER database schema .. 85

Figure 4.15 – Form filled out by the developer; if a Maven URL is provided, the

remaining information is filled out automatically .. 87

Figure 4.16 – Visualization feature model (presentation and information visualization

features) [Vasconcelos et al. 2014a] [Schots et al. 2015] ... 90

xiv


Figure 4.17 – Visualization feature model (interaction features) [Vasconcelos et al.

2014a] [Schots et al. 2015] ... 91

Figure 4.18 – Examples of Interaction features ... 92

Figure 4.19 – Examples of Presentation features .. 92

Figure 4.20 – Examples of Information Visualization features 93

Figure 4.21 – Excerpt of the feature model and the selection of visualization features 95

Figure 4.22 – Mapping structure between goals and visualizations [Schots & Werner

2015] ... 98

Figure 4.23 – Initial visualization design for representing the issues of an asset 103

Figure 4.24 – The ALOCOM repository visualization [Klerkx et al. 2006] 109

Figure 4.25 – Dependency relations between system versions and library versions [Kula

et al. 2014] .. 110

Figure 4.26 – SDP visualization presenting an overview of the evolution of the

dependencies of a system as it evolves [Kula et al. 2014] ... 111

Figure 4.27 – The VerXCombo tool (source:

http://www.slideshare.net/augai9/verxcombo-an-interactive-data-visualization-of-

popular-library-version-combinations) ... 112

Figure 5.1 – Participant’s level of experience on related topics 125

Figure 5.2 – Participants’ academic level background .. 140

Figure 5.3 – Participants’ OO development experience .. 141

Figure 5.4 – Participants’ level of familiarity with topics involved in the study 141

Figure 5.5 – Participants’ opinion on the relevance of information for software reuse

tasks .. 142

Figure 5.6 – Participants’ performance (in seconds) in executing Reuse Management

(RM) questions ... 144

Figure 5.7 – Precision, recall, and efficacy per question (reuse managers) 145

Figure 5.8 – Precision, recall, and efficacy per question (software developers) 146

Figure 5.9 – Efficiency values per question for each reuse manager 147

Figure 5.10 – Efficiency values per question for each software developer 148

Figure 5.11 – Efficiency values per question for each software developer (excerpt) . 148

Figure 5.12 – Participants’ perception on some aspects of Zooming Browser 151

xv


LIST OF TABLES

Table 2.1 – Examples of reuse-related project tasks and organizational tasks 10

Table 2.2 – Interview questions ... 20

Table 2.3 – Findings and assumptions derived from the semi-structured interviews 26

Table 3.1 – Data extraction form ... 43

Table 3.2 – Study selection data (manual search) .. 49

Table 3.3 – Study selection data (search engines) ... 50

Table 3.4 – Findings and assumptions derived from the quasi-systematic review 56

Table 4.1 – APPRAiSER realization of desirable features .. 62

Table 4.2 – Zooming Browser design principles ... 67

Table 4.3 – Mapping between goals and questions ... 99

Table 4.4 – Mapping between questions and tasks .. 100

Table 4.5 – Mapping between tasks and data .. 100

Table 4.6 – Mapping between data and visualizations .. 103

Table 4.7 – The use of APPRAiSER in different stages of reuse initiatives 119

Table 5.1 – Evaluation scope ... 123

Table 5.2 – Participant’s academic background according to the categories 124

Table 5.3 – Identification of the study goals.. 131

Table 5.4 – Mapping for the analysis procedure.. 136

Table 5.5 – Identified threats to validity and actions for mitigating them 137

Table 5.6 – Analysis of the Zooming Browser study research questions 155

Table A.1 – Reuse goals .. 184

Table A.2 – Questions on general asset/consumer/project information (related to reuse

occurrences) .. 185

Table A.3 – Questions on project/producer information related to asset

development/release history and asset maintenance .. 185

Table A.4 – Asset/consumer/project information (related to reuse occurrences) 186

Table A.5 – Questions on production information (related to the asset

development/release history) .. 188

Table A.6 – Mapping between questions and reuse goals ... 188

Table A.7 – Mapping between questions, data, visual attributes, and visualizations .. 192

1


CHAPTER 1 – INTRODUCTION

This chapter presents the motivation for this work, the research

questions that guided the proposal of the approach, as well as its

goals and the adopted research methodology.

1.1 Foreword

Software systems permeate advances in all areas of knowledge, and there is an

increasing participation of software in society [Brazilian Computer Society 2006]. Such

systems are embedded in everyday devices such as household appliances, and support

areas such as communication (e.g., mobile devices, social media etc.) healthcare (e.g.,

blood pressure and glucose monitors, electronic patient records, clinical exams, artificial

pacemakers etc.), context-awareness (e.g., place recommenders based on location

awareness, smart houses – for healthcare, energy saving etc.) and so on. In a fast-paced

world that is continuously changing across all areas, there is a large demand for new

functionalities, and there is a broad field of software-related opportunities that increase

each day.

The demands of each of these fields (among others) and the advances of mobile

devices, social media, and new technologies over the years have been strongly

influencing the way software systems are built. Traditional approaches no longer meet

the demands of new circumstances, and have given rise to the emergence of new forms

of development, including agile methodologies [Fowler & Highsmith 2001] and the

widespread open source practices [Haefliger et al. 2008]. The steady growth of

distributed software development has also made the scenario more complex and, at the

same time, more stimulating and challenging [Schots et al. 2012].

This scenario not only has led to a large-scale adoption of new technologies,

practices and methodologies for software development, but also has required a smaller

and ever decreasing time-to-market. Software organizations, in turn, need ways to make

software development as efficient as possible in order to cope with the increasing

demands.

One of the ways of supporting the demand for delivery of software systems in

less time with less effort is through software reuse. Software reuse has become a very

2


common and widespread concept in software development, and has been a promising

paradigm in software engineering since its inception [Benedicenti et al. 1996], given

that it can be fully integrated and supported in the software development process,

improving the life cycle by reducing the effort and time needed to develop a software

system.

Since the beginning of software engineering, much research has been done in

developing techniques and tools for supporting software reuse [Naur & Randell 1968]

[Mili et al. 1995] [Frakes & Kang 2005], which include cataloging, retrieval and storage

of reusable assets1. Moreover, several approaches have been proposed or adapted to

support development for and with reuse2, such as domain engineering techniques [Kang

et al. 1990], software product lines [Clements & Northrop 2002] [Fernandes et al.

2011], and so on.

1.2 Motivation

Reuse activities are present in the daily routine of software developers, yet

mostly in an ad-hoc or a pragmatic way. Despite the maturity of software reuse research

and the extensive literature available, organizations still have difficulties in

understanding and incorporating some reuse practices, implementing software reuse

processes, and establishing an effective reuse program3.

Part of this problem is caused by the negligence in envisioning non-technical

aspects when introducing a software reuse program, e.g., engagement of team members

and managerial support [Kim & Stohr 1998]. Sherif and Vinze (2003) highlight that

reuse provides better results when all stakeholders are committed to it [Sherif & Vinze

2003]. In this sense, two crucial concerns for facilitating the acceptance/consciousness

and adoption of reuse are how to increase the visibility of reuse results and how to

provide appropriate awareness for software reuse tasks. Awareness mechanisms allow

stakeholders to be percipient of what goes on in the development scenario [Treude &

Storey 2010], and can provide them with the necessary information and support for

performing their reuse-related tasks.

1 In this work, any item built for use in multiple contexts, such as software designs, specifications, source

code, documentations, test cases etc. can be considered as reusable assets [IEEE 2010].
2 These concepts are defined in Section 2.1.

3 A reuse program is an organizational mechanism that establishes the goals, scope, and strategies for

addressing issues related to business, people, process, and technology involved in the adoption of

software reuse. The term “reuse program” should not be confused with “a software application for reuse”.

3


One of the ways to increase awareness is by employing visualization resources

and techniques [Hattori 2010]. Software visualization has been researched as a way to

assist software development activities that involve human reasoning, helping people to

deal with the large amount and variety of information by providing appropriate

abstractions [Lanza & Marinescu 2006] [Diehl 2007]. In the software reuse scenario, its

use can allow awareness and comprehension of reuse elements (i.e., assets, developers,

and development projects) and their surroundings.

Despite the potential of software visualization on supporting software reuse,

little work has been done with this goal, and the existing ones (e.g., [Alonso & Frakes

2000], [Marshall et al. 2003] and [Anslow et al. 2004]) do not take into account the

different reuse stakeholders’ information needs. Besides, they are very limited in terms

of integration with other information sources, not providing enough evidence on their

effectiveness [Schots et al. 2014].

Thus, it is believed that a better investigation and exploration of software

visualization resources can be performed, in order to provide and increase awareness of

reuse scenarios and support reuse-related tasks, such as exploring a reuse repository,

obtaining and understanding information regarding reusable assets, and monitoring

reuse initiatives. Through visual abstractions, one can better comprehend reuse elements

and their surroundings. This is the focus of the approach proposed in this work.

1.3 Hypothesis and Research Questions

Considering that:

1) software reuse brings several benefits to the software development scenario,

reducing the cost and effort necessary for the construction of new software systems,

thus allowing a “better” time-to-market and bringing a potential increase of quality;

2) the establishment of a reuse program can facilitate reuse management in software

development organizations, allowing for an increase of maturity towards systematic

reuse;

3) besides supporting stakeholders in their reuse-related tasks according to their roles,

it is important to provide them with visibility of the obtained results, so that they can

become committed with software reuse by perceiving the benefits brought by it;

4) the difficulty in finding and understanding reusable assets may lead potential

consumers to prefer to recreate from scratch an existing solution, due to the lack of

4


available information (or lack of organization of the existing information) related to

such assets;

5) software visualization techniques and resources allow awareness and comprehension

of the structure, behavior and evolution of software entities and metadata, assisting

software development activities that involve human reasoning;

The hypothesis of this work is:

The use of proper visualization resources for presenting reuse-related

information can assist stakeholders in carrying out their software reuse tasks.

For investigating this hypothesis, the following research questions were derived:

 RQ1. What are the characteristics and limitations of the visualization approaches

that have been proposed to support software reuse?

 RQ2. Which aspects (comprising stakeholders’ needs, reuse tasks, and reuse-related

data) should be taken into account for a visualization-based approach to support

software reuse?

 RQ3. Are the employed visualization resources feasible in helping the targeted

stakeholders to be aware of a given reuse scenario, allowing the execution of reuse

tasks accurately, with adequate efficiency and efficacy?

1.4 Goals

The main goal of this work is to investigate, propose, and evaluate the use of

visualization resources for supporting software reuse awareness. This generic goal can

be decomposed in the following specific goals:

1) Characterize existing works that use visualization for supporting reuse somehow, in

order to analyze their features, strengths and limitations;

2) Identify the needs of stakeholders involved in software reuse tasks, taking into

account their role in such tasks;

3) Identify the necessary features for an approach that aims to support stakeholders in

performing reuse tasks;

4) Define an approach and implement an interactive visualization environment that

supports software development organizations by providing reuse awareness, for

instigating and monitoring software reuse initiatives;

5) Ensure that the proposed approach meets some of the needs stated by stakeholders,

with appropriate efficiency and efficacy, while decreasing the effort and time

involved in performing reuse tasks.

5


This work is also a first step towards meeting the challenges described in

[Schots et al. 2012] regarding awareness and comprehension in software and systems

engineering, and is related to other works developed at COPPE/UFRJ and the State

University of Rio de Janeiro (UERJ), as discussed throughout the text.

1.5 Research Methodology

In order to answer the posed research questions, a research methodology was

established, as depicted in Figure 1.1. It shows the main research steps (on the left) and

how they are intended to be accomplished (on the right) –, provided that the chosen

ways to accomplish each step may vary depending on the findings of the previous steps.

The initial steps comprise the characterization of the research topic, and address both

RQ1 and RQ2. The results are intended to provide and refine desirable features for

proposing and developing a novel approach, which is then evaluated and improved,

addressing RQ3.

Figure 1.1 – Research methodology

In the first step (Collect preliminary information), an informal literature review

provides the initial/basic knowledge about the research topic, which serves as input for

the next step.

A fundamental part of this research process is to ensure the identification of the

actual needs of each stakeholder [Schots et al. 2012] from the state-of-the-practice,

since such needs may not be properly identified in the technical literature. This is

accomplished in part of the second step (Characterize the state-of-the-practice) by

6


means of semi-structured interviews with practitioners. Semi-structured interviews “are

designed to elicit not only the information foreseen, but also unexpected types of

information” [Seaman 1999]. Chapter 2 presents an overview of this study.

A quasi-systematic review is conducted in the second step of the research

(Characterize the state-of-the-art) in parallel to the characterization of the state-of-the-

practice, allowing for a broader, more comprehensive view of the topic, and improving

the initial understanding obtained in the first step. Quasi-systematic reviews use the

same rigorous methodological processes from systematic reviews, looking for the

identification of relevant evidence in the research field under investigation, but usually

no meta-analysis can be applied [Travassos et al. 2008]. The main findings of this step

are presented in Chapter 3, and the detailed description of the planning, execution and

analysis of the quasi-systematic review can be found in [Schots et al. 2014].

The findings from these steps provide and refine desirable features for the third

step of the research methodology (Propose and develop the approach), and also help

building a body of knowledge on the topic, in addition to pointing out research

opportunities for other works. Through the implementation of the approach, an

environment for supporting software reuse by awareness is concretized, according to the

defined goals. Chapter 4 describes the definition of the approach and its details.

The feasibility of the proposed approach is evaluated in the fourth step (Evaluate

the proposed approach), which is intended to assess quantitatively and qualitatively

whether the perceptive and cognitive abilities of stakeholders in carrying out software

reuse tasks are properly stimulated, with adequate efficiency and efficacy, while

decreasing the effort and time spent on such tasks. This involves the planning and

execution of studies, described in Chapter 5.

Finally, based on the evaluation results and feedback, the fifth step (Improve the

proposed approach) takes place, for making the necessary adjustments and the

identified improvements, if applicable.

1.6 Text Structure

The remaining of this text is organized as follows:

 Chapter 2 – Software Reuse presents the main concepts related to software reuse,

including how quality standards and maturity models address this topic, as well as

some issues related to the establishment of a reuse program. It also presents a study

conducted for characterizing the state-of-the-practice, along with its results.

7


 Chapter 3 – Software Visualization introduces some concepts related to software

visualization, some challenges in awareness and comprehension, and related works

identified from the conduction of a quasi-systematic review.

 Chapter 4 – Proposed Approach: APPRAiSER describes the proposed solution and

its main elements, including their goals and details on their development.

 Chapter 5 – Evaluation presents the planning, execution, and results of some studies

conducted in order to evaluate the main approach elements.

 Chapter 6 – Conclusion summarizes the contributions of this work, and presents a

research agenda resulting from open questions and opportunities for improvement.

8


CHAPTER 2 – SOFTWARE REUSE

This chapter presents an overview of software reuse, including a brief

motivation, a description of how some quality standards and maturity

models address this topic, and examples of software reuse tasks.

Besides, common issues related to the establishment of a reuse

program are discussed, along with some problems recognized during

the implementation and assessment of reuse processes.

2.1 Contextualization

Software reuse has become a very common and widespread concept in software

development. As stated by [Holmes 2008], it has a well-established history in both

research literature [Frakes & Kang 2005] and industrial practice [Poulin et al. 1993]

[Bauer et al. 2014]. One can state that reuse activities are present in the routine of

software developers, yet mostly in an ad-hoc or a pragmatic way4 [Holmes 2008].

Reuse practices allow achieving a number of benefits, such as reducing the

effort and time spent on software development [Krueger 1992] [Poulin et al. 1993] [Mili

et al. 1995]. Reusing assets from past projects (i.e., that have been already tested and

deployed) also allows developing more reliable applications and decreasing

maintenance efforts, since their quality is assured on previous experiences of use

[Benedicenti et al. 1996] [Morisio et al. 2002]. Besides, the availability of reusable

assets can facilitate newcomers in dealing with new technologies and domains (taking

external solutions as a basis for their own development), as well as experienced

developers in increasing their productivity by composing existing solutions.

Since the idea of building new software from existing pieces of preexistent

software arose [Naur & Randell 1968], it was noticed that several types of artifacts can

be reused in software development, such as requirements specifications, software

designs, test cases and so on [IEEE 2010]. However, some studies and books point out

4 Pragmatic reuse is related to an attempt of reusing source code that was not designed explicitly for reuse

[Holmes & Walker 2012]. It takes place when an opportunity of reusing an existing code arises, leading

developers to collect bunches of code (without modifying the original system where the code comes

from) and put them into another system. This can be generalized to other kinds of artifacts.

9


that reuse of source code is still on the mainstream of software development, such as [Sá

et al. 1997], [Haefliger et al. 2008], [Leach 2012], and [Schots & Werner 2014a].

The concept of reuse of source code is frequently linked to software

components, i.e., “self-contained, clearly identifiable artifacts that describe and/or

perform specific functions and have clear interfaces, appropriate documentation and a

defined reuse status” [Sametinger 1997]. Hooper & Chester (1991) classify reusable

software components into two categories: horizontal and vertical.

Horizontal reuse refers to “reuse across a broad range of application areas, such

as data structures, sorting algorithms, and user-interface mechanisms”. According to

these authors, the assets are typically utilities that are purposely generic for comprising

multiple applications [Hooper & Chester 1991].

Vertical reuse, in turn, refers to components within a given application area that

can be reused in similar applications that belong to the same problem domain. Although

horizontal reuse is better understood and easier to achieve (thus more frequently

employed), the greatest reuse potential leverage comes from vertical reuse, due to its

potential to build software product lines [Clements & Northrop 2002] and create

competitive advantages to the organization [Hooper & Chester 1991].

Reuse can occur within several activities in software development, which can be

divided into two groups [Kim & Stohr 1998]: (i) producing activities, involving the

identification, classification and cataloging of software resources, and (ii) consuming

activities, comprising the retrieval, understanding, modification, and integration of those

resources into the software product. These groups can also be referred to as development

for reuse (i.e., build generic assets that can be reused in similar contexts) and

development with reuse or by reuse (i.e., use existing assets to build [parts of the]

software), respectively [Moore & Bailin 1991].

The advantage obtained from a reuse-based software development scenario is to

develop software assets aiming at their future reuse (if appropriate, according to the

organization’s goals). Developing assets without taking into account their reuse

potential (and consequently without aiming their reuse beforehand) makes it hard to fit

them into other contexts beyond the original ones to which they were developed. This is

partially due to the lack of systematization in the construction of reusable assets [Prieto-

Díaz & Arango 1991].

The view of reuse benefits may vary considerably according to the domain of

expertise. While some kinds of organization in which safety is an extremely critical

10


factor may be reluctant with reusing assets developed by third parties (e.g., those that

work in projects for critical domains, such as financial/banking/accounting or

healthcare) [Schots & Werner 2014a], other domains largely benefit from such assets.

In fact, performing reuse may be crucial, important, or less relevant depending

on the domain of interest. However, although the severity of issues on reusable assets

impacts in different levels (depending on the organization/domain/project), some

information (such as the license under which an asset version was released) is strongly

relevant for all of them for helping to decide whether reuse should occur in a particular

case or not.

Introducing reuse in an organization involves tasks that contribute to different

purposes. For illustration purposes, Table 2.1 presents some examples of reuse tasks,

classified into project tasks – i.e., tasks that are relevant in the context of a specific

software project – and organizational tasks – i.e., tasks that either benefit all the projects

or are relevant to the organizational structure (and to the reuse initiatives) as a whole.

Table 2.1 – Examples of reuse-related project tasks and organizational tasks

P
ro

je
ct

 T
a

sk
s

Explore and/or search the reuse repository

Obtain general information regarding a reusable asset (in terms of its available metadata,

evolution history, developers, reuse occurrences, issues and so on)

Select an asset according to the project needs

Understand detailed information of a reusable asset (in terms of the available information

regarding its structure, behavior and software metrics)

Rate and/or report problems on a reused asset

O
rg

a
n

iz
a

ti
o

n
a

l
T

a
sk

s

Identify assets candidate to reuse

Identify reusable assets that need maintenance support

Evaluate a candidate asset (or a new version of an existing asset) for entering the reuse

repository, in terms of organizational criteria

Identify experts (producers/contributors and consumers) on a reusable asset

Register usage data of an asset

Identify potential interested parties and register established interested parties of an asset

Notify interested parties about changes on the status of an asset

Evaluate and maintain the reuse repository

Monitor the reuse activities

Report reuse results to stakeholders

Some steps must be accomplished before the introduction of a reuse program.

According to [Benedicenti et al. 1996], it is necessary to perform an accurate

assessment of the organization’s current situation, including goals, mission and market

strategies defined by top management. The authors also state that the integration of a

reuse program to the current development process can only be effective “if the process

itself is well defined and structured, and the software life cycle is planned and

managed” by the organization.

11


2.2 Implementing Software Reuse Processes

Software development organizations need to seek continually for improvement

of the quality of their products and services, in order to endure in the competitive

market. Consequently, they are also aiming at improving the quality of their processes.

Due to this increasing demand for software quality, a number of quality standards and

maturity models have been proposed, establishing requirements for defining, evaluating,

and improving software processes.

In order to promote ways towards its systematization, software reuse is covered

by several quality standards (e.g., ISO/IEC 12207 [ISO/IEC 2008], IEEE Std. 1517-

2010 [IEEE 2010], and ISO/IEC 15504 [ISO/IEC 2012]), which demonstrate its

importance for the maturity of software organizations. Such standards comprise

activities related to the management of a reuse program, as well as the storage, retrieval,

management and control of assets, among others. They also contain guidelines for

integrating reuse to the primary processes of the software life cycle, along with

processes for reuse across projects.

These quality standards usually define some outcomes that must be achieved in

order to provide evidence of the maturity of organizations. For instance, according to

[ISO/IEC 2008], a successful implementation of the Reuse Program Management

process should provide the following outcomes as results:

 define the organization’s reuse strategy, including its purpose, scope, goals and

objectives;

 identify the domains in which to investigate reuse opportunities or in which it

intends to practice reuse;

 assess the organization’s systematic reuse capability;

 assess each domain to determine its reuse potential;

 evaluate reuse proposals to ensure the reuse product is suitable for the proposed

application;

 implement the reuse strategy in the organization;

 establish feedback, communication, and notification mechanisms that operate

among reuse program administrators, asset managers, domain engineers, developers,

operators, and maintainers; and

 monitor and evaluate the reuse program.

12


Reuse practices are also integrated into models that aim to measure the maturity

level of organizations that produce software, such as MR-MPS-SW [Rocha et al. 2007]

[SOFTEX 2012], a program for software process improvement coordinated by the

Association for Promoting the Brazilian Software Excellence (SOFTEX). This program

aims to define and enhance a model for improvement and assessment of software

processes focusing on micro, small, and medium enterprises (MSMEs). The MPS-SW

model complies with ISO/IEC 12207 and 15504, is compatible with CMMI-DEV

[CMMI Product Team 2010], adopts software engineering best practices, and is

appropriate (both from the technical point of view as to costs) to the reality of Brazilian

organizations [SOFTEX 2012].

MR-MPS-SW is divided into 7 maturity levels, from level G (lowest maturity

level) to level A (highest maturity level), in ascending order. Since its version 1.2

(released in 2007), this model encompasses software reuse as one of the goals to be

accomplished by organizations in order to evolve their maturity levels. In this model,

two processes define reuse-related outcomes: GRU5 (Reuse Management), required

since intermediary maturity stages (starting from level E), and DRU6 (Development for

Reuse), in more advanced stages (from level C onwards).

The purpose of the Reuse Management process is to manage the life cycle of

reusable assets. The process defines that the organizations must have a documented

strategy for asset management, including criteria that govern their life cycle (i.e., criteria

for acceptance, certification, classification, discontinuity, and evaluation of assets)

(GRU 1). In addition, there must be a mechanism for the storage and retrieval of assets

(GRU 2). Modifications on these assets must be controlled throughout the life cycle

(GRU 4), and usage data shall be recorded (GRU 3), in order to notify users about

potential problems detected, modifications carried out, new versions available, and

discontinued assets (GRU 5) [SOFTEX 2012].

The purpose of the Development for Reuse process, in turn, is to identify

opportunities for systematic reuse of assets in the organization and, if possible, establish

a reuse program for developing assets from the application domain engineering. This

process starts with the identification of the reuse potential (DRU 1) and reuse

capabilities (DRU 2) of the organization. Results from these steps serve as a basis for

5 Acronym for “Gerência de Reutilização”, in Portuguese.

6 Acronym for “Desenvolvimento para Reutilização”, in Portuguese.

13


deciding whether the organization must provide the other outcomes. If so, the ensuing

steps are the planning (DRU 3), implementation, monitoring and evaluation (DRU 4) of

a reuse program, which comprise the evaluation of proposals for reuse (DRU 5), the

development of domain models and domain architectures (DRU 6, DRU 7 and DRU 8),

and the specification, development (or acquisition) and maintenance of domain assets

(DRU 9) [SOFTEX 2012].

2.3 Issues on Software Reuse Implementations

Achieving effective software reuse is a difficult problem in itself, one that

requires proper support in a number of facets, such as managerial aspects [Griss et al.

1994], the aid of tools [Marshall et al. 2003], and adequate mechanisms for retrieval of

reusable assets [Braga et al. 2006], among others. In order to be acquainted with the

barriers related to effective reuse, it is important to recognize some usual concerns and

issues associated to software reuse initiatives.

A number of studies and reports on the implementation of reuse processes in

organizations are presented in the literature (e.g., [Kim & Stohr 1998], [Morisio et al.

2002] and [Sherif & Vinze 2003], among others). Some of the frequent issues and

challenges pointed out regarding the establishment of a reuse program include the

following:

 the difficulty in understanding software reuse concepts and how to effectively apply

them [Mili et al. 1995] [Morisio et al. 2002];

 the lack of acceptance of reuse practices by the development team and top

management in software organizations [Mili et al. 1995] [Benedicenti et al. 1996]

[Sherif & Vinze 2003];

 the lack of knowledge and experience for the creation and management of reuse

repositories [Morisio et al. 2002] and the definition, identification and evaluation of

reusable assets, as well as making such assets available and findable [Frakes &

Kang 2005];

 a long learning curve of understanding a software asset, i.e., its structure, behavior

and functionality [Ye & Fischer 2002] [Marshall et al. 2003] [Frakes & Kang 2005];

 the lack of proper tool support for performing software reuse tasks [Mili et al. 1995]

[Benedicenti et al. 1996] [Morisio et al. 2002];

 the absence of a culture of development for reuse in development teams and the lack

of systematization for the construction of reusable assets [Sherif & Vinze 2003]; and

14


 the “Not-Invented-Here” (NIH) syndrome [Sherif & Vinze 2003], i.e., the difficulty

of accepting and trusting third-party developed assets, resulting in a tendency

towards “reinventing the wheel” (recreating something from scratch instead of

reusing) based on the belief that in-house developments are inherently better than

existing implementations.

Regarding the latter impediment, another study [Frakes & Fox 1995] pointed out

that the NIH syndrome has become a minor obstacle, and has included reuse education

and the perceived economic feasibility (among others) as factors that affect reuse, in

accordance with [Card & Comer 1994]. However, although this syndrome has been

alleviated over time, much of the phenomenon is caused by the cognitive difficulties

that are inherent in the reuse process [Ye & Fischer 2000].

Many reuse-related issues can be associated to technical aspects, such as the lack

of tools and techniques for effectively supporting software reuse, as pointed out by

[Kim & Stohr 1998], [Lucrédio et al. 2008] and other works. Particularly, wrong

technology choices may considerably hamper the execution of reuse processes

[Lucrédio et al. 2008]. However, it is important to emphasize that solving these aspects

is not enough for the success of a reuse program.

According to Card & Comer and Morisio et al., a misconception of the reuse

needs may lead to the probability of neglecting the importance of assessing the reuse

potential at the organizational level and addressing other barriers, treating reuse as a

matter of technology acquisition [Card & Comer 1994] [Morisio et al. 2002]. Thus, as

with any other software process, a crucial concern to take into account is the

envisioning of non-technical aspects, e.g., engagement of team members and managerial

support [Kim & Stohr 1998]. Sherif and Vinze highlight that reuse provides better

results when all stakeholders are committed to it [Sherif & Vinze 2003].

A crucial concern is how to facilitate the acceptance/consciousness and adoption

of reuse. Reuse stakeholders must be aware of the reuse results that are relevant to them

and need awareness support for their reuse tasks. Monitoring activities, for instance,

allows the early detection (and possibly resolution) of inconsistencies and shortcomings

inside the software process, supporting and fostering the real integration of reuse

paradigm into the existing software development process, encouraging continuous

process improvement [Benedicenti et al. 1996]. Since there is a lot of information

involved for performing reuse tasks, the lack of awareness and understanding of such

information can hinder obtaining the expected results [Selby 2005] [Gill 2006]. This

15


non-technical aspect, however, can be handled partially with a proper support to the

technical aspects.

2.4 The Importance of a Holistic Reuse Awareness

Introducing reuse practices in an organization nowadays may require new ways

of thinking about software development, given that the way software is reused has

changed over the years [Holmes & Walker 2012] [Bauer et al. 2014]. The rise and

massive use of free/open source software repositories (e.g., BitBucket, GitHub), issue

trackers/task managers (e.g., Bugzilla, JIRA, Redmine), release repositories (e.g.,

Maven Central), among others, have strongly influenced not only software

development, but also software reuse.

In fact, reuse has become a data-intensive activity, due to the several sources of

information available to which one can resort when performing certain reuse tasks. The

listed resources provide several kinds of information about reusable assets, such as

examples of use, tutorials, documentation, support, and so on. They also allow for

increasing awareness of reuse activities.

A recent case that illustrates the importance of being aware of reuse-related

information is an integer overflow vulnerability in the Lempel-Ziv-Oberhumer (LZO)

algorithm that was only discovered after 20 years [Ouyang et al. 2014]. The bug fix

should be backported to all the innumerous libraries and systems that have incorporated

this algorithm for all these years (see [Lab Mouse Security 2014] for a list of examples),

including the open-source Linux kernel7 and its subsystems and variations.

Although it is nearly impossible to know all the libraries that reused this code

since its release, this illustrates the importance of (i) enabling consumers to be aware of

reusable asset issues as they are discovered, and (ii) enabling producers (or reuse

managers, for organizations that have this role) to perform any relevant communication

regarding the developed reusable assets. However, this can only be possible if proper

information and mechanisms are available to these stakeholders.

It is noteworthy that there is a usual expectation regarding the analysis of the

source code structure/behavior to help software reuse. This is indeed important and has

been topic of several works (e.g., [Holmes & Walker 2012]). However, high level

7 There are at least two commits related to this issue (http://git.io/vLRgH and http://git.io/vLRgd); the

latter has a message stating, “the fix needs to be backported to all currently supported stable kernels”.

16


information that is strategic for decision making is often overlooked, in spite of the

potential danger and additional expenses in both short-term (bugs found after

incorporating an asset in a project) and long-term (lack of asset maintenance or asset

discontinuation, preventing necessary upgrades, besides other bugs that may be found in

the future). In fact, while finding an appropriate asset and understanding its structure

and behavior can be tiresome, seeking for and understanding currently decentralized

information that supports taking reuse decisions may become a major problem.

2.5 Software Reuse in Practice: The Brazilian Scenario

After performing the literature review on common issues in implementing

software reuse processes, a search was performed for identifying reports concerning

Brazilian organizations and characterizing the Brazilian scenario. The results are

presented in the next subsections.

2.5.1 Literature reports on software reuse implementations

Sá et al. (1997) report the experience of introducing software reuse in an

organization, by measuring aspects related to reuse before and after the implementation.

The authors mention technical and cultural obstacles identified during the process.

Some of them are: (i) reuse was only understood as code reuse; (ii) there was no

technical or managerial commitment to produce reusable assets; (iii) most systems’

development was going straight to the implementation phase, because stakeholders did

not believe in Software Engineering as presented in the literature; and (iv) the view of

profits was immediate (short-sighted) regarding the production of reusable assets [Sá et

al. 1997].

Lucrédio et al. (2008) present a survey carried out with industry professionals,

involving Brazilian organizations, aiming to relate organizational characteristics with

the successful adoption of reuse. The authors did not analyze in depth the reasons why

some organizations were not successful. The survey comprised several factors divided

into four perspectives: organizational factors, business factors, technological factors,

and processes factors. From the 200 contacted organizations, 57 answered the survey.

As a result, the main influence factors identified include the development team, the use

of tools and quality models, the prior development of reusable assets, the type of these

assets, and the existence of a systematic reuse process. The difficulties encountered are

17


also related to these factors (e.g., an inadequate tool support and the lack of

systematization of reuse represent negative influence factors) [Lucrédio et al. 2008].

Silva Filho et al. (2008) describe the implementation of the MR-MPS-SW Reuse

Management (GRU) process at the Software Engineering Laboratory of an academic

institution. Any software artifact (process asset, source code, or executable) could be

considered as reusable assets; they were suggested by the team and evaluated against

their quality and reuse potential. Notifications related to the assets’ status were made

manually by e-mail. The main difficulties mentioned were the definition of a non-

intrusive strategy (i.e., which would not impact the usual activities of the organizational

unit) and the choice of useful metrics to monitor and control the process. As to technical

aspects, the identification of reusable assets was considered the most critical activity

regarding the level of intrusion, cost, and effort. Among the lessons learned, the authors

mention that the more mature the reuse management process is, the clearer the

perception on how it can be automated [Silva Filho et al. 2008].

Santos et al. (2009) describe the experience on implementing MR-MPS-SW

Reuse Management (GRU) and Development for Reuse (DRU) processes in a medium-

sized, geographically distributed organization. The defined process for GRU is triggered

either from the need to assess candidate assets or for implementing enhancements in a

particular asset (based on problems or opportunities for improvement identified over

time). A research is performed for identifying people potentially interested in a given

reusable asset, as well as for defining the role responsible for maintaining such asset. An

assessment of the reusable assets base is made periodically for identifying assets subject

to discontinuation (e.g., criticized by users or less used). The authors underline that the

tools used for supporting reuse were too general, such as text editors and spreadsheets.

Regarding DRU, three identified areas of expertise were rated as having some potential

for systematic reuse and, therefore, were analyzed in more detail. The assessment of the

reuse capabilities of the organization showed that there were limited resources for the

establishment of an appropriate reuse program, but a plan was drawn up to overcome

this limitation. Nevertheless, DRU was not implemented fully due to the lack of both

data and results on the development of reusable assets [Santos et al. 2009].

Although the literature reports on the implementation of reuse processes in the

Brazilian scenario present some problems in common, they usually describe isolated

cases, and do not aim at comprehensively characterizing usual problems identified

during the implementation and assessment of reuse processes. The most comprehensive

18


one is the work of Lucrédio et al. (2008), but it is not based on a widely used quality

standard or maturity model, i.e., it cannot be ensured that all the analyzed organizations

perform a set of reuse tasks in common. This is one of the main motivations for

conducting the study presented in the next subsections.

2.5.2 A study of the software reuse scenario in Brazil

According to [ABES 2014], in 2013, the software industry in Brazil had an

increase of 13.5% on the investments compared to 2012. Overall, software and services

grew by 10.1%, above the great majority of other sectors of the Brazilian economy. The

use of computer programs developed in Brazil (standard and custom) increased 15.3%,

higher than the 12.9% growth identified in the use of such programs developed abroad,

reinforcing the trend of growth that comes been appointed since 2004 [ABES 2014].

Approximately 11,230 companies, directed to the development, production, and

distribution of software and services, operate the domestic market. Finance, Services

and Telecom accounted for almost 51% of the user market, followed by Industry,

Government, and Commerce. Considering the size of companies engaged in developing

and producing software (around 2,700 at the date of the report), these can be divided as

micro (43.9%), small (49.6%), medium (5.2%) and large (1.3%) [ABES 2014].

The Brazilian scenario is very competitive (considering both nationwide and

worldwide settings), and software reuse processes play an important role in this regard,

due to its well-known benefits. Thus, it becomes important to characterize and obtain

more information on reuse practices in Brazilian software organizations. In this sense, a

study was performed with MPS.BR implementers and assessors8, allowing to

characterize a considerable subset of the nationwide scenario. The following

subsections present an overview of the study planning and execution. Additional details

can be found in a technical report [Schots & Werner 2014a].

2.5.2.1 Planning

The study goals are described in the Goal-Question-Metric (GQM) format

[Basili et al. 1994] as follows:

8 MPS implementers are affiliated to Implementing Institutions (II) accredited to render consulting

services regarding the implementation of the MR-MPS-SW and MR-MPS-SV reference models, while

MPS assessors are affiliated to Assessment Institutions (AI) accredited to render assessment services

based on the MA-MPS Assessment Method. According to the MPS organizational structure, the MPS

Accreditation Forum is responsible for accrediting such institutions [SOFTEX 2013b].

19


Analyze software reuse implementations

For the purpose of characterizing

With respect to usual practices, problems, challenges, and opportunities for

improvement

Under the point of view of MR-MPS-SW implementers and assessors

In the context of Brazilian software development organizations

Since this study aims at characterizing software reuse in Brazilian organizations

based on a set of outcomes in common, MPS.BR implementers and assessors compose

the population of this study. The choice for this population is due to the fact that there is

a representative number of MPS.BR assessments on level E (60 out of the 488

organizations successfully assessed in MPS.BR9 are in level E or above, including 38 in

level C or above10), covering a considerable portion of the nationwide scenario11.

This population tends to be more homogeneous, since MR-MPS-SW

organizations tend to perform a set of similar practices for achieving the necessary

outcomes. On the other hand, a downside is the bias it may bring to the study, since this

is a subset of the Brazilian software organizations (not being necessarily representative).

In order to obtain more information on the implementation of processes related

to reuse in software organizations in Brazil, semi-structured interviews were conducted

with the participants of the study. Such kind of interview represents a viable alternative

when conducted to obtain or confirm information about a predetermined topic. They

“are designed to elicit not only the information foreseen, but also unexpected types of

information” [Seaman 1999], which meets our expectations with this study.

For conducting the interviews, some advice from [Seaman 1999] and [Hove &

Anda 2005] was used in order to ensure good interaction between the interviewer and

interviewees. For analyzing the collected data, the open coding technique [Seaman

2009] is used, by marking and categorizing snippets of interviews, relating them to

questions (categories) initially defined.

9 MPS-SW Published Assessments (data from August 23, 2013), extracted from http://www.softex.br/wp-

content/uploads/2013/07/Avalia%C3%A7%C3%B5es-MPS-SW.pdf.

10 It is noteworthy that the DRU process allows the exclusion of most outcomes from an assessment if the

organization does not have opportunity and/or ability to perform development for reuse. Thus, one cannot

state that all these organizations perform DRU.

11 Please refer to http://www.softex.br/mpsbr/avaliacoes/mps-sw/mpsbr-ma-mps/ for an overview.

20


The interview questions were designed to obtain both technical (regarding the

decisions for implementing the processes, based on the outcomes) and non-technical

information (involving implementers’ opinions concerning the assessed organizations,

as well as difficulties and frequent problems) with respect to reuse processes. Some

questions were directly derived from the MR-MPS-SW reuse outcomes. Table 2.2

shows the questions for Reuse Management (GRU), Development for Reuse (DRU) and

other relevant questions for reuse processes in general, along with their corresponding

goals. Other aspects related to the outcomes were not directly included in the questions,

such as the control of changes in assets (related to GRU 4) and the criteria for

acceptance, certification, classification, evaluation and discontinuity of assets (related to

GRU 1), among others. These items are very specialized; thus, they were evaluated

indirectly through the general questions and the intersection with other outcomes.

Table 2.2 – Interview questions

Questions related to Reuse Management (GRU) Goals

Q1
Which kinds of assets have been considered as

reusable by the organizations?

Identify which types of artifacts are considered as

reusable by organizations in their projects/

processes. Related to GRU 1.

Q2 Where are the reusable assets usually stored?
Identify mechanisms (tools) used for storing

reusable assets. Related to GRU 2.

Q3

Where/how are the reusable assets made

available for reuse, i.e., where/how are the stored

assets listed so that the interested parties can find

them?

Identify the way organizations make their reusable

assets available and the mechanism (tool) used to

this end. Related to GRU 2.

Q4 How are the usage data about the assets logged?
Identify how organizations record reusable assets’

usage data. Related to GRU 3.

Q5

How are interested parties informed of problems

detected, modifications made, new versions

released, and discontinued assets?

Identify the mechanisms used for notifying

interested parties about changes in the status of

assets. Related directly to GRU 5 and indirectly to

GRU 4.

Questions related to Development for Reuse (DRU) Goals

Q6

What are the application domains of the

organizations in which opportunities for reusing

assets have been identified, or in which they

have intended to practice reuse?

Identify relevant application domains from the

viewpoint of the state-of-the-practice. Related to

DRU1.

Q7
Are organizations able to plan and establish an

effective reuse program?

Check if reuse programs have been properly

established in organizations. Related to DRU3 and

DRU4.

Q8
How are organizations monitoring the reuse

program?

Identify monitoring mechanisms and strategies

being used by organizations. Related to DRU4.

Q9

How are reuse proposals (requests for reusing

existing domain assets or developing/acquiring

new ones) made?

Identify how reuse proposals are made and which

kinds of request are more frequent. Related to

DRU5.

Q10
How are domain models and domain

architectures represented in organizations?

Identify techniques being used by organizations

for representing domain models and domain

architectures. Related to DRU6, DRU7, and

DRU8.

Q11
How are domain assets

specified/acquired/developed and maintained?

Identify techniques being used by organizations

for specifying, acquiring, and/or developing

domain assets. Related to DRU9.

21


General Questions on Reuse Processes Goals

Q12
Which comments are made by the organizations

regarding the GRU and DRU processes?

Characterize general problems pointed out by

organizations. The answers to this question may

drive the remainder of the interview for more

details (funnel strategy).

Q13

What is the point of view of the diverse

stakeholders (developers, project managers, top

management) about reuse?

Identify whether there is any cultural resistance by

stakeholders and, if so, which roles have such

resistance. This information is also relevant for

DRU4.

Q14
Which GRU and DRU aspects are more difficult

to understand by the organizations?

Obtain more information about difficulties in

understanding (including processes, concepts,

tasks, tools etc.) pointed out by the respondent.

This question is purposely broad.

Q15

Which are the most difficult tasks (particularly,

GRU and DRU tasks) for the organizations to

perform?

Identify information about the most difficult tasks.

Q16

What are the problems (“required” items) usually

identified on GRU and DRU during

assessments?

Identify issues that organizations cannot

accomplish in GRU and DRU, as well as potential

difficulties in implementations.

Q17

Which aspects related to the implementations or

assessments of the GRU and DRU processes

would you like to add (including the moment in

the MR-MPS-SW implementation when you

start to implement GRU and DRU processes, and

potential difficulties in implementing or

evaluating these processes)?

Identify difficulties on the implementations or

assessments of the GRU and DRU processes, and

ultimately verify how organizations prepare

themselves to assessments.

Q18
Is there anything else that has not been asked and

you would like to comment on?

Obtain feedback on the process and other aspects

that participants would like to add.

2.5.2.2 Execution

Invitation e-mails were sent based on the list of authorized Implementing

Institutions (IIs) and Assessment Institutions (AIs) available on the SOFTEX website12.

The response rate in terms of the IIs and AIs was 38.46%. The criterion for participation

in the study was the experience in the implementation and/or assessment of the GRU

and/or DRU processes. Participants were interviewed in person during the XII Brazilian

Symposium on Software Quality (July 1 to 5, 2013), or remotely, via Skype (between

July 6, 2013 and August 25, 2013).

In total, there were 10 respondents, all concomitantly MR-MPS-SW

implementers and assessors, having carried out (or accompanied, as leader assessors) at

least 1 implementation or assessment of the GRU process (in most cases, more than 3

assessments). Figure 2.1 (left) shows the distribution of the respondents according to the

MPS assessor levels (ordered from the lowest to the highest), while Figure 2.1 (right)

12 Available at: http://www.softex.br/mpsbr/instituicoes-autorizadas/.

22


shows the year of authorization13 to perform implementations and assessments of MR-

MPS-SW.

Figure 2.1 – Distribution of respondents according to the MPS assessor levels (left),

and participants’ experience (based on the year of authorization) in implementations and

assessments (right)

As it can be seen, most participants are competent/lead assessors, meaning that

they received a specific training from an assessment institution and performed at least 6

assessments as provisional/assistant assessors [SOFTEX 2013b]. Moreover, 2 of them

are experienced competent/lead assessors – i.e., besides having competent/lead

assessor’s skills, they had a specific training on statistical process control and performed

at least 4 assessments in levels E, D, and C as competent/lead assessors [SOFTEX

2013b]. Additionally, all the respondents were formed implementers before the release

of version 1.2 of MR-MPS. Because a complementary training course is mandatory

whenever substantial changes are made in the model, all of them were trained and are

allowed to perform implementations of reuse processes from the moment such

processes were incorporated into MR-MPS-SW.

More information related to the execution and details on the results can be found

in [Schots & Werner 2014a], as well as the threats to validity.

2.5.3 Discussion of the findings

The kind of assets defined by the organizations as reusable (Q1) has a direct

influence on the effectiveness and usefulness of reuse initiatives. For instance, one may

not identify any benefit in monitoring kinds of assets that are rarely reused (because the

visibility of benefits would be indeed impaired) or assets that do not have impact on the

software lifecycle. One of the reasons why source code assets are considered more often

as reusable assets may be because any issue related to it (e.g., bug or missing feature)

13 Based on http://www.softex.br/mpsbr/profissionais-habilitados-2/.

23


may lead to problems in software maintenance and evolution. Thus, it is important to

choose assets whose information regarding reuse, evolution, and discontinuation is

relevant for the organization. Proper tools play a crucial role in this regard, especially in

terms of collecting information about usage data (Q4) and notifying interested parties

about changes in the status of assets (Q5). In fact, while the benefits of reuse are

significant, many technical challenges remain and must be addressed to realize this

potential fully. The management of data related to reuse processes is a major challenge:

it is one of the most easily recognized through this study.

It was noticed that, in many cases, notifications about changes in the status of

assets are triggered without any distinction of actual interested parties. This may

compromise the effectiveness of communication (since information overloading may

also adversely affect the perceived benefits of reuse), leading stakeholders to ignore

important notifications. Another error-prone situation occurs when the maintenance of

the list of interested parties and the sending of e-mails are performed manually (as in

[Santos et al. 2009]). This can be partially due to limitations on tracking which team

members reused which assets (i.e., collecting usage data), hindering communication.

The fact that some organizations store their reusable assets in version control

repositories (Q2) has also been observed in other studies, such as [Morisio et al. 2002]

and [Lucrédio et al. 2008]. In this regard, it is noteworthy that each type of repository

has features aimed at ensuring the better functioning for their intended purpose, and an

inappropriate technology selection can hinder the adoption and implementation of reuse

processes. Reuse repositories and configuration management repositories have different

purposes (for instance, the former is optimized for searching operations, and should

only contain releases of assets), and this must be taken into account when instantiating a

repository for an organization. Moreover, the institutionalization of a reuse repository

requires proper mechanisms for exploration, search, and retrieval of assets (Q3),

allowing potential consumers to obtain information that can be useful for deciding

whether a given asset should be reused or not.

For an appropriate awareness of reuse scenarios and communication of results in

an effective way, monitoring mechanisms are crucial. Most of the identified ways for

collecting and logging information about usage data (Q4) are error-prone, being very

dependent on people’s feedback. Besides misjudging the importance of monitoring

when conducting a reuse program, the lack of availability and trustworthiness of reuse-

related data may be some of the reasons why organizations do not keep up with

24


monitoring practices. Mechanisms for data acquisition, cleaning, integration,

aggregation, and representation play an essential role in this regard. In addition, due to

the fact that people are the ones who make important decisions on reuse processes, such

mechanisms must also account for facilitating analyses from the perspective of humans.

Research on visual analytics may provide some guidance in this topic [Thomas & Cook

2006] [Keim et al. 2008].

Concerning Development for Reuse, many organizations were not yet able to

implement all of the outcomes, and this makes it hard to draw any conclusions.

However, it is believed that organizations should spend more time on domain analysis

and, if necessary, ask for consultancy or expert assistance aiming at a better

understanding of the gains of implementing this process, as well as identifying which

tools best serve this purpose. Technical difficulties or lack of knowledge on a particular

notation/methodology should not make organizations avoid this process. Additionally, it

seems that industry claims for more evidence (academic and especially industrial) on

the benefits of adopting Development for Reuse.

For organizations that do not have the chance to realize the benefits reuse can

bring to them, opportunistic reuse may seem to be enough. However, it does not seem

fair to assume that the organization itself is the root cause of the problem. Some issues

pointed out by this study can be due to the lack of proper preparation (of the

organization members, the process implementers, or a combination of both) for the

implementation of reuse processes. Neglecting the importance of such processes,

putting them at the end of the list of the processes to implement, is also an aggravating

factor (among others). This can be either an implementation strategy or an

organization’s decision. However, this does not seem to be a good choice for the

organizations: because of the delayed return on investments associated to reuse

[Benedicenti et al. 1996], the benefits of reuse processes may take some time to arise

and become noticeable; thus, the earlier they are implemented, the better.

Finally, top management needs more awareness and visibility of relevant

information of the reuse processes (as pointed out by [Morisio et al. 2002]), being able

to measure and control the impact of a software reuse program. In other words, the

value of reuse must be somehow established and communicated to managers [Kim &

Stohr 1998], so that they can be aware and become committed to reuse initiatives.

Moreover, for a better acceptance of reuse-oriented changes in stakeholders’ usual

activities with less impact, suitable mechanisms must be identified and developed.

25


Particularly, because some necessary steps for implementing reuse may be challenging,

organizations should try to accomplish them in a progressive way, in order to avoid

resistance and allow for a better acceptance by the stakeholders.

2.6 Final Remarks

Since the beginning of software engineering, much research has been done in

developing techniques and tools for supporting software reuse [Naur & Randell 1968]

[Mili et al. 1995] [Frakes & Kang 2005]. In spite of that, many organizations still have

difficulties in understanding and implementing reuse practices. As it can be noticed,

many of the findings identified in the study match the literature reports both in the

Brazilian and worldwide scenarios, particularly concerning the lack of adequate tool

support and the need for more engagement in reuse initiatives. These are recurring

problems.

Each day, a software developer needs to answer a variety of questions that

require the integration of different kinds of information, and answering these questions

can be hard when developers need to manually link and traverse such information step-

by-step [Fritz & Murphy 2010]. This is also true for questions related to reuse tasks.

The lack of available information not only has a large negative impact on the acceptance

of the reuse benefits, but also hampers the proper execution of reuse tasks.

Every organization must keep up with the evolution of the assets they reuse,

either developed by them or not. Therefore, it is important to improve their reuse

capabilities proportionally to their current maturity stage. Otherwise, they are not likely

to endure in the competitive market. Based on the study results, it is expected that some

organizations can perceive the need to accurately perform software reuse practices and

go a step further, so that they can achieve higher maturity on software reuse practices.

Table 2.3 lists the problems identified and the desirable features for approaches

to help solving such problems (providing information for answering RQ2, stated in

Section 1.3). These problems were extracted from the results of the performed study

[Schots & Werner 2014a]. Whenever another publication points out the same problem,

it is cited within the problem listing.

26


Table 2.3 – Findings and assumptions derived from the semi-structured interviews

ID14 Description Desirable feature

RF1

Source code assets are the most common

kinds of reusable asset found in

organizations [Haefliger et al. 2008], and

managing their reuse is crucial, since any

issues (e.g., bugs) not only affect asset

consumers, but can also be perceptible by

end users of products that incorporate such

assets. This ripple effect makes software

maintenance even more arduous and

challenging.

For properly supporting software reuse

tasks, the approach should primarily support

managing source code assets.

RF2

Organizations are free to define the kind of

assets to be considered as reusable

[SOFTEX 2013a], ideally choosing the

ones whose information is relevant for

them.

The approach should also support different

kinds of reusable assets (assuming that there

is a corresponding reuse repository with

relevant information about them).

RF3

Organizations should be able to track which

consumers reused which assets, in order to

communicate any problem identified in

such assets to their consumers. However,

most of the identified ways for collecting

and logging information about usage data

are error-prone, being very dependent on

people’s feedback15. Besides, organizations

must keep up with the evolution of assets

they reuse, either developed by them or not.

The approach should provide a way of

collecting information regarding reuse

(consumption), evolution, and

discontinuation of assets, along with the

developers involved in the production and

consumption of these assets.

RF4

In many cases, organizations trigger

notifications about changes in the status of

assets without any distinction of actual

interested parties16, due to limitations in the

collection of usage data.

The approach should help identifying

potential interested parties of an asset based

on reuse data and notifying such parties

about changes in the status of the assets.

RF5

Some organizations store their reusable

assets in version control repositories instead

of reuse repositories [Morisio et al. 2002]

[Lucrédio et al. 2008].

The approach should provide a reuse

repository for the organization, or integrate

with an existing one, that allows potential

consumers to obtain reusable assets and

relevant information about them.

14 RF refers to “Reuse-Related Finding”, while RA means “Reuse-Related Assumption”.

15 In the semi-structured interviews conducted, two ways mentioned by the respondents are highlighted.

In one of them, the reuse manager is responsible for capturing such information by analyzing software

projects and searching for reuse occurrences, storing results in an Excel spreadsheet or a kind of list. The

other way requires the project manager or the development team to inform the reuse manager in case any

project reuses an asset [Schots & Werner 2014a].

16 E-mails are sent manually, either based on a list of interested parties that is maintained manually based

on the usage data (which are inaccurate, as mentioned) or to all members of the organization (irrespective

of being interested parties) [Schots & Werner 2014a].

27


ID14 Description Desirable feature

RF6

All the important decisions related to reuse

are made by people; thus, there is a need for

appropriate awareness in order to facilitate

analyses and communicate results in an

effective way. The value of reuse must be

somehow established and communicated to

managers [Kim & Stohr 1998], so that they

can be aware and become committed to

reuse initiatives.

The approach should present concise

information that can help stakeholders in

establishing and monitoring the progress of

reuse initiatives in the organization, through

mechanisms that provide adequate

awareness of the reuse scenario.

RA1

For a better acceptance of reuse practices in

stakeholders’ usual activities, it becomes

necessary to identify and develop

mechanisms for meeting the specific needs

of each of them.

The approach should provide mechanisms

with different perspectives to support each

stakeholders’ needs related to reuse.

RA2

Because some necessary steps for

implementing reuse may be challenging,

organizations should try to accomplish

them in a progressive way, in order to avoid

resistance and allow for a better acceptance

by the stakeholders.

In order to minimize cultural barriers and

allow all stakeholders to become committed

with reuse initiatives, there should be a

strategy for a gradual introduction of the

approach mechanisms, avoiding cognitive

overload.

RA3

Integrating different sources of data can

provide relevant information about the

reuse scenario, especially in terms of giving

more confidence to a consumer in deciding

whether or not to reuse an asset. The lack of

information regarding the assets may

inhibit developers to reuse them. This is

especially true with respect to assets not

developed in the developers’ organizations.

In order to show relevant information about

the reuse scenario as a whole, particularly

providing a better perception of the assets’

stability and quality, the approach should

collect data from different kinds of source,

integrating information from reuse

repositories, version control repositories,

and change control (bug tracking/task

manager) repositories.

RA4

Reuse tasks require handling a large

amount of data, which requires the

application of mechanisms to represent

reuse information, enabling to interact with

and manipulate the data, as well as obtain

answers to reuse tasks quickly.

The approach should handle a large amount

of information through adequate

abstractions and interaction techniques.

RA5

For stimulating reuse initiatives in a

software development organization, assets

reused opportunistically (usually from open

source repositories) should be evidenced, in

order to demonstrate that the organization

already performs some kind of reuse.

Likewise, assets developed by the

organization should also be taken into

account.

The approach should provide the option of

tracking reusable assets (and projects), both

open source and developed by the software

organization.

RA6

Developers do not have tool support to

identify candidate assets to be included in

the reuse repository.

The approach should integrate with and

collect information from version control

repositories for suggesting assets that occur

in more than one project. This allows a later

evaluation for their inclusion on the reuse

repository. Collecting usage data and

properly identifying producers and

consumers help support such decision.

28


Attempting to implement strategic reuse (and development for reuse) in any

organization (regardless of its size) may be useless if its members do not actually

perceive the benefits and gains of simpler reuse practices, such as reuse management

and the integration of software reuse tasks into the development process. In this sense, it

is important to provide reuse managers and developers with proper support from the

beginning of reuse initiatives.

To this end, the application of perception and awareness techniques can be

useful. For instance, visualization metaphors can represent reuse information, so that

users can interact with and manipulate the corresponding data, as well as obtain answers

to reuse tasks more quickly, besides decreasing the cognitive overload. Software

visualization resources and techniques play an important role on awareness and

comprehension, and can be used for supporting a software reuse program, especially in

terms of software reuse tasks. This topic is covered in the next chapter.

29


CHAPTER 3 – SOFTWARE VISUALIZATION

This chapter presents the main concepts related to software

visualization. It also describes how visualization resources and

techniques can benefit software reuse, as well as how existing works

identified from the state-of-the-art have been addressing this issue.

3.1 Contextualization

The large amount and diversity of data generated throughout software

development is often difficult to manage and monitor. Organizations have sought for

techniques that allow not only to store and process such data, but also to exploit them in

order to extract relevant information to support decision-making processes and allow

increasing the quality of their services, processes, and products.

The quality and relevance of decision making heavily depend on the

understanding, interpretation, and aggregation of organizational data; such factors can

become critical while implementing and evaluating organizational strategies, thereby

becoming a competitive edge. There is a need for appropriate models and mechanisms

for analyzing and monitoring data about software processes and products, as well as

studies on how the available resources can support understanding such data.

If data sources with evolution information of software development, such as

repositories of version control systems (VCS), are also taken into account, software

gains a dimension in time, which increases even further the mass of generated data. In

addition to that, there are other data sources, such as issue trackers, measure databases

etc., which bring a greater diversity on the nature of data. In order to deal with this

scenario, software development requires appropriate mechanisms and tool support that

can assist in the extraction and analysis of these data and allow their understanding

[Schots et al. 2012]. However, such understanding is not an easy task.

According to Diehl (2007), 75% of all information from the real world is

perceived visually [Diehl 2007]. On the other hand, as stated by Brooks Jr. (1987),

software is very difficult to visualize; the reality of software is not inherently embedded

in space [Brooks Jr. 1987]; hence, it has no ready geometric representation. One of the

obstacles for visualizing software information is that data are abstract and, therefore,

30


have no associated physical structure [Chen 2006]. Thus, it is necessary to consider (i)

the use of visual abstractions that are appropriate to the nature of data and their

relationships, (ii) representation techniques that allow to emphasize what is relevant in a

given context, and (iii) different forms of interaction, allowing to perform exploratory

(and, therefore, richer) analyses [Schots & Werner 2012] [Schots et al. 2012].

In this context, software visualization techniques aim to provide a better and

faster understanding of the structure, behavior, and evolution of software processes and

products [Diehl 2007]. It can be defined as the use of information visualization

techniques [Chen 2006] applied to software, i.e., as a branch of information

visualization. Data are represented by means of visual metaphors for facilitating the

comprehension of different scenarios and contexts, as well as the detection of

underlying patterns and the creation of analogies [Lanza & Marinescu 2006] [Diehl

2007].

Software visualization has been exploited as a way to assist software

development activities that involve human reasoning, helping people to deal with the

large amount and variety of information by providing appropriate abstractions. Software

visualization research focuses on the use of computational resources for accelerating

and optimizing users’ perception, understanding, and assimilation of information of

software and about software, by stimulating the human cognitive capacity (derived from

users’ memory, perception and reasoning). Perception is the processing of sensory

information and thus part of human cognition, which also includes awareness,

reasoning, and learning [Lanza & Marinescu 2006] [Diehl 2007].

Several strategies and techniques have been proposed and developed for the

representation and interaction with the visual metaphors. Some of these techniques are

listed in a previous work [Oliveira 2011], and a more comprehensive set can be found in

[Schots et al. 2015]. Software visualization tools make use of these techniques in order

to provide a richer representation and exploration of the underlying data, thus better

supporting software comprehension and correlated tasks.

In this regard, Diehl (2007) states that, in order to make visualizations effective

in their goal, it is important to keep in mind that the visual metaphors and

representations to be used must be adapted to the stakeholders’ perceptive abilities, not

the opposite (as it usually occurs) [Diehl 2007].

Several software engineering fields can be supported by visualizations. Some

include requirements engineering [Cooper et al. 2009], software architecture and design

31


[Lanza & Marinescu 2006] [Gallagher et al. 2008] [Schots et al. 2010], software

measurement [Lanza & Marinescu 2006], software evolution [Wettel & Lanza 2008]

[Werner et al. 2011], software maintenance, reverse engineering and reengineering

[Koschke 2003] [Telea et al. 2010], among others. Software engineering education can

also benefit from the use of visual metaphors and other interactive approaches to allow

exploration of concepts and enhance learning [Rodrigues & Werner 2011]. One can also

highlight the inherent multidisciplinary of the software visualization topic, since it

integrates several computer science disciplines, such as data mining, software

engineering, computer graphics and human-computer interaction.

Mukherjea & Foley state that visualization is particularly important for allowing

people to use perceptual reasoning (rather than cognitive reasoning) in task-solving

[Mukherjea & Foley 1996]. In this sense, in addition to the usual understanding goal, it

is desirable to make an explicit description of the supported tasks, for facilitating

potential users with matching information needs in identifying the visualizations easily.

3.2 The Role of Visualization in Awareness and Comprehension

Since research in software engineering is steadily expanding and investigating

different methodologies, processes and techniques, it is also necessary to provide

stakeholders of the software development process with a sense of what happens in the

scenario in which they are involved, as well as means to explore and understand

software artifacts of interest and their properties [Schots et al. 2012]. This requires

appropriate awareness and comprehension resources.

Although these concepts are correlated, there is a subtle difference between

them. According to [Shi et al. 2011], awareness is “the state or ability to perceive, to

feel, or to be conscious of events, objects or sensory patterns”, but in this level of

consciousness, an observer can confirm sense data without necessarily implying

understanding or comprehending. Similarly, program comprehension also encompasses

the software development life cycle, but it focuses mainly on software artifacts, rather

than the process and its variables. In other words, awareness is related to cognitive

reactions to a condition/event (being aware of it), while comprehension involves

assimilation of knowledge (understanding a fact) [Schots et al. 2012].

Enhancing awareness and understanding of software information and the

software itself requires the identification of adequate abstractions according to the

comprehension needs [Schots et al. 2012]. The choice of the visualization abstractions

32


and techniques for representing the data, as well as the interaction techniques to be

employed, heavily depends on contextual information, e.g., the nature of data, the

visualization constraints, and the task to be supported (e.g., selecting the most suitable

assets from a set of reusable assets). Awareness and comprehension concepts are

discussed with more details in the next subsections, along with a brief argument on the

role of visualization.

3.2.1 On the awareness of the software development life cycle

The concept of awareness is present in many of today’s systems. Context-aware

systems offer new opportunities for application developers and for end users by

gathering context data and adapting systems behavior accordingly [Baldauf et al. 2007].

In the software development scenario, awareness can be characterized as “an

understanding of the activities of others, which provides a context for one’s own

activities” [Dourish & Bellotti 1992]. Many researchers have recognized awareness as

an essential part of collaborative software development and collaborative work in

general [Treude & Storey 2010].

Awareness mechanisms allow software development stakeholders to be

percipient of what goes on in the development scenario. Each mechanism has its

specific purpose, i.e., aims at supporting a particular set of development tasks (e.g.,

providing information about the detection of potential conflicts in collaborative

development, supporting parallel tasks in geographically distributed development, and

so on), thus providing different levels of awareness according to the context. Moreover,

as stated by [Treude & Storey 2010], depending on the context of the task at hand, the

required granularity of awareness can vary significantly.

The inclusion of awareness mechanisms should take into account the tools most

commonly used by stakeholders in their usual, daily activities, in order to ease the

adoption and use of such mechanisms. For instance, among software developers, the use

of IDEs is very common, and most of them are extensible by plug-in systems. Thus,

developing awareness facilities as IDE plug-ins can benefit from the available IDE

features, including integration with other tools [Hattori 2010] [Schots et al. 2012].

The use of visualizations can enrich development environments to promote

awareness [Hattori 2010]. Awareness information can be delivered by means of visual

resources especially employed to this end, e.g., dashboards [Treude & Storey 2010] that

can summarize important development facts. One important aspect that must be taken

33


into account is the evaluation of the tradeoff between the usefulness of the visual cues

and the level of distraction they may cause [Hattori 2010].

In [Ripley et al. 2007], a 3D (three-dimensional) visualization is presented for

providing project managers with a comprehensive view of all project activities, allowing

them to intelligently steer development and adjust task assignments. The screenshot

shown in Figure 3.1 presents a snapshot of all ongoing changes taking place in a set of

workspaces at a particular time [Ripley et al. 2007].

Figure 3.1 – 3D workspace visualization [Ripley et al. 2007]

The stacks of cylinders with the most recent changes are placed in the front of

the view and, as time elapses, stacks for workspaces with less recent activity start

moving to the back. In the artifact mode, each stack of cylinders represents an artifact,

and each cylinder in the stack represents changes to that artifact made by a workspace.

In the developer mode, a stack of cylinders represents a developer’s workspace.

Another subarea that has emerged is visual analytics, considered as “the science

of analytical reasoning facilitated by interactive visual interfaces” [Thomas & Cook

34


2006]. Its goal is to increase insight into data through the combination of automatic

analysis methods with human background knowledge and intuition [Keim et al. 2008].

3.2.2 Program comprehension and visualization

Program comprehension is a vital software engineering activity. It is necessary

to facilitate reuse, inspection, maintenance, reverse engineering, reengineering,

migration, and extension of existing software systems [Wong et al. 2007], among other

software engineering practices. Particularly, it plays a crucial role in software

maintenance: according to [Telea et al. 2010], about 40% of the maintenance budget is

used for understanding source code.

The mapping of entities, from the software systems domain to graphical

representations, aims to support comprehension and development [Gallagher et al.

2008]. In fact, many works that aim at increasing program comprehension make use of

visual metaphors, by applying software visualization concepts and techniques. Such

works usually try to represent software through a particular point of view, helping

stakeholders to focus on the tasks being performed. Duru et al. (2013) state that

software visualization tools allow users to synthesize and make sense of vast amounts of

information (e.g., regarding the inner organization of software modules and their

interactions) [Duru et al. 2013].

An illustrating example of a software visualization tool is the CodeCity tool

[Wettel & Lanza 2008], presented in Figure 3.2. It displays source code information

mapped into a city metaphor. The visual properties of the city artifacts reflect metric

values of classes and packages (in the figure, the number of methods maps to the

buildings’ height and the number of attributes to their base size). The brown (darker)

buildings represent the classes and the blue (lighter) districts represent the packages.

This figure illustrates a version of a system called Jmol. The visualization allows

to easily identify outliers, such as the two large platforms (wide and short) in the

foreground representing the classes Token and JmolConstants, which define many

attributes (large base) and few methods (reduced height), or the “skyscraper”

representing the class Viewer with a considerably high number of methods and a much

lower number of attributes [Wettel & Lanza 2008].

35


Figure 3.2 – The city metaphor presented in CodeCity [Wettel & Lanza 2008]

Another illustrating example is EvolTrack [Werner et al. 2011], an Eclipse-

based extensible mechanism that combines multiple views to provide a better

comprehension of the software evolution life cycle through different viewpoints. Its data

source and visualization plug-ins allow performing different comprehension tasks, e.g.,

architectural conformance and co-evolution analyses, social network analysis, and

tracking evolution of measurements [Werner et al. 2011].

Figure 3.3 shows EvolTrack and its plug-ins PREViA (for architectural model

conformance analyses over time) and SocialNetwork (for socio-technical network

analyses) [Werner et al. 2011].

Figure 3.3 – EvolTrack and its plug-ins PREViA and SocialNetwork [Werner et al.

2011]

36


3.2.3 Awareness and comprehension challenges

The creation of tools, techniques, and methodologies to support the manipulation

of large data sets has been receiving special attention of both scientific and industrial

communities, in order to discover new ways of dealing with the underlying information,

including learning purposes, identification of patterns, decision-making support, among

others. However, making use of computing resources to enhance awareness and

understanding (of software information and the software itself) is still a challenge in

software/systems engineering. It involves the identification of suitable mechanisms,

adequate abstractions, and studies on stimulation of the human perceptive and cognitive

abilities [Schots et al. 2012].

Among the grand challenges identified by the Brazilian Computer Society for

the years 2006-2016 [Brazilian Computer Society 2006], the following somehow relate

to these topics:

 The management of information in large volumes of distributed multimedia data, in

order to develop solutions for the processing, retrieval and dissemination of relevant

information, both narrative and descriptive, from the exponential growth of

multimedia data;

 The computational modeling of complex systems (artificial, natural and socio-

cultural) and human-nature interactions, particularly the creation of new algorithms

and techniques in scientific visualization to enable visually capturing the complexity

of the modeled objects and their interactions;

 The quality of technological development, which poses that systems must be

available, accurate, secure, scalable, persistent, and ubiquitous – one of the research

topics in this sense is the development of tools for supporting the process of

implementation and evolution of software.

There is an increasing demand on how to obtain, handle/process, visualize,

manipulate, and understand information, particularly data and information about

software systems. Research topics that tackle this issue have the potential to deliver

promising results, as well as ease and increase the quality of software processes and

products. In this sense, some challenges in awareness and comprehension highlighted in

[Schots et al. 2012] are listed as follows:

37


 General comprehension/awareness challenges

 Use software tools to seamlessly collect rich data sets on software

comprehension activities: Kagdi & Maletic (2008) highlight the importance of

automatic data collection mechanisms (e.g., eye tracking and activity logging)

on software comprehension studies [Kagdi & Maletic 2008]. This can be

cheaper and more reliable (with respect to data quality) than questionnaires,

interviews, and think aloud protocols. IDEs and VCS repositories provide means

to collect this type of data. The challenge lies in associating low level (fine-

grained) monitoring of actions on software engineering tools with the cognitive

actions being executed (e.g., reading, searching or modifying the code). Data

mining techniques (sequence and process mining) can help to achieve this.

 Build specialized, personalized visualizations according to the comprehension

needs: Software visualizations should present a comprehensive view of the

objects under analysis, based on the needs identified in industry and education.

 Provide evidence regarding correlations involving people’s profiles with respect

to quality attributes on program comprehension: There is little evidence on how

(and whether) previous knowledge, skills, and abilities correlate with the

efficiency and efficacy of understanding program artifacts. An example is to

evaluate the influence of developers’ level of expertise on how efficiently they

understand code [Von Mayrhauser & Vans 1995]. Studies on stimulation of the

human perceptive and cognitive abilities are welcome for understanding

scenarios like this [Novais et al. 2012].

 Identify and develop suitable mechanisms and adequate abstractions: If an

awareness/comprehension mechanism is not useful in its purpose, it will not be

used in practice. It can be, among other reasons, due to its lack of flexibility and

integration with other mechanisms. Thus, new tools and visualizations need to

consider this.

 Strengthen and increase the group of researchers interested in software

visualization, awareness, and related areas: Despite the large number of studies

undertaken involving software visualization, the Brazilian community in the area

is still scattered. Attempts for establishing a joint research agenda are already in

progress, aiming to allow the construction of a collaborative body of knowledge

38


on software visualization and awareness, besides providing relevant solutions to

the community as a whole.

 Industry-related challenges

 Understand the real needs of the software development industry stakeholders in

terms of awareness and comprehension: As one of the responsibilities of

academia is to provide solutions to existing problems in industry, more studies

should be conducted for identifying research opportunities. An example would

be by performing primary studies, such as surveys and action-research.

 Evaluate the quality of existing data sources and identify relevant data: The

industry is increasingly realizing the importance of having data on the execution

of their processes and metrics regarding the product, so that such data can be

used to improve the performance of their activities and the quality of the final

product. However, it is necessary to ensure that (i) the data are collected, (ii) the

data collected are useful and appropriate, and (iii) the data collected allow the

analysis and improvement of processes and products.

 Bridge the gap and encourage interaction between academia and industry:

Though this challenge is also pertinent for several other areas, research in

software visualization and awareness lack evidence of their theories through

results of studies performed in real settings. Research initiatives involving

industry people with flexible formats could serve as a first step in this direction.

Some potential results of such initiatives are the establishment of partnerships

and exchange of human resources towards a holistic training for both

communities.

As it can be seen, these challenges comprise software/systems engineering in

general. This work partially addresses some of them with a focus on software reuse.

3.3 Software Visualization and Reuse

As mentioned in Section 2.4, introducing reuse in an organization may require

new ways of thinking about software development. In order to achieve the

acceptance/consciousness and successful adoption and institutionalization of software

reuse, it is important to take into account how to provide appropriate reuse awareness.

Awareness mechanisms allow stakeholders to be percipient of what goes on in the

development scenario [Treude & Storey 2010] [Schots et al. 2012], and can provide

39


them with the necessary information and support for performing their reuse-related

tasks.

One of the ways to increase reuse awareness is by employing visualization

resources and techniques. It is known that, in general, every visualization system

supports understanding of one or more aspects of a software system, and this

understanding process in turn supports a particular engineering activity or task [Maletic

et al. 2002], such as requirements engineering, software design, or coding. It is believed

that most of these software engineering tasks can also be visually supported by software

reuse. Visualization resources can be used for allowing awareness and comprehension

of reuse elements and their surroundings.

For instance, to reuse a software asset, stakeholders need to understand what it

does, how it works, and how it can be reused; however, this is difficult in practice

[Marshall 2001] [Marshall et al. 2003]. If software engineers cannot understand assets,

they will not be able to reuse them [Frakes & Fox 1996] [Alonso & Frakes 2000]. In

contrast, a proper understanding can help developers to decide whether and how the

asset can be reused [Marshall 2001] [Marshall et al. 2003], and visualization may play

an important role in this context.

Several works aim to assist software engineering stakeholders in their day-to-

day activities, but little is known on the role of visualizations in supporting software

reuse tasks. Although existing visualization approaches intend to support somehow

software reuse, literature lacks of a solid and comprehensive body of knowledge of

software visualizations targeted to reuse. Consequently, stakeholders may not be able to

choose reuse-oriented visualizations properly (i.e., based on their quality and concrete

evidence on their actual effectiveness) for a given scenario.

In this sense, an informal literature review (first step of the research

methodology presented in Section 1.5) was conducted for collecting preliminary

information and providing the initial/basic knowledge about the research topic. This

served as a basis for a secondary study (a quasi-systematic review), i.e., a more

comprehensive study for characterizing the state-of-the-art (second step of the research

methodology), aiming to identify software visualizations targeted to support reuse-

related tasks.

All the details about the secondary study, including the full protocol description

and the details on the analysis, are described in [Schots et al. 2014]. The next

subsections present the approaches and tools identified by means of the informal

40


literature review, as well as a framework that was created for categorizing visualizations

and a brief overview of the planning and execution of the quasi-systematic review, as

well as the discussion of results.

3.3.1 Findings from the informal literature review

During the informal literature review, a number of works related to visualization

and reuse were found, but some of them are not related to software development (e.g.,

[Klerkx et al. 2006]). For the sake of scope, it was decided to focus the analysis of

related works on software development.

Dy-re (Dynamic reuse) [Biddle et al. 1999] supports programming for reuse by

displaying dynamic information of the internal structure of the software under

development. It aims to make it easy to detect patterns of usage and patterns of

dependence within a program – these patterns may help the programmer to determine

how best to articulate the structure of a program using components that will be useful

and independent for later reuse in other contexts [Biddle et al. 1999].

Dyno [Biddle et al. 1999] [Marshall 2001] [Marshall et al. 2003] is a tool for

helping developers in reusing Java code, by means of a view based on their experience

of using such code. It allows the use of visualization templates written in Java, which

can be generic (for any data type) or specific (for certain data types). Developers can

write their own templates. According to [Marshall 2001], the developer himself/herself

must map visualizations to data, i.e., must inform “which method in the component

maps to which sequence”, and this can be a one-to-one or a many-to-one mapping. The

author recognizes that this can be a problem, since “a developer may not know enough

to know which methods should map to which sequence” [Marshall 2001].

Alonso and Frakes (2000) propose an architecture for visualizing reusable

components from a software library, along with an example implementation. The

architecture is based on two architectural styles: (i) pipes and filters, and (ii) repository.

The repository stores and manages the assets and their metadata; the visual

representation displays the data using a visualization metaphor; finally, the intermediate

representation enables data interchange between the repository and the visualization

[Alonso & Frakes 2000]. There is a strong dependency of the search input query, i.e.,

the usefulness of the results is closely related to the quality of the search.

The Variant Analysis approach [Duszynski et al. 2011] focuses on recovering

and visualizing information about commonalities and differences in the source code of

41


multiple similar software systems (delivering quantitative information about similarities

across system variants). By identifying parts suitable for transformation into reusable

assets and planning necessary implementation steps, it aims at supporting the reuse

potential assessment and the migration to systematic software reuse, besides providing

an overview of commonality distribution in the whole analyzed system family.

These publications compounded an initial data set that served as a preliminary

input of control for the quasi-systematic review. In addition, the need for organizing the

information from the findings for further analyses motivated the extension of a

framework for categorizing visualization approaches [Schots & Werner 2014b]. This

framework is presented as follows, instantiated to the software reuse scenario.

3.3.2 An extended framework for categorizing visualization approaches

In order to identify the set of data to be extracted from the findings, this work

uses the five dimensions of software visualization from [Maletic et al. 2002]. The task-

oriented framework proposed by these authors takes into account previous work on

taxonomic descriptions for emphasizing general tasks of understanding and analysis

during the development and maintenance of large-scale software systems. The

framework dimensions reflect the why, who, where, what, and how of the software

visualization, as follows [Maletic et al. 2002]:

 Task: A visualization system aims at supporting the understanding of one or more

aspects of a software system, and this understanding process will in turn support a

particular task. Thus, this dimension indicates what particular software engineering

tasks are supported by the visualization.

 Audience: This defines the attributes of the users of the visualization system.

Besides being oriented to distinct roles, different tools can also be tailored towards

users with different skills (e.g., experienced versus beginner, developer versus

manager etc.). An experienced developer may have different information needs

other than a novice team member.

 Target: The target of a software visualization system defines which (low level)

aspects of the software are visualized, i.e., the work product, artifact, or part of the

environment of the software system. Examples include architecture, design,

algorithm, source code etc. Other types of target are software metrics, process

information, and documentation; this can support the software process and team

42


management activities. Software development surroundings also provide several

aspects that can be visualized.

 Representation: This dimension shows how the visualization is constructed based

on the available information. An aspect on which the effectiveness of information

visualization hinges is its ability to represent information clearly and accurately. The

relationship between data values and visual parameters should be univocal17;

otherwise, it may not be possible to distinguish one value’s influence from the other.

 Medium: The effectiveness of visualizations also relies on the humans’ ability to

interact with them to figure out what the information means. The medium is where

the visualization is rendered, i.e., some display technology from which the user

interacts and perceives the visualization. The medium dictates how interactions may

occur; each one has different characteristics and hence is suited for different tasks.

In order to complement the framework with information that is relevant to the

visualization users, as well as encompass other aspects related to the findings of this

study, two additional, complementary dimensions that are not (or at least not directly)

addressed in the original framework are proposed and used in this work. One of them

related to the requirements of the visualization approaches (which) and the other is

related to evidence on their use (worthwhile).

Figure 3.5 depicts the software visualization dimensions. Each dimension maps

to a secondary question (SQ) shown in Section 3.3.3. Additional details on this extended

version of the dimensions and the mapping to the corresponding information fields are

described in [Schots et al. 2014] and [Schots & Werner 2014b].

The specific data to be extracted are described in the data extraction form,

presented in Table 3.1. This form enables to record full details of the publications under

review, besides supporting the construction of an online repository [Schots 2014c] with

details about such publications, in order to allow a richer exploration of the findings, as

well as establish correlations between the visualization dimensions. The Google

Spreadsheets tool18 is used for supporting the data extraction process. The data

extraction fields are identified with their corresponding research questions.

17 It must be emphasized that the visual encoding is not univocal in some visualizations, e.g., when the

defined categories are not mutually exclusive.

18 http://spreadsheets.google.com/

43


Figure 3.4 – Software visualization dimensions (extended from [Maletic et al. 2002])

[Schots & Werner 2014b]

Table 3.1 – Data extraction form

 Field Information to be extracted

P
u

b
li

ca
ti

o
n

m
et

a
d

a
ta

Title [Publication title]

Authors
[List of authors separated by comma, e.g., “Singh, S., Cheung, L. K.

Y.” – “et al.” must be avoided]

Publication date (year/month) [Year and month of publication, e.g., “September 2000”]

Publication type [Conference or Article (Journal)]

Source

[Source of the publication, e.g., “Communications of the ACM” or

“Proceedings of the International Conference on Software

Engineering (ICSE 2007)”]

Volume and Edition (for journals) [Volume and edition, e.g., “v. 49, n. 10”]

Place (for conferences) [City and Country of event, e.g., “Washington, USA”]

Pages [Initial and final pages separated by hyphen, e.g., “pp. 184-191”]

Link (if applicable)
[Link to the publication, preferably the Digital Object Identifier

(DOI), e.g., “http://dx.doi.org/10.1109/ICSECOMPANION.2007.8”]

Abstract [Full abstract text]

V
is

u
a

li
za

ti
o

n

m
et

a
d

a
ta

Approach/tool name (PQ) [Name of the approach/tool]

Screenshot [Screenshot of the approach/tool, if available]

44


 Field Information to be extracted
T

a
sk

(w
h

y
)

Approach motivation/Assumptions
(SQ1)

[Problems, motivations or issues that leaded to the development of the

approach]

Approach goals (SQ1) [Goals for which the approach was developed]

Visualizations’ reuse-specific goals

(SQ1)

[Description of how the approach goals relate to software reuse, i.e.,

which goals support or are somehow related to reuse]

Software engineering activities

addressed by the visualizations
(TQ1.1)

[Software engineering activities or development process stages that

can be somehow supported by the visualizations (e.g., “requirements

engineering”, “software design”, “software testing”, “software

maintenance” etc.), including the construction of reusable assets

(development for reuse) or the reuse of these assets in a scenario

(development with reuse)]

Reuse-related tasks supported by

the visualizations (TQ1.2)

[Tasks supported by the visualizations, in a fine-grain level, e.g.,

“integrating reusable assets”, “Searching and retrieving reusable

assets” etc.]

A
u

d
ie

n
ce

(w
h

o
) Visualizations’ audience

(stakeholders who can benefit from

the visualizations) (SQ2)

[Software development stakeholders who can benefit from the

visualizations, e.g., “programmers”, “software designers”, “end

users” etc.]

T
a

rg
et

(w
h

a
t)

Visualized items/data (what is

visualized) (SQ3)

[Items/data from the software development process that have a visual

presentation; examples include source code entities (e.g., “classes

and interfaces with their attributes and methods”), high-level artifacts

(e.g., “UML diagrams”), metrics (e.g., “coupling”, “number of

commits” etc.), among others]

Source of visualized items/data
(TQ3.1)

[Sources from which the items/data are extracted, e.g., “version

control system repository”, “metrics base”, “software tracing log

file”, “source folder” etc.]

Collection procedure/method of

visualized items/data (TQ3.2)

[Description on how the items/data are collected and/or aggregated

by the approach, e.g., “parsing”, “clustering algorithm” etc.]

R
ep

re
se

n
ta

ti
o

n

(h
o

w
)

Visualization metaphors used (how

it is visualized) (SQ4)

[Visual metaphors used for describing the items/data, e.g., “squares

and circles”, “treemap”, “graph” etc.]

Data-to-visualization mapping

(input/output) (TQ4.1)

[Description on how data are mapped to the visualizations, e.g.,

“classes are represented as circles and interfaces as triangles”, “the

color represents the complexity (the darker, the more complex)” etc.]

Visualization strategies and

techniques (TQ4.2)

[Strategies (e.g., “provide a global view while navigating into specific

views”) and techniques (e.g., “drill-down”, “zoom”, “clustering”

etc.) used for displaying and interacting with the visualizations;

strategies may use a given technique without mentioning it]

M
ed

iu
m

(w
h

er
e)

 Device and/or environment used for

displaying the visualizations (where

it is visualized) (SQ5)

[Device used for displaying the visualizations, e.g., “Computer”,

“Smartphone”, “Tablet”, “Display wall” etc.]

Resources used for interacting with

the visualizations (TQ5.1)

[Resources that allow interacting with the visualizations, e.g.,

“mouse”, “keyboard”, “pen”, “finger touch”, “gestures” etc.]

R
eq

u
ir

em
en

ts

(w
h

ic
h

)

Hardware and software

requirements/dependencies (SQ6)

[Hardware (e.g., “Quad-core processor”, “Graphic card” etc.) and

software (e.g., “Eclipse IDE”, etc.) required for the approach]

Programming languages, APIs, and

frameworks used for building the

visualization (TQ6.1)

[Programming languages, APIs, and frameworks used for building

the approach, e.g., “Java Reflection API”, “Prefuse” etc.]

E
v

id
en

ce

(w
o

rt
h

w
h

il
e)

Visualization evaluation methods

(SQ7)

[Method applied for evaluating the approach, e.g., controlled

experiment, observational study, case study etc.]

Application scenarios of the

visualizations (TQ7.1)

[Scenarios in which the approach was employed, e.g., “in an

industrial setting”, “in the context of an academic course” etc.]

Evaluated aspects (TQ7.2)
[Evaluated approach aspects, e.g., performance, response time,

usefulness, scalability etc.]

Visualization evaluation

results/outcomes (TQ 7.3)
[Evaluation findings and results]

45


3.3.3 Outline of the secondary study (quasi-systematic review)

The nature of the study is to investigate existing works in order to characterize a

particular field of interest (i.e., visualization approaches that can be used for supporting

software reuse, regardless of the focus of support). This kind of investigation can be

achieved through the conduction of a systematic literature review (SLR), i.e., a type of

secondary study that aims to gather, evaluate and analyze the available literature that is

relevant to a particular research question, topic, or phenomenon of interest [Kitchenham

et al. 2007] [Kitchenham & Charters 2007]. In contrast with ad-hoc literature reviews, a

SLR follows a well-defined sequence of methodological steps, which allows obtaining

higher scientific value and more reliable results [Kitchenham 2004]. Moreover, SLRs

follow a research protocol that must be defined beforehand, allowing the verification,

extension, and replication of the research. These are the main reasons for choosing this

research method for this work.

Because this is an exploratory study designed to characterize the state-of-the-art

of the research area, and since there is no established baseline for comparison of the

results obtained though this study, it is considered a quasi-systematic literature review

[Travassos et al. 2008]. This kind of study has some similarities to a systematic

mapping study, i.e., a study that aims to identify and categorize the research in a fairly

broad topic area [Kitchenham et al. 2009]. However, since this study must explore the

same rigor and formalism for the methodological phases of protocol preparation and

running (except for the fact that no meta-analysis in principle can be applied), the quasi-

systematic literature review denomination is more appropriate [Travassos et al. 2008].

This study aims at characterizing and identifying visualization approaches that

can be used for supporting software reuse, regardless of the focus of support. The study

goals are described in the Goal-Question-Metric (GQM) format [Basili et al. 1994]:

Analyze tools and approaches described in publications

For the purpose of characterizing

With respect to visualizations for supporting software reuse

Under the point of view of the researchers

In the context of software development project tasks and organizational tasks

The objects of this study are the publications that present visualizations

supporting software reuse. The expected results are (i) the identification of

visualizations that can be used for supporting software reuse, as well as their features

46


and limitations, and (ii) the establishment of a solid body of knowledge on

visualizations for software reuse. Based on the findings, it is also expected to identify

desirable features for novel approaches.

To achieve this goal, this study aims to answer the following research questions,

decomposed into primary (PQ), secondary (SQ), and tertiary (TQ) questions:

 PQ: Which visualization approaches have been proposed to support software reuse?

 SQ1: How do visualizations support software reuse?

 TQ1.1: Which software engineering activities are addressed by the

visualizations?

 TQ1.2: Which reuse-related tasks are supported by these visualizations?

 SQ2: To which stakeholders are these visualizations intended/targeted?

 SQ3: Which items/data are visually represented?

 TQ3.1: Where do these items/data come from?

 TQ3.2: How are these items/data collected?

 SQ4: Which visualization metaphors are used?

 TQ4.1: How are data mapped to the visualizations?

 TQ4.2: Which visualization strategies and techniques are employed?

 SQ5: Where are the visualizations displayed?

 TQ5.1: Which resources can be used for interacting with the visualizations?

 SQ6: Which hardware/software resources are needed to deploy and execute the

visualization tools?

 TQ6.1: Which programming languages, APIs, and frameworks are used?

 SQ7: Which methods are used for assessing the quality19 of the visualizations (if

any)?

 TQ7.1: In which scenarios are the visualizations employed (if any)?

 TQ7.2: Which aspects of the visualizations are evaluated (if any)?

 TQ7.3: What are the results/outcomes of the conducted evaluations (if any)?

These questions map to the data extraction information (shown in Table 3.1),

and are partially inspired in [Maletic et al. 2002].

19 Quality evaluation/assessment encompasses any quality attributes, such as effectiveness, efficacy,

amongst others.

47


The chosen search engine for carrying out the review is Scopus20, due to its

well-known stability, reliability, interoperability with different referencing systems, and

high coverage – its database indexes most of the publications that are available in

different digital libraries or other search engines (e.g., Compendex, IEEE Xplore, ACM

Digital Library, Springer, Web of Science etc.) [Santa Isabel 2011] [França & Travassos

2013]. Besides, it indexes relevant journals and proceedings from the main software

engineering conferences that comprise software reuse as a topic of interest. Examples of

such conferences include:

 International Conference on Software Reuse (ICSR);

 International Conference on Software Maintenance (ICSM), recently changed to

International Conference on Software Maintenance and Evolution (ICSME);

 European Conference on Software Maintenance and Reengineering (CSMR),

recently incorporated to the International Conference on Software Analysis,

Evolution, and Reengineering (SANER);

 International Conference on Information Reuse and Integration (IRI);

 International Conference on Program Comprehension (ICPC);

 International Conference on Software Engineering (ICSE);

 etc.

Since ACM is the only digital library that contains two of the control

publications, it was decided to partially overcome this limitation by visiting the ACM

Author Profile Page21 of the respective authors and searching for the search string terms

in the titles, abstracts and keywords of each listed publication. This decision was taken

because the research described in these publications belongs to a specific research group

and is related to the scope of this work (in terms of goals and features). More details on

this issue are discussed in [Schots et al. 2014].

Because Portuguese is the native language of the researchers involved in this

study, it was decided that publications in Portuguese should be analyzed as well. The

following conferences were considered relevant for the purpose of this research:

 Brazilian Symposium on Software Engineering (SBES);

20 http://www.scopus.com/
21 See http://www.acm.org/publications/acm-author-profile-page for details (checked in November 30,

2013).

48


 Brazilian Symposium on Software Components, Architectures and Reuse

(SBCARS) and its predecessor Workshop on Component-Based Development

(WDBC);

 Brazilian Symposium on Software Quality (SBQS).

Given that the Brazilian digital library (BDBComp22) did not index all the

proceedings of any of these conferences until the date of creation of the research

protocol, a manual search was required, following the same selection procedure

(described in [Schots et al. 2014]).

The search string used was ((software OR system OR program OR asset) AND

(reuse OR reusability OR reusable)) AND (visual OR visualization OR visualisation).

Details on the definition of the search string can be found in [Schots et al. 2014].

Although a large number of publications were obtained, it was decided not to constrain

the search string, due to the exploratory nature of this study.

A Portuguese version of the search string was also built: ((software OR sistema

OR programa OR ativo) AND (reuso OR reúso OR reutilização OR reusabilidade OR

reusável OR reutilizável)) AND (visual OR visualização). However, no results were

found in the search engine through this search string. Thus, only the manual search on

the identified sources should be performed for this language.

The manual search was performed in the following Brazilian proceedings:

 Brazilian Symposium on Software Engineering (SBES): proceedings from 1987 (1st

edition) to 2012 (26th edition) (including);

 Brazilian Symposium on Software Components, Architectures and Reuse

(SBCARS): proceedings from 2007 (1st edition) to 2012 (6th edition) (including);

 Workshop on Component-Based Development (WDBC): proceedings from 2002

(2nd edition)23 to 2006 (6th edition) (including);

 Brazilian Symposium on Software Quality (SBQS): proceedings from 2002 (1st

edition) to 2012 (11th edition) (including).

The search results are listed in Table 3.2.

22 http://www.lbd.dcc.ufmg.br/bdbcomp/
23 The first edition of WDBC has no proceedings; selected works evaluated by the program committee

were invited for publication in a book: Gimenes, I. M. S., Huzita, E. H. M. (2005). Component-Based

Development: Concepts and Techniques [Desenvolvimento baseado em componentes: conceitos e

técnicas] (in Portuguese), 1st ed., 304p., Ciência Moderna.

49


Table 3.2 – Study selection data (manual search)

 SBES
WDBC /

SBCARS
SBQS

Title and abstract reading 556 158 315

Number of accepted publications 30 42 26

Number of rejected publications 526 116 289

Number of duplicate publications 0 0 0

Full reading 30 42 26

Number of accepted publications 0 0 0

Number of rejected publications 30 42 26

Number of duplicate publications 0 0 0

As it can be seen, from the 1030 analyzed publications, no one was selected.

Most of the publications selected during the title/abstract reading (98) were related to

software reuse; however, in the full reading, it was noticed that no publication mentions

the use of visualization resources with the goal of supporting software reuse.

Regarding the search engines, the searches were performed on October 1st, 2012

at 3PM local time (UTC/GMT -3) in both the Scopus search engine and the selected

ACM Author Profile Pages. Although no time constraint was set, the publications

ranged between 1980 and September 2012. However, publications that had not been

indexed until the date of search may have been added to the digital libraries afterwards.

In total, 1159 publications were retrieved from Scopus by performing the search

with the chosen search string. The publications were exported from this search engine

and formatted in tables. The search performed on the ACM Author Profile Pages was

conducted in a different way: all the publications listed in the pages of each key author

identified from the control publications (as discussed in [Schots et al. 2014]) were

manually exported, and their title, authors and keywords were extracted using regular

expressions in a text editing tool (Notepad++24). After that, duplicates were semi-

automatically identified and removed, resulting in 304 results. Then, a semi-automatic

search was performed using the search string terms: these matched with 6 publications.

Table 3.3 summarizes the study selection stages in terms of accepted, rejected,

and duplicate publications. From this point, a M.Sc. student (referred to as second

researcher) supported the selection stages listed in this table.

24 http://notepad-plus-plus.org/

50


Table 3.3 – Study selection data (search engines)

 Scopus ACM

1st

researcher

2nd

researcher

Both

researchers

Title reading 1159 1159 6

Number of rejected publications 740 831 0

Number of duplicate publications 8 8 0

Number of accepted publications 411 320 6

Abstract reading 411 320 6

Number of rejected publications 326 275 0

Number of duplicate publications 8 0 0

Number of accepted publications 77 45 6

Full reading 77 45 6

Number of rejected publications 47 26 0

Number of duplicate publications 1 0 1

Number of accepted publications 29 19 5

During the consensus stage (for conflict resolution), both researchers selected 19

publications, so these did not need to be reanalyzed. From the 15 publications selected

only by the first researcher, 13 were included after discussion, and 2 were rejected.

From the 5 publications selected only by the second researcher, 2 were included after

discussion, and 3 were rejected (being 1 by a third researcher, since consensus had not

been achieved). Details on the consensus stage can be found in [Schots et al. 2014].

Beyond one of the control publications, another related publication [Anslow et

al. 2004] (found based on the citations of the ACM key authors) was also added

manually. It was agreed in the consensus stage to include it, along with the control

publications previously included.

In total, 36 publications were selected, describing 34 approach proposals. They

are listed in [Schots et al. 2014], along with details on the analysis. The data extraction

form presented in Table 3.1 was filled out for each approach, and the results can be

found in [Schots et al. 2014] (in tables) and an interactive version is published in an

online repository [Schots 2014c], as illustrated in Figure 3.5.

3.3.4 Discussion of the findings

From the moment that the first identified works were published, there was

already a concern on supporting reuse of a variety of artifacts (SQ1), as can be noticed

in [Mancoridis et al. 1993] and [Constantopoulos et al. 1995]. It can also be noticed that

most approach goals are artifact-oriented, not taking into account the dynamics of reuse

in an organization (i.e., correlating consumers, producers, assets and projects).

51


Figure 3.5 – Organization of the secondary study results [Schots 2014c]

Although approaches somehow encompass diverse software engineering

activities (TQ1.1), only a few of them present integration among activities. In other

words, a stakeholder must resort to different approaches to perform activities that might

be related, and the communication among them should be seamless.

It can be noticed that understanding assets is by far the most supported reuse

task (TQ1.2). This is indeed expected, since understanding is a likely benefit in

employing visualizations. In terms of the different aspects that can be the focus of

comprehension, evolution information about reusable assets is particularly absent from

existing works – the only related work deals with comparing refinement sets of different

versions of feature models, and it is based on a trace repository; no other evolution

aspects are taken into account by any approach. Moreover, repository-related

information is only focused on structural characteristics, i.e., the approaches do not

handle usage data related to reuse repositories.

Although there is a reasonable variety of stakeholder support (SQ2), only a few

works support more than one kind of stakeholder simultaneously. This would not be a

major problem if different approaches could communicate with each other. The lack of

multi-stakeholder approaches hamper the evaluation of how well organization’s goals

related to reuse are being accomplished, under the perspectives of each reuse

stakeholder (e.g., producers, consumers and reuse managers). Particularly, the single

approach that mentions support for managers [Mancoridis et al. 1993] only presents

52


technical details about a software project, which does not seem feasible for management

tasks. Managers need more high-level details that can be useful for decision making, so

that they can promote actions not only to stimulate reuse, but especially to mitigate

potential barriers for performing reuse in their organizations.

The majority of the visualized items and data (SQ3) are source code artifacts. In

spite of this imbalance, there are many different kinds of artifacts (from different

software development stages) that can be visualized. There are few approaches for

visualizing software repositories with the intention to promote reuse (providing relevant

reuse data), and no repository information or metadata are visually represented aiming

to increase awareness. According to [Orso et al. 2000], approaches that employ reuse

repositories must store not only the reusable assets, but also the information about them

(usually called metadata).

The data sources (TQ3.1) are usually the source code of a program and

databases. Only a few approaches combine information from different sources (e.g.,

[Kelleher 2005]), and some are compatible with a limited set of data types. Although

many assets have additional related data available online, such data are usually

underexplored or overlooked. Moreover, although several kinds of information may be

used for supporting reuse, some common data sources are not explored visually by any

of the works (e.g., VCS repositories, issue trackers etc.).

Since each visualization technique may have some constraints, each collection

procedure (TQ3.2) must deal with this issue and make the proper arrangements. For

instance, in [Kelleher 2005], some format conversions are mentioned in order to make

the data ready to be represented by the intended visualization. During the data collection

procedure, the source may still require some transformations to have the data set in the

correct format to be used by different representations. Some authors also defend the use

of intermediary formats for storing the collected data (e.g., [Alonso & Frakes 2000] and

[Anslow et al. 2004]) in order to make them reusable in different visualizations.

As expected, different abstractions are used for representing different data

(SQ4). Although several types of abstractions are used, publications lack a discussion on

how/why a given metaphor was chosen and, more importantly, whether it is effective or

not in its purpose. The mapping between data and visualizations (TQ4.1) is barely

described in most of the publications, so the reader/user has to “guess” it, which can be

risky and lead to wrong interpretations of data.

53


Several visualization strategies and techniques are used (TQ4.2), but not in a

comprehensive way. This does not mean that every possible technique should be

employed, but some approaches might benefit from more interaction facilities for

allowing an effective use and understanding of data. Enhancing awareness and

understanding of software information and the software itself requires the identification

of adequate abstractions according to the comprehension needs [Diehl 2007] [Schots et

al. 2012]. The choice of visualization abstractions for representing the data, as well as

the interaction techniques to be employed, heavily depends on contextual information,

e.g., the nature of data, the visualization constraints, and the task to be supported (e.g.,

selecting the most suitable assets from a set of reusable assets).

There is a lack of mechanisms to offer flexibility to software stakeholders in

customizing their visualizations, so one can focus on relevant data and information to

improve the understanding of their activities. Although this can be seen as a downside,

on the other hand, letting the user decide which visualization to use may not be

adequate, as he/she may not know which metaphors better fit the structure to be

visualized. Approaches that require the user to map visualizations to data should

provide at least some kind of support for filtering inappropriate visualizations according

to underlying restrictions associated with the data.

Regardless of the number of occurrences for each of the strategies, it is unwise

to affirm that certain techniques are more important than others. Visualization strategies

and techniques must be chosen according to the visualization goals. Moreover, the

available data must meet the representation constraints associated to the employed

visualizations.

Regarding the medium for displaying visualizations (SQ5), most approaches are

still computer-based, in spite of the technological advances in displaying and interaction

devices. Only a few approaches (explicitly) mention that they work in (or are integrated

with) a web environment. This was somehow surprising. Some recent web-based

visualization frameworks may help changing this scenario. Publications also lack

information in a more detailed level regarding the compatibility of the approaches with

different media. For instance, even among approaches proposed more recently, none

mentions or focuses on mobile devices as an alternative to execute and interact with the

visualizations. Moreover, in spite of the existence of web-based approaches, one cannot

state (based solely on the publications) that they are multiplatform, i.e., whether they

work in other devices or not, since some devices, such as smartphones and tablets,

54


contain displaying and interaction constraints that must be accounted for when

designing visualizations.

It is not surprising that mouse and keyboard are the main interaction resources

(TQ5.1), as current information visualization systems still largely focus on these

peripherals for interacting with data [Lee et al. 2012]. In spite of that, there has been a

constantly growing interest in other research areas for incorporating other natural forms

of interaction such as touch, speech, gestures, handwriting, and vision.

It was noticed that software and hardware requirements (SQ6) are not discussed

properly in the publications, which hampers the proper evaluation of the feasibility of

the approaches to particular contexts. The same occurs with information about

programming languages, APIs, and frameworks (TQ6.1). Such information, if properly

discussed, helps to evaluate how up-to-date a tool is, as well as to identify any potential

integration constraint. It can be noticed that some of the technologies used by the

approaches are already in disuse.

It can be observed that the majority of the works does not present a proper

evaluation on their use (SQ7): some of them do not present any at all. This can be

partially explained by the lack of demand for evidence in publications (a scenario that

has been changing in the last years). In many cases, the evaluation is done by the

authors themselves, which is subjective and may bring some bias. The absence of

proper evaluations may raise questions as regards to meeting the purpose to which the

approaches were proposed In order to determine if visualizations are worthwhile, i.e.,

effective in helping their target users, it is desirable that they are exposed to a proper

evaluation [Sensalire et al. 2009]. This can be seen as a major downside.

An interesting finding is that there is a balance between the evaluation scenarios

(TQ7.1), since not only academic projects are used, but open source projects are also

taken into account (which allows the verification of results), as well as

commercial/industrial (thus strengthening the interaction with industry). Particularly,

since industry stakeholders can directly benefit from the results of such studies,

experiments in industry are strongly recommended for strengthening interaction with

academia.

In general, the reported data about the evaluations lack additional and useful

details, so that one can understand in which scenarios they were conducted (TQ7.1),

which aspects were evaluated and why (TQ7.2), how the analysis was made, and which

strengths and opportunities for improvements were identified (TQ7.3). It must be

55


emphasized that the experimental rigor must be correlated with the relevance of the

findings, in order to avoid wrong conclusions. Some recent works (e.g., [Feigenspan et

al. 2013] and [Yazdanshenas et al. 2012]) present a proper experimental soundness that

helps to understand the identified limitations, so that other researches aiming to support

reuse can use their evaluation report as a basis.

3.4 Final Remarks

As mentioned in Section 2.6, software visualization can be a useful resource for

supporting software reuse demands, especially the ones related to awareness and

comprehension. In spite of that, as shown in this chapter, its potential has not yet been

thoroughly explored, i.e., there is room for research and development in this regard.

Although there are publications in the literature that propose visualization approaches

geared specifically for software reuse, few approaches aim at assisting reuse

management as a whole, i.e., providing the necessary support to carry on a range of

software reuse tasks. This finding contributes to answering RQ1, stated in Section 1.3.

The software engineering community can use the results found in the quasi-

systematic review as a starting point for future research directions that can be addressed

when choosing, instantiating, or developing visualization-based approaches for

supporting software reuse. Besides, the presented information can be used as a body of

knowledge not only to support the decision making regarding the choice of visualization

approaches for software reuse, but also to conduct other secondary studies on software

visualization applied to another field of interest (e.g., software maintenance). This study

can also be seen as a summarized catalog of the approaches, whose further information

can be obtained from the corresponding original publications.

The identified limitations of the current findings and the unexploited research

opportunities point out directions and desirable features for a novel approach for

providing awareness and visualization support to activities related to software reuse.

Table 3.4 summarizes the problems identified and the corresponding desirable features

for such an approach to help solving such problems.

56


Table 3.4 – Findings and assumptions derived from the quasi-systematic review

ID25 Description Desirable feature

VF1

Most of the goals of existing visualization

approaches geared to software reuse are

artifact-oriented, and do not take into

account the dynamics of reuse in an

organization (i.e., correlating assets,

developers, and projects).

The approach should take into account core

elements in the reuse scenario (assets,

developers, and projects) and data related to

them.

VF2

Existing approaches lack proper handling

of evolution information about reusable

assets, which can show how they have been

maintained and improved.

The approach should make use of evolution

information about reusable assets, so that

their development history can provide useful

insights on their maintenance and

improvement.

VF3

There are few approaches for visualizing

software repositories with the intention to

promote reuse (providing relevant reuse

data). Most approaches focuses only on

structural characteristics of the reuse

repositories. Besides, no repository

information or metadata are visually

represented aiming to increase awareness.

The approach should present information

available from reuse repositories that can be

relevant and helpful for taking reuse

decisions.

VF4

The data sources of the approaches are

usually the source code of a program and

databases. Although many assets have

additional data available online, such data

are usually underused, underexplored, or

overlooked, not combined to provide useful

information.

Already described in RA3.

VF5

The mapping between data and

visualizations is barely described in most of

the approaches. They lack evidence on

how/why each visual metaphor was chosen

and, more importantly, whether it is

effective or not in its purpose (i.e., if the

established goals for the construction of the

visualization tools are met).

The approach should ensure that the

selected visualizations meet the goals that

led to the construction of its visualization

tools.

VF6

Regarding the medium for displaying

visualizations, most approaches are still

computer-based. Only a few approaches

(explicitly) mention that they work in (or

are integrated with) a web environment. In

spite of that, it is not possible to assume

that they work in devices such as

smartphones and tablets, which contain

displaying and interaction constraints that

must be accounted for when designing

visualizations.

The approach tools should use responsive

design whenever necessary (depending on

the stakeholders’ conventional device) in

order to be compatible with different media,

such as computers, tablets, and

smartphones.

25 VF refers to “Visualization-Related Finding”, while VA means “Visualization-Related Assumption”.

57


ID25 Description Desirable feature

VA1

[Reuse] managers need support for

analyzing/monitoring the reuse scenario as

a whole in an organization, with high-level

information that can be useful for decision

making, so that they can promote actions

not only to stimulate reuse, but especially to

mitigate potential barriers for performing

reuse in their organizations.

Already described in RF6.

VA2

Each visualization metaphor may have

some constraints on its use that must be

taken into account, reflecting on necessary

arrangements in the data collection

procedure. The collected data should be

reusable in different visualizations.

The data to be visualized should meet the

representation constraints associated to the

corresponding visualizations and use a

generic representation in order to be

reusable between different visualizations.

VA3

The choice of visualization abstractions and

techniques for representing the data, as well

as the interaction techniques to be

employed, heavily depends on contextual

information, e.g., the nature of data, the

visualization constraints, and the task to be

supported (e.g., selecting the most suitable

assets from a set of reusable assets).

The approach should take into account the

characteristics and context information of

the data, intended for a proper choice of

visualization elements.

Based on these desirable features, the approach proposed in this thesis is

presented in the next chapter.

58


CHAPTER 4 – PROPOSED APPROACH: APPRAISER

This chapter introduces the approach proposed in this work (called

APPRAiSER), which uses visualization resources for supporting

software reuse tasks. The chapter presents its elements, along with

relevant aspects regarding their realization/implementation. It also

presents some related work.

4.1 Introduction

Based in the literature reports and the semi-structured interviews (both described

in Chapter 2) and in the results of the quasi-systematic review (described in Chapter 3),

it was possible to identify a number of desirable features for an approach to support the

implementation of a software reuse program. Furthermore, as discussed in Chapter 2, it

is necessary to provide visualization metaphors for representing reuse data, so that

stakeholders can interact with and manipulate such data to obtain answers and perform

their tasks quickly, besides decreasing the cognitive overload.

Thus, the realization of the third step of the research methodology of this thesis

(presented in Section 1.5) is the proposal of APPRAiSER: an Approach for Perceiving

and Promoting Reuse by Awareness in Software Engineering and Reengineering26

[Schots 2014a] [Schots 2014b].

APPRAiSER aims to assist the execution of some tasks related to software

reuse, both at the organizational level and project level, targeting some of the

aforementioned desirable features. At the organizational level, it focuses on supporting

the management of assets, developers (consumers and producers), projects, and their

surrounding metadata, as well as supporting the monitoring of reuse initiatives. At the

project level, APPRAiSER aims to support the selection of assets to reuse and the

understanding of such assets and their properties, based on information that may be

useful with respect to them.

26 The reason for this name is that an appraiser “has the knowledge and expertise necessary to estimate the

value of an asset, or the likelihood of an event occurring, and the cost of such an occurrence”

(http://www.investopedia.com/terms/a/appraiser.asp), and such definition relates to the goals of this work.

59


The current elements of APPRAiSER aim at supporting mainly the following

reuse stakeholders:

 developers in better exploring software repositories, accessing all the available

information about them in the context of reuse, allowing to make informed

decisions27 regarding the reuse of an asset or upgrading/downgrading an asset

present in a project, among others;

 reuse managers28 in managing and tracking assets reused in the organization,

maintaining the reuse repository with information that allows decision-making

regarding its assets, and managing and monitoring the implementation of reuse

processes, evaluating the effectiveness of reuse practices in the organization; and

 both developers and reuse managers by providing awareness of the reuse scenario

as a whole (for perceiving the effects of reuse in an organization) and allowing to

perform reuse tasks accurately.

APPRAiSER provides reuse awareness to stakeholders through visualization

resources that can help them be aware of the reuse scenario as a whole. In order to

provide support to the identified reuse needs, this work also uses and extends some

academic (Undergraduate and Master) projects advised or supervised by the author of

this thesis. The approach is detailed in the next sections.

4.2 APPRAiSER Overview

APPRAiSER elements compose an environment that collects and correlates

reuse-relevant data, presenting them by means of interactive visualizations, aiming to

provide reuse analytics for software development organizations and help answering

software reuse questions. The concept behind APPRAiSER is broader and more

general, contextualized for the particular scenario being handled in this thesis. Figure

4.1 provides an overview of APPRAiSER elements, followed by a brief explanation of

each of them.

27 An informed decision is a decision made after learning relevant facts (informing oneself) about the

focus of the decision.

28 A reuse manager must manage and monitor the overall reuse program, but instead of being merely a

managerial role, a technical profile is needed to deal with specificities of assets and the reuse repository.

60


Figure 4.1 – High-level elements of APPRAiSER

The information related to absences in research and practice was obtained both

from the semi-structured interviews (reuse-related demands on software organizations)

and the secondary study (deficiencies/absences in existing visualization approaches

geared to reuse). Such information was the input for the construction of Zooming

Browser. This tool is the core of APPRAiSER. It provides visualization and interaction

resources aiming to allow users to gain insights about data and perform reuse tasks

easily and accurately. Section 4.3 describes its functionalities with more details.

In order to visualize low-level information and help identifying proper

visualizations for a given context (not pertaining to Zooming Browser), a tool named

CAVE (Context-Aware Visualization Engine) [Vasconcelos et al. 2014b] [Vasconcelos

2015] was built by a M.Sc. student, in parallel with this thesis, in the context of

APPRAiSER. Through context-awareness mechanisms, it checks for the occurrence of

context situations (based on data values from sources of interest) and notifies the user

about situations that deserves attention, providing visualizations that help analyzing

each of them. CAVE relies on a previous work [Queiroz et al. 2013] that indicates

visualizations that are most suitable for a given focus of representation/analysis.

Both of the aforementioned works ([Vasconcelos 2015] and [Queiroz et al.

2013]) were developed under the supervision of the author of this thesis as an integral

part of APPRAiSER. Because the full contributions of these works go beyond the scope

of this thesis, they are described thoroughly in a master thesis [Vasconcelos 2015] and

in a technical report [Schots et al. 2015], so that only the relevant elements used or

adapted by APPRAiSER are discussed in this thesis. The intersection between these

works and Zooming Browser is described throughout Section 4.3.

61


Reuse tasks usually require a stakeholder to perform some kind of decision-

making. This occurs both in the context of a software project (e.g., the decision to

incorporate or upgrade a library or any reusable asset) and at the organizational level

(e.g., reuse management and reuse monitoring tasks). An informed decision in these

contexts depends on reliable data about software development facts. However, when it

comes to software reuse, most of these data are barely taken into account by (or even

made explicit by tools to) stakeholders, mainly because of the decentralized nature of

their sources.

For supporting the data collection and aggregation, APPRAiSER comprises a

module called Repository Miner, which extracts information from software repositories

(either in the cloud or locally) and delivers it to the APPRAiSER tools. Repository

Miner also persists the collected information in the APPRAiSER database for avoiding

excessive consumption of API-based cloud services. Section 4.4 provides a detailed

explanation of its conception and construction.

In order to develop Zooming Browser, some complementary resources were

needed to ensure the proper mapping, organization, and structuring of the information

related to the development process (especially to the planning phase). There were two

main concerns: (i) choose the visualization and interaction resources to include in the

tool, and (ii) make sure that the chosen elements were actually suitable to achieve the

goals established in the tool construction. In other words, the main concern was to

handle the construction of visualization tools from a software engineering point of view.

Regarding the first concern, the information presented in some dimensions of the

extended task-oriented framework obtained from the secondary study (described in

Section 3.3.3) provided input for the development of the visualization feature model,

one of the APPRAiSER elements. It organizes the concepts and characteristics about the

information visualization domain in terms of visualization and interaction features. This

model helps planning/choosing the features that can be used in visualization tools (and,

particularly, Zooming Browser). The visualization feature model was developed in

collaboration with a M.Sc. student [Vasconcelos et al. 2014a] [Vasconcelos 2015]

[Schots et al. 2015] and is described in Section 4.5.

With respect to the second concern, in order to ensure the meeting of the

established goals through the chosen visualizations, another approach element is the

staged mapping structure of goals and visualizations [Schots & Werner 2015]. This

mapping emphasizes decision aspects that could be overlooked, helping to perform a

62


more focused and cautious decision making towards an anticipated assessment of the

usefulness and effectiveness of visualization tools (and, particularly, Zooming

Browser). The mapping structure is presented in Section 4.6.

The original architecture of the environment implementation (presented in

[Schots 2014a]) included a module for supporting the reengineering of assets, making

refactoring recommendations triggered by software metrics. Such module would be an

integration with Rec4Reuse [Vital & Krause 2013], a work advised by the author of this

thesis at UERJ. However, based on the feedback received when APPRAiSER was

proposed (in [Schots 2014a] and [Schots 2014b]) with respect to its large scope, it was

decided not to focus on the reengineering or recommendation aspects in this thesis,

making it part of a research agenda for future work.

Other elements of the original architecture – ReuseDashboard [Palmieri et al.

2013] and GraphVCS [Pereira & Schots 2011] [Pereira & Schots 2014], supervised (at

UFRJ) and advised (at UERJ) by the author of this thesis, respectively – were

integrated29 to Zooming Browser as visualization perspectives (described in Section 4.3)

instead of being separate tools.

Table 4.1 lists the realization of the identified desirable features by the

APPRAiSER elements and characteristics. They are detailed throughout this chapter.

Table 4.1 – APPRAiSER realization of desirable features

ID30 Desirable feature Realization

RF1

For properly supporting software reuse tasks,

the approach should primarily support

managing source code assets.

 APPRAiSER defines source code assets as

the default kind of reusable asset and

provides native support for them.

RF2

The approach should also support different

kinds of reusable assets (assuming that there is

a corresponding reuse repository with relevant

information about them).

 Repository Miner (its modular architecture

supports the customization of the

identification and extraction strategies in

order to allow other kinds of reusable

assets).

RF3

The approach should provide a way of

collecting information regarding reuse

(consumption), evolution, and discontinuation

of assets, along with the developers involved in

the production and consumption of these assets.

 Repository Miner

29 Both tools were originally developed in Java. Due to the differences in the frameworks used in each

language, it was not possible to adapt the source code, requiring a new implementation. Thus, they served

as inspiration for a JavaScript implementation.

30 RF = “Reuse-Related Finding”, RA = “Reuse-Related Assumption”, VF = “Visualization-Related

Finding”, VA = “Visualization-Related Assumption”.

63


ID30 Desirable feature Realization

RF4

The approach should help identifying potential

interested parties of an asset based on reuse

data and notifying such parties about changes in

the status of the assets.

 Repository Miner
 Zooming Browser (Metadata Exploration

perspective)
 APPRAiSER server

RF5

The approach should provide a reuse repository

for the organization, or integrate with an

existing one, that allows potential consumers to

obtain reusable assets and relevant information

about them.

 [Communication with] Nexus Repository

(organization-specific instance)
 Integration with Maven Central (through

the Repository Miner)

RF6/

VA1

The approach should present concise

information that can help stakeholders in

establishing and monitoring the progress of

reuse initiatives in the organization, through

mechanisms that provide adequate awareness of

the reuse scenario. [Reuse] managers need

support for analyzing/monitoring the reuse

scenario as a whole in an organization, with

high-level information that can be useful for

decision making, so that they can promote

actions not only to stimulate reuse, but

especially to mitigate potential barriers for

performing reuse in their organizations.

 Zooming Browser (all perspectives,

especially the Dashboard31)

RA1

The approach should provide mechanisms with

different perspectives to support each

stakeholders’ needs related to reuse.

 Zooming Browser (its different

perspectives are suitable for different

stakeholders)
 CAVE32 (for providing additional

information on the assets’ low level

information)

RA2

In order to minimize cultural barriers and allow

all stakeholders to become committed with

reuse initiatives, there should be a strategy for a

gradual introduction of the approach

mechanisms, avoiding cognitive overload.

 APPRAiSER tools as a whole
 Recommendations on the use of

APPRAiSER in an organization

RA3/

VF4

In order to show relevant information about the

reuse scenario as a whole, particularly

providing a better perception of the assets’

stability and quality, the approach should

collect data from different kinds of source,

integrating information from reuse repositories,

version control repositories, and change control

(bug tracking/task manager) repositories. The

data sources of the approaches are usually the

source code of a program and databases.

Although many assets have additional data

available online, such data are usually

underused, underexplored, or overlooked, not

combined to provide useful information.

 Repository Miner (especially its integration

with version control and issue tracker

repositories)

31 This perspective is a new implementation of the aforementioned ReuseDashboard.

32 The role of CAVE in the context of this thesis refers to the Low-Level Data Representation perspective,

described in Section 4.3.2.4.

64


ID30 Desirable feature Realization

RA4

The approach should handle a large amount of

information through adequate abstractions and

interaction techniques.

 Zooming Browser visualization metaphors

and interaction resources
 CAVE

RA5

The approach should provide the option of

tracking reusable assets (and projects), both

open source and developed by the software

organization.

 Repository Miner (taking into account both

cloud and local repositories)

RA6

The approach should integrate with and collect

information from version control repositories

for suggesting assets that occur in more than

one project. This allows a later evaluation for

their inclusion on the reuse repository.

Collecting usage data and properly identifying

producers and consumers help support such

decision.

 Repository Miner (especially its integration

with version control repositories and its

identification strategies)

VF1

The approach should take into account core

elements in the reuse scenario (assets,

developers, and projects) and data related to

them.

 Repository Miner
 Zooming Browser (Metadata Exploration

perspective)

VF2

The approach should make use of evolution

information about reusable assets, so that their

development history can provide useful insights

on their maintenance and improvement.

 Repository Miner
 Zooming Browser (History perspective)

VF3

The approach should present information

available from reuse repositories that can be

relevant and helpful for taking reuse decisions.

 Zooming Browser (Metadata Exploration

perspective)

VF5

The approach should ensure that the selected

visualizations meet the goals that led to the

construction of its visualization tools.
 Mapping structure

VF6

The approach tools should use responsive

design whenever necessary (depending on the

stakeholders’ conventional device) in order to

be compatible with different media, such as

computers, tablets, and smartphones.

 Zooming Browser implementation

technologies (HTML + CSS + JavaScript)

with responsive design (for developers and

reuse managers who need to present results

for other stakeholders)
 CAVE implementation technologies

(HTML + CSS + JavaScript) focused on

desktop environments (for developers)

VA2

The data to be visualized should meet the

representation constraints associated to the

corresponding visualizations and use a generic

representation in order to be reusable between

different visualizations.

 Visualization feature model (provides the

features and constraints)
 Repository Miner (uses the JSON format)

VA3

The approach should take into account the

characteristics and context information of the

data, intended for a proper choice of

visualization elements.

 Visualization feature model (organizes

visualization features according to their

properties)
 CAVE

It is important to emphasize that the approach itself is not enough to solve the

problems described in Table 4.1. Instead, it provides some support (in different levels)

for the listed needs.

65


It is known that there are several kinds of reusable assets. However, as stated in

Section 2.5.3, using source code as reusable assets makes the benefits arising from reuse

more noticeable by organizations. Moreover, it can be noticed that reuse of source code

artifacts is still on the mainstream of software development [Schots & Werner 2013]

[Schots & Werner 2014a]. Thus, APPRAiSER tools currently focus mainly on object-

oriented source code artifacts (meeting RF1), including frameworks and libraries,

assuming that they are packaged somehow (i.e., in the form of components that are

provided to be reused).

The next sections present more details on each of the APPRAiSER elements,

indicating the way it handles each of the presented desirable features.

4.3 Zooming Browser

Nowadays, developers write less code and consume more reusable code.

Although software reuse has become present in the daily routine of software developers

(yet mostly in an ad-hoc or a pragmatic way, as stated previously), it is central to

consider the importance of reuse awareness, i.e., knowing what is going on in the reuse

scenario. It helps deciding whether a given asset should be reused, or communicating

problems identified in any kind of reusable asset to its producers and consumers, among

other benefits. However, achieving reuse awareness is challenging, especially because

of the lack of tools to support this purpose.

The Zooming Browser tool [Schots 2014a] [Schots 2014b] aims at providing

reuse awareness to support reuse managers and developers in performing reuse-related

tasks, both in the context of a software project (e.g., the decision to incorporate or

upgrade a library or any reusable asset) and at the organizational level (e.g., reuse

management and reuse monitoring tasks). Zooming Browser provides basic reuse

information along with other information that supports reuse awareness, enabling

stakeholders to quickly search, navigate, and explore the contents of the reuse repository

and its surrounding elements.

Being an integral part of APPRAiSER, Zooming Browser is composed by three

core elements (assets, developers, and projects) and the relationships between these

elements (meeting VF1), as shown in Figure 4.2.

66


Figure 4.2 – Core elements of Zooming Browser [Schots 2014a]

The role of each element in Zooming Browser is described as follows:

 Assets are the core of software reuse. They provide means of solving a problem

without going from scratch. They are developed by a producer and are expected to

be reused by consumers in software projects.

 Developers can be divided into two groups – consumers (the ones who reuse assets)

and producers (the ones who develop reusable assets) –, but a developer can be a

consumer and a producer at the same time. It is relevant to know their relationship

with the assets in order to notify them about status changes or ask for their help in

case there are problems with reusing an asset.

 Projects make the bridge between assets and consumers. A consumer can only reuse

an asset in the context of a software project. The project characteristics may help

understanding how and why an asset was reused, and this information may be useful

for consumers who do not know how they can reuse a given asset.

These core elements and their relationships drove the selection of some

questions related to software reuse. These questions are listed in Appendix A. Some

representatives are as follows:

 Which [versions of] assets have ever been reused?

 How often are [versions of] assets reused over time?

 Which projects have ever had an asset included (i.e., contain at least one reusable

asset in their development history)?

 Which consumers reused this asset [version]?

 Which producers contributed to the development of this asset [version]?

 Among the reported bugs, improvement suggestions, or feature requests related to

this asset [version], are most of them fixed or open?

 Which assets were reused by which consumers in which projects?

67


Zooming Browser aims at helping to answer these questions, among others, by

means of its visualization and interaction resources. The next subsections present the

design principles applied to Zooming Browser, the employed visualization perspectives

and their characteristics, and some implementation aspects of the tool.

4.3.1 Design principles

Zooming Browser follows some design principles, i.e., some guidelines that help

improve viewers’ comprehension of visually encoded information [Agrawala et al.

2011]. Instead of being strict rules, they are considered “rules of thumb” that might even

oppose and contradict one another, describing how visual techniques affect the

perception and cognition of the information in a display [Agrawala et al. 2011].

The design principles presented for Zooming Browser were extracted from a

summarized list in a previous work [Vasconcelos et al. 2013], in addition to other

broadly used principles derived from literature sources and visualization practice. They

are presented in Table 4.2 (along with their sources), and their realization is described

throughout the remainder of this section.

Table 4.2 – Zooming Browser design principles

ID Design principle Description

DP1
Provide an overview of an entire

collection [Shneiderman 1996]*

Visualizing the whole surrounding of a selected item

allows understanding the context of an item and

increases the comprehension of its current situation.

DP2

Provide a geometric or semantic

zoom mechanism on items of

interest [Shneiderman 1996]

[Buering et al. 2006]*

Zooming in or out is an alternative to reveal more

details of an item or put it in perspective with its

context, respectively.

DP3

Provide a feature to filter out

items that are not of interest

[Shneiderman 1996]*

For large volumes of information items, it may be

necessary to show only what is relevant to a context.

DP4

Enable details-on-demand to get

particularities of selected items

[Shneiderman 1996]*

It is convenient to exhibit details of items as they are

selected. A focus area should have methods to reveal

its content according to the user interaction.

DP5

Present relationships among

items [Shneiderman 1996] [Card

et al. 1999] [Chen 2006]

Relationships may reveal important details about

items and their context.

DP6
Keep a history of actions

performed [Shneiderman 1996]

The comparison of information in a view may need

performing repetitive actions; a history would store

such actions to speed up interaction and, therefore, the

analysis. The user should be able to navigate easily

through the different perspectives and views, with the

option of going back to a previous state. To this end,

the tool must “memorize” the flow of information and

keep track of it.

68


ID Design principle Description

DP7

Adapt display scale when the

data set is dynamically increased

[Robertson et al. 2009]

In a dynamic view, the data set can automatically

increase, and a fixed display scale becomes

inappropriate to understand the visualization,

requiring automatic adjustments, such as adapting its

information layout to reveal more or less information

according to the display size.

DP8

Use colors or texture coding,

icons, and sizes to distinguish

types and characteristics of items

[Card et al. 1999]

Different colors and icons can highlight the diversity

of data in a view, thus increasing user comprehension.

Sizes bring the assumption that items with greatest

size are of greatest interest, thus this attribute requires

some handling or user control to be used properly.

DP9
Maintain data order [Card et al.

1999] [Chen 2006]

For improving comprehension, the data must be kept

ordered according to an established parameter, unless

the user interacts with the view to change it.

DP10

Avoid substantial display

changes while data are updated

and provide appropriate smooth

transitions [Robertson et al.

1989] [Card et al. 1999]

Fast updates in the way data are displayed may

increase both difficulty and time to perform this task.

Simply showing the beginning and ending states

without an animated transition may cause users to

misinterpret object transformations. Thus, transitions

between visualization elements should be smooth,

favoring the immersion flow and avoiding user

disorientation. The real-time nature of the interaction

process requires the visualization system to use some

sort of scheduling mechanism.

DP11

Provide quick responses to the

user queries or interactions

[Spence 2001]

The response time for interaction requests must not

hamper the user immersion flow, i.e., it should not

affect the user experience with the visualizations.

Quick responses to interactions allow fast comparison

of data, improving the quality of analysis results.

DP12

Include metadata describing the

meaning of the visualized data

[Card et al. 1999]

Metadata allows the comparison of values and is

important to improve the interpretation of a view.

DP13

Provide a multi-perspective

environment [Wu & Storey

2000]33

In order to support each stakeholders’ needs

performing specific tasks, it is advisable to distribute

visualization metaphors into different perspectives, so

that only the necessary information is presented for

performing the task. In multi-perspective views,

stakeholders use a main view for general

comprehension tasks and, in certain contexts or

activities, make use of auxiliary views for additional

exploration tasks.

DP14

Take into account the

characteristics of data for a

proper choice of visualization

elements34

The mismatch between the data characteristics and the

visual abstraction capabilities of representing them

may potentially lead to misinterpretations of data.

* These principles are part of the “visual information seeking mantra”, proposed in [Shneiderman 1996].

Such mantra is a basic principle that summarizes visual design guidelines: overview first, zoom and filter,

then details-on-demand. They also help meeting RA4.

33 The realization of this design principle meets RA1.

34 The realization of this design principle meets VA3.

69


These design principles were taken into account for the definition and

implementation of the visualization perspectives, described as follows.

4.3.2 Visualization perspectives

Zooming Browser is composed by a set of interactive perspectives (meeting the

design principle DP13 for a multi-perspective environment), which are navigable and

keep history of interactions among each other (DP6). In order to meet the design

principles DP8 and DP14, the following actions took place:

 The choice of the visualization elements (visualization techniques and interactions)

that compose the perspectives uses the visualization feature model (Section 4.5) as a

basis.

 This action was reinforced through a mapping between goals and visualizations

(presented in Appendix A and discussed in Section 4.6).

 The choice of charts to be displayed follows the recommendations identified in a

study performed previously [Queiroz et al. 2013] [Schots et al. 2015], so that the

focus of representation/analysis helps to obtain insights quickly and more easily.

Appendix A presents more details on the mapping between the chosen

elements/charts and the mapped data. The following subsections present the

perspectives that compose Zooming Browser and their characteristics.

4.3.2.1 Dashboard

The Dashboard perspective provides a “big picture” of what is happening in the

context of the reuse scenario (DP1). It is inspired in ReuseDashboard [Palmieri et al.

2013], a previous work originally comprised by APPRAiSER. However, as mentioned

in Section 4.2, it was necessary to make a new implementation in Zooming Browser as

a visualization perspective, integrating it with the other perspectives.

For communicating the progress of reuse initiatives in a concise and effective

way (meeting RF6 and VA1), the Dashboard perspective makes use of visual analytics

concepts and practices [Keim et al. 2008], in order to make it informative and

actionable. The displayed information aims to generate insights to support and guide

reuse managers in decision-making and stimulate developers in keeping up with reuse

practices. In this sense, Dashboard can also be seen as a motivational tool, aiming at

stimulating the engagement of stakeholders, providing high-level, summarized

information about the core elements of APPRAiSER.

70


In a study conducted by Treude and Storey, developers were often unaware of

some of the settings available in their tool, motivating the creation of “advanced default

dashboards” [Treude & Storey 2010]. In the design of Dashboard, a mapping was

performed to identify the data that would be more relevant to present as default. The

main criterion was the displaying of information that summarizes the reuse scenario as a

whole instead of data that cannot be interpreted quickly and would require further

analyses. Appendix A presents more details on the mapping and the chosen charts.

Figure 4.3 presents the default view35. The bar charts highlight the consumers

who reuse assets more often, the producers who develop reusable assets more often, and

the projects that contain the largest number of reusable assets. The pie charts display the

assets most often reused and, by selecting a consumer, the assets reused by such

consumer (with the number of reuse occurrences) (DP4, DP5). A line chart depicts how

often some assets are reused over time.

Figure 4.3 – Dashboard’s default view

35 The data presented in these charts are only for illustration purposes. They do not reflect the reality of

any real developer (producer/consumer), project, or asset. Although the names used were inspired in

actual developers/projects/assets, the displayed data associated to them are by no means representative of

real life.

71


Bar charts present the data sorted (in descending order) by the bar size in order

to provide a better understanding of the underlying information and detect outliers

easily (DP9). For a consistent interaction pattern, changes in one element/view are

propagated to the associated elements/views. Thus, when a given information is selected

(e.g., a bar from the bar chart), the other views/charts update their state to reflect the

selected data (e.g., a pie chart). This allows for a better exploration of the relationships

between the data (DP5). Besides, transitions occur smoothly to avoid user disorientation

(DP10). Figure 4.4 shows the result of hovering a slice of the pie chart.

Figure 4.4 – Dashboard’s view after hovering a slice of the pie chart

In this figure, it can be noticed that the consumers, producers, and projects

related to the selected asset remain in the chart, while the other elements were filtered

out. Besides, the consumer who most reuses assets has not reused the selected asset in

the monitored projects, and such asset was reused in all 7 “top” projects monitored by

Zooming Browser (i.e., those that contain more reusable assets, as shown in Figure 4.3).

Based on this set of information, it is possible to (i) identify which organization

members are more experienced in reusing the asset (in case another member has

difficulties in doing so), (ii) define which members could be allocated to a project that

72


requires knowledge on such asset, (iii) decide which projects should be better analyzed

in order to understand how to reuse the asset, among others.

Since dashboards are intended to provide information at a glance and to allow

easy navigation to more complete information [Treude & Storey 2010], the Dashboard

perspective allows filtering (DP3) and drilling-down (DP4) from its overview

information (DP1) to the Metadata Exploration perspective (presented in Section

4.3.2.2). This matches the “visual information seeking mantra” [Shneiderman 1996].

The Dashboard view is also composed by a matrix visualization of a reuse map

(showing which consumers reused which assets in which projects) (DP4, DP5). The

reuse map aims to provide complete, yet summarized overview about the reuse scenario

in the organization. Figure 4.5 presents a screenshot of it, showing the reused assets in

the intersections between consumers and projects.

Figure 4.5 – Zooming Browser Reuse Map

4.3.2.2 Metadata Exploration

The Metadata Exploration perspective delivers information that is more specific

about the core elements of Zooming Browser (DP12). Most of the questions established

for APPRAiSER can be answered through this perspective. Inspired on Shneiderman’s

73


“visual information seeking mantra” [Shneiderman 1996], it provides an overview of

the entire collection of each core element (according to DP1), with interactions that

allow to zoom in on items of interest (DP2) and filter out uninteresting items (DP3),

then enabling to select an item and get details when needed (i.e., on demand) (DP4).

The main visual abstractions employed in Metadata Exploration are bubble

charts. These are presented along with additional visualizations and/or interaction

options for enriching the analysis to be performed by the user. Selection and filtering

are largely applied for navigating throughout the different levels of information.

Besides, the selection history is displayed visually, allowing the user to go back to a

previous stage (DP6).

The main interaction flow starts by selecting one of the core elements (assets,

developers, or projects) (meeting VF1). For example, if one chooses the assets option,

the Metadata Exploration shows all the available assets to the user, with options to

apply filtering criteria to the elements (e.g., show only assets that have been reused). By

selecting a particular element (in this example, a particular asset, say “Metrics2”), all

the other elements (assets) are filtered out, the selected element gains focus, and

contextual items related to it appear around it – using a “Swiss Army knife” metaphor –

to depict the additional information (DP5) available about such element (meeting VF3).

Contextual items vary according to the type of core element, and different

actions can take place, depending on the kind of contextual item selected. For instance,

when the contextual item “Consumer who reused this asset” is selected in the context of

the asset “Metrics2”, another bubble chart appears displaying the solicited information.

Each visual attribute in the visualizations has a meaning, as described in the mapping

presented in Appendix A. In this context, each bubble represents a consumer who

reused the asset “Metrics2”, and the size of the bubble indicates the number of reuse

occurrences. This information presented visually can point to a potential interested party

to be notified about changes in the status of the reused asset (meeting RF4).

Another result of selecting a contextual item is the transition between

perspectives. The selection of the “Release History” contextual item triggers the History

perspective (described in Section 4.3.2.3). Contextual items whose information is not

available are visually de-emphasized (i.e., displayed with low opacity) to depict that.

Additional visualizations may appear according to the contextual items selected.

Akin to the Dashboard perspective, the Metadata Exploration perspective meets

the criterion for smooth transitions (DP10), so that the user does not get lost or confused

74


when/while the view changes. Figure 4.6 depicts an example of navigation flow, from

the selection of one of the core elements to the detailed information about it.

Analogously to the asset core element, the developer core element shows both

consumption and production information regarding the developer (e.g., projects in

which the consumer reused assets, development collaborations in asset production etc.).

The project core element, in turn, brings information about consumers who reused

assets in this project, assets reused in the project, amongst others (DP5).

Figure 4.6 – One of the possible paths on the Metadata Exploration navigation flow

4.3.2.3 History

The History perspective presents data related to the evolution of the core

elements, using coarse-grained and fine-grained representations (meeting VF2). This

perspective is divided into two main views: the VCS Development History Graph and

the Release History Graph.

The former is inspired in GraphVCS [Pereira & Schots 2011] [Pereira & Schots

2014], a previous work that aims at visualizing the structure and metadata of VCS

repositories. The asset development history is based on its associated VCS repository (if

any). The VCS repository structure is represented through visual graphs, in which each

commit operation and project milestones (tags) are depicted as nodes, while edges

denote the main line of development (trunk/master) or its derivations (branches)

75


composed by the nodes (DP5). It is possible to perform panning and zooming operations

from the overview (DP1, DP2), as well as to drill-down to a given version (DP4).

The Release History Graph, in turn, aims at depicting releases of an asset (also

referred to as asset versions) or releases of a software project that contain a reusable

asset. The release history information takes into account the semantic versioning36

commonly used in asset development projects. Such information is obtained from

reuse/release repositories (e.g., Maven Central or Nexus). The Release History Graph

allows filtering by collapsing/expanding the releases (DP3), and presents tooltips with

information related to the release (DP12).

The metadata information depicted in the Metadata Exploration perspective

related to an asset (or project) development history can be drilled-down (DP4) to the

History perspective. For instance, for the VCS Development History Graph, a graph

visualization of the project’s history is presented, whose nodes are highlighted (DP3)

according to the kind of information solicited in the Metadata Exploration perspective

(e.g., highlighting project versions in which an asset is present, for understanding the

context in which it was reused).

Figure 4.7 illustrates a hypothetical scenario in which it is possible to observe

the moment when an asset was included in the repository (indicated by the “+” sign). It

can be noticed that it was added during a bug fix (depicted by the label in the branch)

and was later integrated to the main development branch (“master” label). It is not

possible to assess (based solely on these data) whether it was fully effective to solve the

project needs – this requires a drilling-down operation (potentially to the raw format of

the files involved in the commit, in this case) in order to obtain additional details. Thus,

this view serves as a guidance indicating where to seek for more information.

Figure 4.7 – History perspective (VCS Development History Graph view)

36 http://www.semver.org/

76


The Release History Graph focuses solely on releases of assets/projects, and

shows the frequency of releases and the more up-to-date ones, so that one can be aware

of them and consider potential upgrades. The releases are displayed hierarchically

(DP5), according to their semantic versioning identification. This information can be

extracted from reuse repositories or VCS repositories. Figure 4.8 presents the Release

History Graph of the JUnit project (stored in the Maven Central repository).

Figure 4.8 – History perspective (Release History Graph view)

In order to ease the location of project information, a search tool is integrated

with the visualization features, allowing the filtering of the displayed information

(DP3), using smooth transitions (DP10). This facilitates the exhibition of details on

demand, and allows for maintaining context without losing focus of the task. The search

criteria include date, version ID/number, commit messages, author, and asset/file.

4.3.2.4 Low-Level Data Representation

The choice of the visualization abstractions and techniques for representing the

data, as well as the interaction techniques to be employed, heavily depends on

77


contextual information. Such information includes the nature of data, the visualization

constraints, and the task to support (e.g., selecting the most suitable asset for a project

from a set of reusable assets) [Queiroz et al. 2013] [Vasconcelos et al. 2014b].

In this sense, CAVE (Context-Aware Visualization Engine) [Vasconcelos et al.

2013] [Vasconcelos et al. 2014b] [Vasconcelos 2015] is a mechanism that displays

different visualization metaphors according to the contextual information of the data

and the task, which defines the focus of representation (DP14). It takes as input a

context-aware feature model [Fernandes et al. 2011] that maps context information and

context rules that activate context situations.

The activation of context situations leads to the selection of features from the

visualization feature model (described in Section 4.5), also used as input. The

association between context situations and visualization features is expressed in CAVE

in terms of composition rules, defined as follows:

R_X – <Context Situation> implies <Visualization Feature(s)>

The integration between CAVE and Zooming Browser occurs in the following

way: Zooming Browser allows drilling-down to a visual representation of low-level

information (e.g., the assets’ structure) or its raw format (source code, document etc.)

(DP4). Such visual representations are provided by CAVE: the tool is invoked by

Zooming Browser to depict elements according to the available low-level data and user

tasks. It extracts information from these elements to depict them from different

granularity levels, using different visual abstractions.

CAVE is composed by three modules [Vasconcelos 2015]. The Context

Manager checks the information, situations, and rules from the context model used as

input and, according to the data present in the data source, it points out situations that

are active at a given moment. The Context Information Connector presents the context

information supported by the tool, with the query mechanism responsible for

determining the information value. Finally, the Visualization Connector performs the

selection of the visualization elements defined in the active context rules (meeting

RA4).

One of the context-aware CAVE features is the adaptation of the visual layout

based on the data characteristics (e.g., according to the amount of data being displayed,

which is one of the context rules) (DP7). For not hampering the user analysis, a

notification is shown at the top left part of CAVE to indicate that a new context

situation is active.

78


The reasons behind this notification mechanism are the following: (i) the user

may be analyzing an outdated set of data, (ii) the user must be able to choose whether

the switching of visualizations should occur, and (iii) visualizations should not change

abruptly, otherwise the user would get lost in the analysis process (DP10).

Figure 4.9 and Figure 4.10 show the notification mechanism implemented in

CAVE and the visualization of the structure of a project, respectively.

Figure 4.9 – CAVE notification of an active context situation (top left part) (adapted

from [Vasconcelos 2015])

Figure 4.10 – CAVE visualizing a project structure with Code Flowers37 (each bubble

represents the size of a class, in terms of lines of code (LOCs)) [Vasconcelos 2015]

CAVE allows analyzing and comparing properties of the reusable assets. When

more than one asset fits the developer/project needs, this feature can support the

decision-making regarding which one should be reused (with the support of the other

Zooming Browser perspectives, which depict other relevant metadata). With respect to

the suitability of visualizations, a research was conducted for correlating types of task

and types of visualization in terms of representation constraints [Queiroz et al. 2013]

[Schots et al. 2015]. More details about CAVE can be found in [Vasconcelos 2015].

37 Based on the D3.js implementation available at https://github.com/fzaninotto/CodeFlower.

79


4.3.3 Implementation details

Figure 4.11 depicts an overview of the Zooming Browser tool, along with its

interactions with other APPRAiSER elements38. For its execution, it is necessary to use

a web browser (to access both organization-independent and organization-specific

versions) and an installation of the Node.JS application server (to instantiate the tool to

a particular organization).

Figure 4.11 – Zooming Browser overview

Zooming Browser was integrated to APPRAiSER using a client-server

architecture, with a thin client integrated through the REST architectural style39

[Fielding 2000], with some characteristics of the presentation-domain-data layering

modularization40. The server-side architecture of Zooming Browser has some

similarities to the one presented in [Gousios et al. 2014], consisting of two loosely

coupled parts: a web server (responsible for handling CRUD requests from the client

side) and the APPRAiSER server (that performs the data extraction and persists them on

38 This figure only presents the main elements relevant to this section. For a better understanding of all the

APPRAiSER elements, please refer to Figure 4.1.

39 REST is a hybrid style derived from several of the network-based architectural styles; by separating the

user interface concerns from the data storage concerns, portability of the user interface is improved across

multiple platforms and scalability is improved by simplifying the server components [Fielding 2000].

40 http://martinfowler.com/bliki/PresentationDomainDataLayering.html

80


the APPRAiSER database). The APPRAiSER server routes requests made by the web

server, redirecting to a Node module that is able to handle them41.

On the web server side, a response listener handles incoming results (one for

each repository in each request) and updates the web client. The provided responses can

be either a message (informative of error, success, or warning) or a JSON (JavaScript

Object Notation)42 object with the solicited metadata. In fact, the data interchange

between most of the APPRAiSER elements uses REST and JSON, since they are

lightweight solutions. Besides, the JSON format allows reusing data in different

visualizations.

The technology chosen for the server is Node.JS43, an event-driven server-side

JavaScript environment that is recommended as a backend for single-page web

applications (as in the case of Zooming Browser). Since it processes JavaScript at the

server-side, implementation details are hidden from the client, and both client and server

use the same programming language. The server also triggers notifications about

changes on the status of the assets to the registered interested parties (meeting RF4).

The Zooming Browser visualizations and interactions are implemented with the

D3.js [Bostock et al. 2011]44 framework, a JavaScript library that provides useful

visualization components, being a data-driven approach to manipulating cross-platform

DOMs (Document Object Models). JavaScript-based selections provide flexibility on

top of CSS, as styles can be computed dynamically in response to user events or

changing data, allowing smooth transitions (as specified in DP10). D3.js has also shown

improved scalability among browser-native tools [Bostock et al. 2011], also allowing a

faster interaction response time (helping to meet the design principle DP11).

All the scripts for generating the visualizations in APPRAiSER are implemented

with this framework. D3.js is also used for generating dynamic elements on the

Zooming Browser page (e.g., the element registration forms according to the option

selected). The transitions between perspectives use the Reveal.js framework, which

provides automatic scaling and orientation according to the device being used for

interacting with Zooming Browser (DP7). Besides, some reused scripts were already

41 More details on this implementation aspect can be found in Section 4.4.2 (which presents the

Repository Miner implementation).

42 http://json.org/

43 https://nodejs.org/

44 http://d3js.org/

81


compatible with responsive design directives, and some adjustments were made in

Zooming Browser in order to meet one of the APPRAiSER desirable features (VF6).

4.4 Repository Miner

Providing relevant information about reuse integrated from different sources can

result in several benefits to software organizations, e.g., assist reuse managers in

tracking reuse occurrences and maintaining the reuse repository, support potential

consumers by giving more confidence in deciding whether or not to reuse/upgrade an

asset, and provide producers with an overview on how their assets are being reused.

The Repository Miner can be seen as a framework that integrates different

sources of data (according to RA3 and VF4) for the purpose of gathering information

about assets, developers, and projects (meeting RF3 and VF1), as well as tracking reuse

assets for proper reuse management (meeting RA5). It is responsible for mining

different kinds of software repositories, both organizational (internal) and external,

searching for different kinds of reuse-related information, which is delivered to

APPRAiSER and its tools [Schots 2014a] [Schots 2014b].

4.4.1 On the sources of data

A subset of data sources related to a software project was selected for analysis,

aiming to assess whether and how they could help with providing relevant information

to support the execution of some reuse tasks (and thus be integrated to APPRAiSER).

Because reusable assets play the major role in reuse, the first considered source

is the reuse repository. Reuse repositories contain the release history of a given asset

(i.e., its different versions over time) and important metadata about them (e.g., their

descriptions, licenses, dependencies, among others), supporting the maintenance of

reuse initiatives.

APPRAiSER can handle both in-house reuse (also known as “internal reuse”)

and reuse from external sources (also known as “external reuse”), based on APIs

developed for interacting with the repositories, if available. An organization can reuse

both an asset from an external source (e.g., the Log4j45 component) and an asset

developed internally (e.g., a “FormManager” component). The metadata of each asset

are extracted from the corresponding repository (either internal or external).

45 http://logging.apache.org/log4j/2.x/

82


Another important source of information is the VCS repository of each software

project. Projects’ evolution information (e.g., commit authors, dates etc.) can be used

for identifying reuse occurrences, i.e., the presence/inclusion/removal of assets (present

in a local or remote reuse repository) in/from the projects’ VCS history. This indicates

how such assets are reused, and can help suggesting assets that are frequently reused in

other projects developed by the organization to be incorporated in the current project.

The latter assets can be candidate to the organization’s reuse repository (depending on

organizational criteria) (meeting RA6 and VF2), in case they were not yet in such

repository.

APPRAiSER also collects information from the project history of a reusable

asset, aiming to provide the “big picture” of its development, allowing to assess assets’

stability and frequency of updates (i.e., how active the development community is).

Project history information and metadata can be obtained from both the

organization’s portfolio and selected open source projects. The reasons are twofold. In

the beginning of the definition of reuse practices, it is unlikely to find enough

information about an asset (that encourages its reuse) on local configuration

management systems. On the other hand, experiences from the organization itself (even

if a reuse-based process has not yet been established) are essential for promoting reuse.

Although these sources of information complement each other, they are handled

separately since they allow for different kinds of insight. The fact that an asset is widely

reused in open source projects may give more confidence in reusing it, while an asset

reused in the organization’s projects (successfully or not) gives a clue of the chances of

success/failure based on such previous experiences.

Finally, issue tracker/task manager repositories provide information that

complements the VCS information, including issues that affect reusable assets.

Reported issues related to an asset (e.g., problems and feature requests) are relevant to

assess the asset’s stability and quality, while issues assigned by or to producers can help

noticing how they are maintaining their assets.

By mining and combining these sources of information, one can find

correlations and identify facts that may be of interest to reuse managers and developers

(helping to identify interested parties, as established in RF4).

4.4.2 Implementation details

An overview of Repository Miner is presented in Figure 4.12.

83


Figure 4.12 – Repository Miner overview

The data sources discussed in Section 4.4.1 are present in both cloud and

organization-specific repositories (according to RA5). Each of these sources is mined

based on a data extraction strategy, i.e., a script that defines how the data from each

source is organized, and how it must be parsed to be later added to the APPRAiSER

database. There is one miner for each repository (not depicted in Figure 4.12), as

follows:

 The Reuse Repository Miner collects links to assets and their metadata from reuse

repositories, in addition to social information regarding producers (organization,

developers, contact information, website etc.);

 The VCS Miner captures project information from VCS repositories, such as

commits, authors, dates, and so on; it also collects information about projects in

which a particular reusable asset was consumed (on demand) and about consumers

who reused them in such projects;

 The Issue Tracker Miner collects issues and their metadata (status, priority, start and

due date, interested parties etc.) from issue trackers.

For detecting the existence of reusable assets in VCS repositories, there is a

script that implements an identification strategy, which is asset-specific (meeting RA6).

Historical data on previous reuse occurrences (commit data) are extracted in a

semiautomatic way. Assets are identified automatically, but the project manager or a

84


project developer must (i) confirm that the identified asset is indeed a candidate to enter

the reuse repository (to be assessed by the reuse manager), and (ii) indicate or confirm

the version of this asset. Note that some identification strategies work better for assets

whose reuse did not required changes to its internal structure, and may benefit from

projects that follow a default structure.

If the project history is stored in an organizational VCS, the Repository Miner

obtains metadata and information about reuse history from it. Developers who host their

projects in online platforms (such as GitHub) can also obtain such metadata and

information from it according to what the platform provides via API.

The default (built-in) identification strategy module implemented in the

Repository Miner also uses the reuse repository in an attempt to match assets reused in

projects and reusable assets present in the repository. Mismatches must be corrected

manually if necessary.

Finally, the extracted data are sent to the data management module, which

persists them in the APPRAiSER database. As shown in the figure, Zooming Browser

can also trigger both the identification of assets and the data management modules.

Figure 4.13 presents the information flow between sources of data, the server,

and Zooming Browser, while Figure 4.14 shows the database schema that defines the

data extracted by Repository Miner and stored in the APPRAiSER database.

Figure 4.13 – Information flow between Repository Miner and Zooming Browser

85


Figure 4.14 – APPRAiSER database schema

As regards to the technologies used, Reuse Repository Miner currently uses

Maven Central Repository46 as its main data source in the cloud and Nexus instances for

organizational reuse repositories (meeting RF5). VCS Miner, in turn, currently uses

GitHub47 (for extracting versioning data and metadata from projects versioned in this

platform) and EvolTrack-VCS [Werner et al. 2011] (based on the Maven SCM API48)

for extracting versioning data from native repository implementations (Git, SVN etc.)

46 The Maven Central Repository (http://search.maven.org/) is one of the most well-known examples of

asset repository. There are plugins that provide easy integration with several IDEs. Each Maven asset

contains a Project Object Model (POM) file that summarizes the most important metadata about the asset,

including the address of its version control and issue tracker repositories (if available).

47 The current version of Repository Miner extracts available information from Git repositories that do not

require authentication.

48 Available at http://maven.apache.org/scm/scms-overview.html

86


that are not in a hosting service. Finally, Issue Tracker Miner currently supports GitHub

and Redmine (both cloud-based and organization-specific instances).

Each of the modules mentioned in Figure 4.12 is implemented as a Node.JS

module in separate files. The decision of modularizing the server functionalities adheres

to the principle of separation of concerns, and helps to ease interchanging of modules

when necessary (meeting RF2).

The data that support APPRAiSER are extracted from software repositories by

means of APIs or REST requests. Because the GitHub API imposes limitations on the

number of requests per time interval49, and aiming to improve performance,

APPRAiSER makes use of caching (a strategy adapted from [Gousios et al. 2014]). If

the APPRAiSER database already contains data for the referred core element, then the

APPRAiSER server first asks GitHub if the solicited information was updated since the

last extraction50. If there was no update, no GitHub request is made, and the requested

metadata for this element are extracted from the APPRAiSER database. Otherwise, both

the APPRAiSER database and the information requester are updated with data freshly

extracted from the GitHub API.

With respect to the Maven API, the APPRAiSER server only asks for metadata

about an asset version if they are not available in the APPRAiSER database, since they

are not likely to change. On the other hand, if the metadata are related to an asset,

developer, or project, the APPRAiSER server performs request operations (since it does

not seem to have limitations on the number of requests).

The data formats used in Repository Miner (JSON and XML) are generic, and

supported by several different tools (meeting VA2). Thus, the effort associated to

changing any repository (regardless of being a VCS, reuse, or issue tracker repository)

or a type of asset (e.g., JavaScript files in the NPM repository) is restricted to:

 the communication with the API of the new repository,

 an adaptation on the identification strategy51, and

49 Please refer to https://developer.github.com/v3/rate_limit/ for more information.

50 This command does not count against the request rate limit. For more information, please refer to

https://developer.github.com/v3/#conditional-requests.

51 In principle, the identification strategy can be applicable to any kind of asset that matches a given

pattern, but restrictions apply in terms of the potential number of false positives (e.g., if the reusable asset

unit is a Java class).

87


 the formatting and structuring of data (that must conform to the persistence and

visualization mechanisms), which can be done, for instance, through a wrapper.

Although the Repository Miner is not a “one-size-fits-all” tool, it is believed to

be flexible enough to accommodate other kinds of reusable assets with few extensions

and customizations, assuming that the reuse repository which contains such assets is

able to provide the information expected by APPRAiSER. In other words, the

Repository Miner architecture is loosely coupled, so that the interaction between the

scripts developed in JavaScript can be adapted and interchanged without much effort.

It is known that the kind and amount of information available from local and

external repositories may differ considerably, depending on the platform that hosts such

information. Besides, some fields of information that are not required for some

repositories (e.g., the project description) may have not been filled out.

To overcome this limitation, Zooming Browser’s user interface provides element

registration forms (depicted in Figure 4.15) for filling out information about a core

element (asset, developer, or project), allowing to include information that is only

available locally or is missing from the data sources (e.g., some contact information that

could not be retrieved). Thus, after the extraction process, APPRAiSER allows the end

user to complete any missing information (through Zooming Browser) for storing it in

its database.

Figure 4.15 – Form filled out by the developer; if a Maven URL is provided, the

remaining information is filled out automatically

88


4.5 Visualization Feature Model

There are several visualization elements52 available in both the state-of-the-art

and the state-of-the-practice, but composing one or more visualizations that can

represent everything needed is not a simple task. Since the number of visualization

alternatives keeps growing, it is important to adopt some sort of mechanism for

organizing their features and allowing the selection of the most suitable ones. The

knowledge of existing visualization and interaction features helps to choose only the

necessary features and, ultimately, composing visualizations with less effort.

Feature models are a useful way to represent domain knowledge in terms of the

elements (features), their relationships, and their constraints of use, facilitating the

understanding of such concepts in the domain (meeting VA2). An advantage of feature

models lies on the acceptance of features as an effective “media” supporting

communication among stakeholders [Lee et al. 2002].

A feature model for the information visualization domain can favor building

different views that, regardless of addressing the same kinds of issues, are intended to

support different stakeholders (taking into account their particular analysis

perspectives). This assumption led to proposing the visualization feature model

[Vasconcelos et al. 2014a] as part of APPRAiSER, aiming at providing basic

knowledge on the visualization domain based on its features and their restrictions of

use. Instead of being a prescriptive model (that defines which visualization elements

should be used in a given situation), this model has a descriptive nature. By presenting

the features along with their relationships and constraints, it serves as initial guidance

for reasoning about the available alternatives and choosing features for the creation of

visualization tools that integrate the approach (and potentially other visualization tools

as well, to be built by other researchers and practitioners).

The following subsections present the organization of visualization features

based on a domain analysis carried out to identify different characteristics in the

visualization domain, resulting in the feature model that organizes the findings and

eases the selection of visualization features (meeting VA3).

52 A visualization element is interpreted as a concept that can be used in the context of a visualization

tool, represented by visualization metaphors, paradigms, and techniques.

89


4.5.1 Domain analysis

According to [Braga et al. 1999], the domain analysis consists in the definition

of main domain concepts, standing out similarities and differences among these

concepts in a high abstraction level. During the domain analysis, models are divided

based on main characteristics (i.e., features) of the domain.

The domain addressed in this study refers to information visualization. The

adopted methodology for the analysis is based on three steps:

 an informal literature review for identifying an initial set of visualization and

interaction elements (including the ones identified in a previous work [Oliveira

2011]);

 a quasi-systematic literature review [Schots et al. 2014], used in the context of this

study for confirming the use of the already classified elements and for

complementing the model with new candidates; and

 an evaluation (with experts and intermediate-level researchers in the domain) in

order to validate the findings and complement the model53.

Although the object of investigation of the second step was restricted to software

visualization approaches proposed to support software reuse, such a literature review

enabled to gather initial knowledge from software engineering research. The adopted

data extraction methodology was based on the dimensions of software visualization,

discussed in Section 3.3.2, particularly with respect to the Representation dimension.

The results from the quasi-systematic literature review pointed out interesting

findings as regards to the relevance of visualization elements. For instance, from the

approaches identified in the publications, 6 visualization and interaction elements are

mentioned simultaneously in more than 10 approaches, namely: Selection, Navigation,

Drill-Down, Clustering, Highlighting, and Labeling [Schots et al. 2014]. Such candidate

elements were selected among others as characteristics of the visualization domain.

As mentioned in [Vasconcelos 2015], it is important to highlight that the domain

analysis performed does not aim at being a complete reference for visualization features

applicable to any scenario, since other aspects should be considered, such as the

mapping between a visualization technique and a data set. A cautious analysis is

necessary to define the factors that will define such requirements.

53 Because this is a part of the evaluation of APPRAiSER, this step is described in Section 5.2.

90


4.5.2 Feature model elements

In order to compose and organize the feature model, the Odyssey-FEX notation

[Blois et al. 2006] was used for representing the different types of elements and

supporting the domain analysis process, due to the researchers’ previous knowledge on

its syntax and to its wide-scope representation model.

For better structuring the model, some high-level, conceptual categories were

defined to group similar elements. Although all the elements were identified based on

works that present visualizations, some of them were strictly related to interaction

functionalities on visualizations (Interaction category). Another group of visualization

elements was interpreted as alternatives for presenting different visualizations

(Presentation category). Finally, the third proposed group relates to changing the

exhibition mode (Information Visualization category).

The visualization feature model is a constant work-in-progress and will evolve

as new features are identified or changes in their organization must be updated. Figure

4.16 and Figure 4.17 present the most recent version of the model to date54.

Figure 4.16 – Visualization feature model (presentation and information visualization

features) [Vasconcelos et al. 2014a] [Schots et al. 2015]

54 Due to its composition by many features, please refer to an electronic version (available at

http://www.cos.ufrj.br/~schots/papers/featuremodel.png) for a better visualization.

91


Figure 4.17 – Visualization feature model (interaction features) [Vasconcelos et al.

2014a] [Schots et al. 2015]

The following subsections address only an excerpt of the model, for didactic

purposes. The detailed description of each feature can be found in [Schots et al. 2015].

4.5.2.1 Interaction features

For visualizing data, it is essential to map them into visual representations in a

way that the result is the most intelligible as possible. However, if the user cannot

arbitrarily manipulate a particular visualization, many dataset characteristics may

remain hidden [Few 2009]. Thus, interaction techniques, such as the ones presented in

[Yi et al. 2007], represent an important feature set that allows the user to manipulate the

visual representation for exploring and interpreting the underlying information.

Interaction features are related to actions performed by a user on a view. Figure

4.18 shows some of these features and their relationships. For instance, by selecting the

Zooming feature with its Semantic variant for composing a specific visualization, a user

can zoom in and out, revealing different visual representations and/or details to

information items [Buering et al. 2006] [Cockburn et al. 2008]. In addition, through the

Browsing feature along with its Querying variant, the user can perform searches in order

to organize or restrict the amount of data displayed in a view.

92


Figure 4.18 – Examples of Interaction features

4.5.2.2 Presentation features

Presentation features map the possible ways of showing multiple visualizations.

These features are displayed in Figure 4.19.

Figure 4.19 – Examples of Presentation features

Typically, the software visualization tool has total control on the application/use

of such features on a view, i.e., it is a decision made by the visualization developer

instead of a choice by the user. This is an important difference to a usual interaction

element.

In terms of the presentation mode, the Sequential feature represents a

visualization that displays different views in a sequential order, each at a time. The

Simultaneous feature, in turn, allows presenting multiple views at the same time,

similarly to a dashboard.

93


4.5.2.3 Information visualization features

As regards to general exhibition elements, information visualization features

map visual methods for changing the views. Figure 4.20 presents some of these features.

Figure 4.20 – Examples of Information Visualization features

In order to customize the visual attributes of a visualization metaphor, one must

choose the information visualization features to apply in the development of the

visualization tool. For instance, the Details on Demand feature – with its Drill-Down

variant – reveals details according to the user needs, usually following a hierarchical

structure [Shi et al. 2005]. The Clustering feature, in turn, aims at splitting a large data

set into subgroups based on certain similarity measures to ease the data analysis [Chen

2006].

It is noteworthy that the selection of each feature may impose the selection (or

de-selection) of other features. Thus, besides the features and their relationships,

composition rules supplement the model with mutual dependency and exclusion

relationships [Lee et al. 2002] [Blois et al. 2006].

4.5.2.4 Composition rules

Given the different features in the model mapping to a visualization context, the

selection of a single visualization or interaction element may require or exclude the use

of another element. Thus, composition rules may apply to the visualization concepts,

constraining the selection from optional or alternative features [Lee et al. 2002]. A

composition rule between features is specified as follows:

R_X – <Visualization Feature> requires <Visualization Feature>

R_Y – <Visualization Feature> excludes <Visualization Feature>

94


As an example of relationship between interaction and information visualization

elements, the composition rules R_2 and R_6 present different dependencies between

features. R_2 requires the adoption of the Selection feature every time one chooses the

Drill-Down or the Navigation feature. This is explained by the fact that a typical user

interaction for locating a node in a drill-down method consists of clicking the parent

directory (or subtree) in which a node of interest resides [Shi et al. 2005]. Similarly, the

Navigation needs a method for selecting options and elements in a view. Another

example is rule R_6, which indicates that the selection of the Zooming variant Semantic

requires the use of the Details on Demand feature, given that semantic zoom shows new

details according to the user demand [Buering et al. 2006], i.e., as the user approaches

the visual elements. These rules are described as follows:

R_2 – ((Drill-Down) OR (Navigation)) requires (Selection)

R_6 – (Semantic [Zooming]) requires (Details on Demand)

The proposed composition rules compose the feature model and are subject to

changes and updates (they are not a complete set). The current visualization features and

elements, as well as the explicit relationships between features depicted by the rules, are

described in more details in [Schots et al. 2015] with their literature references. Each

feature is presented in depth in order to ease the interpretation of the visualization

element, with images to illustrate its use whenever possible.

4.5.3 Using the feature model to define Zooming Browser features

The Zooming Browser visualization features were chosen according to (i) the

selection of features believed to be important to help users explore the tool, and (ii) the

adequacy of such features to the data necessary to answer the established questions. An

example of feature selection is presented as follows55. The rationale for selecting some

of the features is based on the excerpt of the visualization feature model presented in

Figure 4.21.

55 The whole set of selected features for each perspective can be found in the mapping presented in

Appendix A.

95


Figure 4.21 – Excerpt of the feature model and the selection of visualization features

Regarding the Presentation feature, there are two possibilities: the views can be

portrayed sequentially (i.e., one at a time, separately) or simultaneously (i.e., multiple

views are displayed at the same time) [Schots et al. 2015]. The former option is usually

employed in dashboard design, which leads to selecting this feature for the Dashboard

perspective of Zooming Browser (presented in Section 4.3.2.1). It is also used in the

Metadata Exploration perspective (shown in Section 4.3.2.2). The sequential

presentation is used for switching between Zooming Browser perspectives and for

transitioning between levels of information (both in the Dashboard and the Metadata

Exploration perspectives).

With respect to the Information Visualization features, the selection of the

Overview feature allows Zooming Browser to provide a general context for

understanding the data set, so that users can gain an overview of the entire collection

[Shneiderman 1996]. It presents a “picture” of the whole data entity that the information

visualization represents [Craft & Cairns 2005] – in Zooming Browser, the data about

assets, developers, and projects. Patterns and themes in the data that may be helpful can

often be seen only from a viewpoint that comprises the whole view; from this

96


perspective, major components and their relationships to one another are made evident

[Craft & Cairns 2005].

The displaying of details on demand (defined as the design principle DP4), in

turn, can be implemented in several ways. The most used feature in Zooming Browser

to this end is the drill-down, which reveals details of the data according to the user

needs that are made explicit through interactions [Schots et al. 2015]. The Dashboard

perspective allows drilling down to the Reuse Map visualization (providing details

about which consumers reused which assets in which projects). The Metadata

Exploration perspective is fully based on drill down interactions. Some visualizations

from the Low-Level Data Representation perspective also employ this feature.

Another variation of details on demand used in Zooming Browser is labeling, to

provide an understanding of the context in which the visualized data appear. However,

labeling each item cannot be done statically on a dense visualization; in this case,

dynamic techniques are advisable, such as interactive tooltips (which are hidden by

default and provide access to additional levels of information when interactively

requested) [Schots et al. 2015]. In the Dashboard and Metadata Exploration perspective,

some items display labels by default, displaying additional information as tooltips when

the user interacts through hovering.

After the choice of visualization elements from the feature model, one can

implement them in a visualization tool. However, before that, it is important to ensure

that the selected elements are suitable for the problem that the visualization tool is

expected to solve. This led to the mapping structure presented in the next section.

4.6 Mapping Structure of Goals and Visualizations

During the development of visualization tools, developers56 recall existing

abstractions trying to find out how to (better) depict the available/necessary data based

on their characteristics. Furthermore, there is a purpose in mind when creating

visualization tools, i.e., there are specific goals to meet. Thus, not only there is the need

to represent data using proper abstractions; this must be made in such a way that it can

help somebody (audience) to do something (tasks). If this premise is neglected, the tool

56 In this context, developers include roles that take decisions in the development of visualization tools

(e.g., requirements engineer, designer, programmer etc.), ranging from the tool goals to the visualizations

to use.

97


will be either useless or not fully meet the needs for which it is created, leading its users

to resort to other sources of information or additional tools.

As stated previously, it is crucial to ensure, among other aspects, that the

visualization tool under development fits the established needs, properly mapping the

data required to achieve the goals into corresponding visual attributes. This is not trivial,

though, given the abstraction gaps to address and the substantial risk of overlooking

important intermediary decisions. Thus, the mapping of goals and visualizations cannot

be made instantly; it must instead be decomposed into stages and performed carefully.

This necessity became more evident during the design of Zooming Browser.

There was an intention to assure that its visualizations would be actually helpful in

answering some reuse-related questions, accomplishing the established goals. To this

end, it was necessary to recognize which tasks users should perform to answer these

questions, which data would be necessary, and how to map the data into the vast

visualization space. While planning its development, some visual metaphors came to

mind, but there was no certainty that they were appropriate and whether they would

effectively help achieving the established goals. This led to the creation of a mapping

structure to guide this process.

The following subsections present the proposed staged set of activities for

mapping user (or organization) goals to the visualizations that can help achieving such

goals [Schots & Werner 2015] (meeting VF5). The purpose of this mapping is not to

enforce a set of guidelines on how to perform each stage, nor to point out what would be

the best visualization for some goal/task/data. Instead, this mapping structure aims at

guiding and encouraging developers to perform a more focused and cautious decision-

making process (not tied to any particular methodology) on each mapping stage,

towards an anticipated assessment of the usefulness of their visualization tools before

evaluating them with the intended audience.

4.6.1 The mapping structure and its application

The structure for mapping goals and visualizations is presented in Figure 4.22.

All the relationships are many-to-many, except between data and visual attributes,

which should be one-to-one to avoid ambiguity, causing user confusion. This mapping

is purposely “open” so that each stage can be accomplished by stakeholders in the most

convenient way to them.

98


Figure 4.22 – Mapping structure between goals and visualizations [Schots & Werner

2015]

During the execution of the mapping process in the context of Zooming

Browser, it was noticed that different strategies could take place: top-down (when goals

are already set and clear), bottom-up (when one wants to find the utility of a set of

visualizations), middle-out (i.e., starting from an intermediary stage towards achievable

goals and assisting visualizations), or meet-in-the-middle (i.e., when top-down and

bottom-up “join” at some point in their executions). The latter applies when there are

goals and visualizations in mind, but some intermediary aspects of the mapping are not

clear and require further reflection and analysis. This was the case of Zooming Browser.

The next subsections present an excerpt of the mapping performed in the context

of Zooming Browser, the driver of this work. The detailed mapping is presented in

Appendix A. For didactic purposes, the mapping is described in terms of the top-down

strategy. The whole mapping will be made available in a website for better exploration.

4.6.1.1 Mapping goals and questions

The mapping between goals and questions has been thoroughly explored in

software engineering [Basili et al. 1994]. It consists of associating questions whose

answers help achieving a goal. A question may support more than one goal, and a goal

usually consists of more than one question. In this stage, the GQM format is not

mandatory, but is advisable.

Some asset-centric questions are used for illustration purposes. They are derived

from PG03, one of the Zooming Browser project-related goals (Decide whether an

99


existing project that already contains a given asset version should upgrade/downgrade

to a newer/older asset version) (presented in [Schots 2014b] and listed in Appendix A).

They are listed in Table 4.3.

Table 4.3 – Mapping between goals and questions

Goal ID
Question

ID
Question

PG03

Qa How often is this asset [version] reused over time?

Qb Which consumers reused this asset [version]?

Qc In which projects was this asset [version] reused?

Qd

Which projects contain this asset [version] at some point of the

development life cycle but do not contain such asset [version]

afterwards?

Qe Which projects contain, among their releases, [a version of] this asset?

Qf Which [versions of] assets does this asset [version] depend on?

Qg
Among the reported bugs related to this asset [version], are most of them

fixed or open?

Qh How often do producers of this asset fix reported bugs?

Qi How long does it take for producers of this asset to fix reported bugs?

Qj
How often do producers of this asset implement improvement

suggestions or feature requests?

It is advised to keep record of the rationale that relates each question to the

goals, since this helps executing the next stage. For instance, Qc-Qe point to reuse

attempts of a given asset version (which can be successful or not), while Qf-Qj provide

awareness on the commitment of the asset development team regarding problems

identified and features requested, among others.

4.6.1.2 Mapping questions and tasks

One could expect a mapping between questions and metrics, as defined in the

GQM approach [Basili et al. 1994]. There is no doubt that metrics can be useful for

answering questions, but their interpretation is more intuitive when they are tied to

visual representations [Lanza & Marinescu 2006]. Besides, when it comes to interactive

visualization tools, it seems more natural to map questions to project or organizational

tasks57 that must be performed to obtain the answers being sought. It is noteworthy that

many questions or tasks are based on literature reports, but it is imperative to assess

57 Interaction tasks with the visualizations (such as filtering, browsing, drill-down etc.) are handled

separately in an upcoming stage. Developers of visualization tools may resort to the visualization feature

model to this end.

100


their relevance to the current state-of-the-practice [Novais et al. 2014]. In the Zooming

Browser design, the association between tasks and questions is presented in Table 4.4.

Table 4.4 – Mapping between questions and tasks

Task ID Task
Related

Questions

Ta
Check [the successfulness of] reuse attempts of [a given version

of] an asset in existing projects
Qa, Qc, Qd, Qe

Tb
Identify experts (producers/ contributors and consumers) on a

reusable asset [for communication needs]
Qb

Tc Understand/Evaluate asset dependencies Qf

Td
Check if producers have been keeping up with the development

of a reused asset (community participation)
Qg, Qh, Qi, Qj

4.6.1.3 Mapping tasks and data

In order to perform software development tasks, it is necessary to resort to data,

usually available from different sources. Thus, at this point, one should find out what

data are required to support executing such tasks (for the proper identification of

relevant data sources and the filtering of unnecessary data). Some processing (data

cleaning, integration, aggregation etc.) is usually necessary. Other data may become

necessary for complementing the visualization (e.g., due to positioning and organization

of data), so it is likely that this stage is revisited afterwards.

Some data for performing the tasks defined for Zooming Browser are listed in

Table 4.5. They are extracted from reuse repositories, version control repositories, and

issue tracker/task manager systems (as described in Section 4.4). Links to original

sources or other representations (e.g., HTML websites) are also stored, allowing to drill-

down to additional information.

Table 4.5 – Mapping between tasks and data

Source of information Data
Related

Tasks

Project VCS history (both from assets’

projects and other projects in which assets

were reused)

Project name Ta, Tb

Commit author Tb, Td

Commit date Tb, Td

Added assets* Ta

Removed assets* Ta

Reuse repository

Asset name Ta, Tc

Asset versions Ta, Tc

Asset dependencies** Tc

101


Source of information Data
Related

Tasks

Issue tracker/Task manager repository

Issue status Td

Issue type Td

Issue creation date Tb, Td

Issue close date Tb, Td

Issue assignee Tb, Td

Issue resolver Tb, Td

* Data filtering is applied in order to retrieve only commits related to assets.

** There are different kinds of software dependencies; the current scope is limited to

dependencies made explicit (e.g., described in a build configuration file).

4.6.1.4 Mapping data and visualizations

This is one of the most important parts of the mapping, because an inappropriate

or ambiguous mapping may impair the effectiveness of the visualization tool as a whole,

as stated previously. The results of one of the studies conducted in the scope of this

thesis (presented in Section 3.3.4) showed that the mapping between data and

visualizations is barely described in publications, so users have to “guess” it, which can

be risky and lead to wrong interpretations of data [Schots et al. 2014]. Because this is a

more complex and most crucial stage, it can be divided into three different steps,

described as follows.

 Firstly, one or more visualizations must be already in mind based on the established

data and their characteristics; thus, there must be a pre-selection of candidate

visualizations that may be confirmed later based on the subsequent steps.

 Secondly, since the visual attributes are responsible for linking data to

visualizations, one must decompose the visual attributes that constitute the

visualizations (such as size, color, position, shape etc.) in order to recognize the data

type required by such visual attributes. For instance, different colors enable the

representation of categorical data, while color scales require the data type to be

continuous.

 Finally, mapping each datum to each visual attribute involves analyzing the

available data types to attest their suitability to the visual attributes that compose the

visual metaphor.

These steps (especially the first two) may require support from skilled

visualization experts. After that, it is possible to ensure that the visual attributes are both

102


necessary and sufficient to the data58. Thus, one can be more confident to determine

which visualization(s) will be actually used. However, if a data-to-visualization

mapping cannot be fully performed, it can be due to three causes: (i) the available data

cannot be mapped to the intended visualization due to incompatibilities (restrictions on

data or on visual attributes); (ii) the intended visualization is not sufficient to comprise

the necessary data; or (iii) the visualization requires more data than the available ones.

A solution for all these cases can be the choice of different visualizations. An

alternative solution for (i) and (ii) is to combine another visualization with the existing

one(s) (for instance, through interaction resources or by creating a multi-perspective

environment [Carneiro et al. 2010]). In this case, it is important to keep in mind that,

ideally, a visual attribute should keep its semantics in a consistent way among different

visualizations, in order to avoid misleading interpretations. Finally, for (iii), one may

need to collect more data to make the most of a visual metaphor and its resources.

For illustration purposes, an excerpt of the design of the issues visualization

(from Zooming Browser’s asset-centric view based on the Metadata Exploration

perspective) is depicted in Figure 4.23, while Table 4.6 shows how some of the

aforementioned data were mapped to visual attributes of this visualization. It is

noteworthy that many considerations may be taken into account, e.g., the color and

layout schemes, legibility, cultural and aesthetic aspects, among others.

Although it is not explicit as a separate stage in the mapping, this stage also

requires the choice of interaction resources to employ, aiming to allow users of the

visualization tools to explore the data and perform their tasks59. In Figure 4.23, for

instance, one can filter issues by type through a filtering mechanism.

These steps should ideally map all the elements (goals, questions, tasks, data,

visual attributes, and visualizations) involved in the design of the visualization tool. As

stated previously, the detailed mapping performed in the context of Zooming Browser is

presented in Appendix A. The use of this mapping provided more confidence for

implementing Zooming Browser, since it enabled to check whether the tool could help

answering the established questions before evaluating it with its intended stakeholders.

58 Note that this does not discard the need for performing evaluations (such as usability studies) with the

audience of the visualization tools.

59 This can be done with the support of the visualization feature model.

103


Figure 4.23 – Initial visualization design for representing the issues of an asset

Table 4.6 – Mapping between data and visualizations

Visualization
Visual

Attribute
Data Value Description

Adapted

bubble layout

Geometric

shape
Issue Circle/Bubble A circle represents an issue.

Size
Issue

lifetime

For closed issues (issue

status = closed): (issue

close date – issue

creation date)

The size of an issue is

proportional to the time it

remains open, i.e., the longer

the time an issue has been

opened (and not closed) the

greater it appears.

For open issues (issue

status = open): (system

current date – issue

creation date)

Color
Issue

status

Green, for closed issues

(issue status = closed)

The use of colors helps finding

out the status of the issues.

Colors provide an overview of

how developers are handling

issues as they appear.

Red, for open bug

issues (issue status =

open AND issue type =

bug)

Yellow, for other open

issues (issue status =

open AND (issue type =

feature request OR

issue type =

improvement

suggestion))

Icon
Issue

type

Exclamation mark

(issue type = bug)
Icons facilitate differing issue

types. Since bugs are usually

more severe or relevant than

feature requests, many open

bugs may indicate lack of

support for the asset’s users.

Lamp bulb (issue type =

feature request OR

issue type =

improvement

suggestion)

104


4.7 Illustrative Scenarios

In order to demonstrate how APPRAiSER tools can support performing reuse

tasks and aiming to make evident the utility of metadata and project history information

(highlighted in italics) and its sources (underlined), two reuse-related goals (decision-

making with respect to asset reuse and maintenance of a reuse repository) are presented

in the next subsections, contrasting their achievement with and without APPRAiSER.

4.7.1 Making informed reuse decisions in a project

In order to decide whether an asset or an asset version can/should be reused in or

incorporated to a project (PG01 in the APPRAiSER mapping, as shown in Appendix

A), the developer, as a potential consumer, might consider the information and sources

listed as follows (assuming that the asset has already been pre-selected).

By analyzing the reuse repository, the developer can obtain a set of information

about an asset, such as its status, its release date, its released versions, its license, its

explicit dependencies and exclusions, among others. The latter ones particularly help

saving time by assessing the asset’s compatibility with the project under

development/maintenance beforehand. However, the effort of extracting these data from

a reuse repository may lead the developer to ignore this source of information, either

making a risky reuse decision or ending up building the asset from scratch.

APPRAiSER obtains this information automatically when the developer fills out

the Zooming Browser form (accessible through the menu), informing the asset about

which he/she wants additional information (as shown in Figure 4.15). Repository Miner

extracts the data, which are visually presented in the Zooming Browser perspectives,

particularly in the Metadata Exploration. Through this perspective, the developer can

select the asset and obtain all the aforementioned information from the reuse repository,

in addition to other information discussed as follows.

The asset’s version control system provides information about consumers and

producers, and allows verifying, through its commit history data, whether the asset

development project remains active and its development community is participative. It

is also relevant to know who are the producers (and the organization, if any) who

develop the asset, since reputation in development communities plays an important role

in trusting what has been developed. If the potential consumer realizes that the project

did not receive any changes for a reasonable period, chances are that he/she may

105


struggle in obtaining any support or bug fixes. However, such awareness is not easy to

achieve with traditional VCS tools. Some websites (such as GitHub) can provide some

clues in this regard, but part of this set of information may require several interactions

throughout the options provided by the website, which may cause user disorientation.

Through APPRAiSER, the Repository Miner automatically collects the assets’

VCS history, and the developer can obtain information regarding the development of

the asset through the Zooming Browser’s History perspective. In addition, the developer

can understand the project’s branching strategy (e.g., to observe if new features are

developed in a separate branch or how long it takes for branched bug fixes to be merged

back to the trunk/main development branch). By using the filtering resource, it is also

possible to observe which developers contributed to which parts of the project, and how

participative the development community of the asset is.

One of the most important information when reusing an asset is to check for

previous reuse occurrences, i.e., whether it (or its version of interest) was reused before,

in which projects, and by which consumers. Previous reuse occurrences provide

examples on how to reuse the asset. Besides, they assure whether there are successful

cases of reuse (e.g., if the asset version was incorporated to a project release). This

information, among others, can be obtained through the projects’ version control

systems, both from open source repositories and organizational repositories. However,

the developer may face the same problems listed for the asset’s VCS if he/she does not

have appropriate tool support. Besides, the process of identifying and matching asset

versions becomes cumbersome if done manually.

APPRAiSER automatically identifies reusable assets from imported projects,

with the support of the Repository Miner’s identification strategy (discussed in Section

4.4.2). As discussed in the same section, APPRAiSER requires the project manager or a

project developer to indicate or confirm the version of this asset, being a semiautomatic

process.

A potential asset consumer is usually concerned with the issues history from the

issue tracker/task manager of the asset, to find out if bugs are fixed (and how long it

takes for that) and how often producers make improvements and implement feature

requests. This information is derived from the issues’ status, creation and close date,

assignee and developers involved in it. These items are also relevant for deciding if a

project that contains a version of the asset should be upgraded/downgraded to a

newer/older version of such asset. The developer should then navigate through the issue

106


tracking system in order to obtain this information (which is usually presented

textually).

After the Repository Miner has extracted the issues information with the Issue

Tracker Miner, the Zooming Browser’s Metadata Perspective provides information

about issues at a glance, through visual attributes that build an overview of them (based

on the design presented in Figure 4.23). This allows for a faster understanding of the

asset project status and for a better exploration of details of the issues. For instance, the

developer may be interested in understanding details on an issue that has been open for

months and has a high severity for the asset’s project, and drill-down to it in order to

assess whether and how it would affect the asset reuse.

An important concern when reusing an asset is its license(s) of use, since this

may constrain or establish some conditions under which it can be reused. There are

cases in which private projects have to make their source available60, due to a

requirement of the license under which the asset reused by them was released. This

information is not always emphasized enough in order to draw the developer’s attention

(oftentimes it is at the end of a large text description, which may be unnoticed by the

developer). To this end, Zooming Browser’s Metadata Exploration perspective has a

“Profile” option for each of its core elements (assets, developers, and projects) so that

general information such as this one can be found easily in a single place.

With this set of information at hand presented intuitively in a centralized place,

it may become easier for potential consumers to make decisions about

reusing/upgrading an asset, among others.

4.7.2 Maintaining organizational reuse repositories

Creating and maintaining a reuse repository in an organization are not easy tasks

[Ye & Fischer 2002]. They require reuse managers to include, exclude, request

maintenance, or discontinue/deprecate asset versions, besides keeping metadata

information for communication purposes. In other words, reuse managers must be

aware of what is going on in the reuse scenario in order to support the organization in

properly conducting their projects and keep up with reuse initiatives.

60 TechTudo, June 2014. “ZapZap has its source code released after controversy about legality”, available

(in Portuguese) at http://www.techtudo.com.br/noticias/noticia/2014/06/zapzap-tem-codigo-fonte-

liberado-apos-polemica-sobre-legalidade-entenda.html.

107


For communication matters, reuse managers must first track reuse occurrences

(which consumers reuse assets in which projects). Ideally, this information should be

based on the projects’ version control systems. However, as shown in Section 2.5.3, this

is not the reality in many organizations. Besides, as stated in Section 4.7.1, identifying

and matching asset versions collected from this source is not trivial.

APPRAiSER’s Dashboard perspective allows drilling-down to the reuse map,

which presents this information visually in order to ease reuse management in the

organization. It also provides reuse awareness for producers (in terms of the [attempts

of] reuse of their assets) and consumers (helping them to recall which assets they

already reused, since they may lose sight of it [Ko et al. 2007]).

Reuse managers must also have contact information of producers and consumers

(as well as appropriate mechanisms) to notify them about asset status changes, problems

detected, modifications carried out, new versions available, and discontinued assets.

This is usually done by e-mails written manually in many organizations, which can lead

to mismatches.

Based on the contact information present in the developer profile (also available

in the Metadata Exploration perspective), the APPRAiSER server can notify all the

consumers and producers about these events. Besides, Zooming Browser also shows the

events related to each core element.

The issue tracker/task manager can help reuse managers to check whether there

are bugs whose severity may require asset maintenance. Additional information pointed

out in the previous scenario, such as the time it takes for fixing bugs or the period an

asset is not reused, may lead to asset discontinuation from the organizational repository

(according to organizational criteria). The problems discussed in Section 4.7.1 also

apply to this scenario, as well as the solution provided by APPRAiSER. Moreover, the

information related to activeness and participation of the development community

(obtained from the asset’s version control system) can be used for decision-making

regarding an asset’s discontinuation.

Besides providing evidence on the reuse of an asset, showing that it has been

actually included at some point of the project development, the asset’s version control

system and the issue tracker/task manager systems together can show social information

involving developers (in terms of collaboration and communication in asset

development) and the status of bugs that affected the asset. However, these sources of

108


information are usually decentralized, making it hard to analyze their information in an

aggregated way.

Through Zooming Browser, APPRAiSER allows the navigation to the asset

issues (as described in Section 4.7.1) and establishes different kinds of correlations

between developers: which producers collaborate with which producers, which

consumers reuse assets developed by which producers, and so on. This can also be

helpful for project management in terms of team allocation, especially when it comes to

the development of reusable assets for a specific need and, in an increased maturity

level, development for reuse.

The proper integration of these sources of information and the presentation of

their data in an intuitive way can help reuse managers to gather some analytics of the

reuse scenario. Examples comprise how often an asset is reused, how often a consumer

reuses assets, and how often a producer develops assets, among other interesting

findings. This can help evaluating the effectiveness of reuse practices (progresses and

efforts) in the context of local projects/assets/developers (i.e., belonging to the

organization), as well as stimulate in-house reuse.

4.8 Related Work

This section presents some works related to each of the elements presented in

the previous sections.

4.8.1 Zooming Browser

The results from the quasi-systematic review pointed out the lack of works that

aim to support performing reuse tasks through visualization resources, especially using

metadata information. There are a number of related works providing visualizations for

the structural or evolutionary aspects of different artifacts in repositories. The scope of

analysis in this section is limited to the ones whose goals are somehow similar to

Zooming Browser’s goals, particularly the ones that visually represent or explore

contents of reuse repositories for supporting decision making about reuse.

The only work not related to software development is ALOCOM [Klerkx et al.

2006], which aims to visualize a large repository of learning objects in the form of small

reusable content components. The disaggregation of legacy content creates such

components, and some metadata are added to each of them. The visualization gives an

109


overview of the components in the repository, including how they are put together, in

terms of “is part of” and “has part” relations.

Figure 4.24 shows a screenshot of the ALOCOM visualization. The user

interface consists of a right panel (that visualizes all the components in the repository), a

left top part (with options to filter out components that are not of interest), and a left

bottom part (which displays textual metadata on the components).

Figure 4.24 – The ALOCOM repository visualization [Klerkx et al. 2006]

The concept of component is very small-grained: examples include images,

definitions, slides, and text fragments. Thus, the semantics of what can be characterized

as a reusable asset is very wide. Besides, other visualization/interaction resources could

have been employed to reduce the amount of information displayed textually.

The works by [Kula et al. 2014] and [Yano et al. 2015] (which seem to be

collaborative, since they involve some authors in common) discuss that, as libraries on

which a system depends evolve (with bug fixes and new features), the system

maintainer needs to decide if, when and what to update [Yano et al. 2015]. In [Kula et

al. 2014], the authors state that novice maintainers may lack the historical knowledge

required to manage an inherited system efficiently.

The work presented in [Kula et al. 2014] proposes visualizations of the co-

evolution of a system and its library dependencies, in order to ease the understanding of

this phenomenon and help deciding to upgrade systems to a newer version of an

outdated library [Kula et al. 2014]. Before introducing the visualizations used, the

110


authors present the concepts related to the systems’ adoption of libraries, depicted in

Figure 4.25.

Figure 4.25 – Dependency relations between system versions and library versions [Kula

et al. 2014]

The relations presented in this figure are explained as follows [Kula et al. 2014]:

 an adopter system version is a version that starts using a library for the first time

(i.e., it has not used previous versions of it;

 an idler is a system version that depends upon the same library version as its

immediate predecessor;

 an updater is a system version of which the previous version depended upon a

different library version (so an updater is either an upgrader or a downgrader);

 finally, a dropper (not depicted in the figure) is a system version of which the

current version ceases the dependency relationship. A dropper can revert to an

adopter of a different library version or resume being an idler of a previous version.

This work aims at visualizing how the dependency relation between a system

and its dependencies evolves from two perspectives: the system-centric dependency

plots (SDP) and the library-centric dependents diffusion plot (LDP) [Kula et al. 2014].

While the former shows successive library versions on which a system depends over

time, the latter shows the diffusion of users (systems) across the different versions of a

library [Kula et al. 2014].

Figure 4.26 presents the SDP visualization of the FindBugs system – part (a) –

and the transition to the LDP visualization of the ASM library – part (b) – after selecting

its axis, highlighted in the upper part of (a). In (a), starting from the center, each ring

represents a system release, and the relative distance between rings indicates the time

between releases (weeks). In (b), the time-series displays the popularity of library

111


versions at any point in time – the x-axis indicates the time, while the y-axis presents

the aggregation of system versions that reused a given library version depicted along the

curve [Kula et al. 2014].

Figure 4.26 – SDP visualization presenting an overview of the evolution of the

dependencies of a system as it evolves [Kula et al. 2014]

The authors state that they believe the visualizations are scalable, and they

envision the implementation of filtering mechanisms to help managing the data [Kula et

al. 2014].

Apparently as an evolution of [Kula et al. 2014], Yano et al.’s work mines data

from similar systems to obtain “wisdom of the crowd” [Yano et al. 2015] (although the

authors do not make clear what accounts for similarity). The mined sources are GitHub

and Maven Central (also used in APPRAiSER by the Repository Miner, described in

Section 4.4).

112


A visualization tool called VerXCombo was developed aiming to allow

interaction with the mined data in order to find the “best-fit” combination of libraries,

determined by the popularity of use and the latest version release [Yano et al. 2015].

Figure 4.27 shows a screenshot of the tool.

Figure 4.27 – The VerXCombo tool (source:

http://www.slideshare.net/augai9/verxcombo-an-interactive-data-visualization-of-

popular-library-version-combinations)

After candidate libraries are chosen from a drop-down list, they are presented in

a parallel sets visualization. Different combinations can be highlighted through mouse

interactions. The link thickness between library versions indicates their frequency of

usage (extracted from similar projects). Users can sort libraries by version or popularity

of use.

The major limitations of these approaches are:

 The “wisdom of the crowd” knowledge is restricted to a number (summarized in the

“best-fit” calculation), which limits the user exploration of data – in other words,

there is no additional information to the user;

 The tools do not allow drilling-down to understand the context in which the libraries

have been included or used in the similar systems; thus, users are limited to the

contents of these views, hampering to obtain additional information (such as the

“relevance” of the projects that reused the library versions);

 As opposed to the Zooming Browser, the tools do not take into account developers’

information (also available in the mined sources), which could increase confidence

in decision-making (since developers’ influence also accounts for reuse confidence).

 None of the tools present an experiment for an evaluation of their use.

113


4.8.2 Repository Miner

Several works have investigated sources of information and information needs in

software development, each under a particular perspective. Some examples are listed as

follows.

Ko et al. performed a field study of software developers to understand their

information needs [Ko et al. 2007]. They observed groups across the corporation

focusing on (i) what information software developers seek, (ii) where they seek this

information, and (iii) what prevents them from finding such information.

Regarding writing code tasks, developers had questions related to data structures

or functions. To answer them, they searched documentation and inspected other code

for examples (which can be thought of as a search through the space of existing reusable

code) [Ko et al. 2007]. Once they had a candidate, they sought its syntactic usage

rules (e.g., which method should be called, what data structures are required etc.).

Documentation was used when available, but sometimes they needed to use code whose

author was the only person who could fully understand it [Ko et al. 2007].

Regarding maintaining awareness tasks, developers worked to keep track of

hardware, people, and information needed for their tasks. Some awareness information

was “pushed” to them through clients, alert tools, and check-in emails; they also

obtained other types of awareness by actively seeking it. Groups had meetings to keep

aware of problems on which teammates were working and issues on which they were

blocked. Because developers were often interrupted, they also sought awareness about

their own work. The most common needs were coworker awareness, finding out what

code caused a given program state, and how resources they depend on have changed

[Ko et al. 2007].

Treude & Storey (2010) aim at achieving awareness of projects, developers, and

tasks using dashboards and feeds, with a focus on project development tasks. The

source of data used by the authors is the status of the project, which arises from an

aggregation of data on open and closed development tasks, successful and failed builds,

delivered and pending changes, and successful and failed tests as well as evolutionary

information. The authors state that there is a lack of understanding of how to achieve

high-level awareness (of project management issues) with low-level awareness (of more

fine-grained activities, such as source code changes and development task creation).

They also claim for better visualization support as an enhancement for dashboards.

114


Panichella et al. analyzed written communication between developers recorded

through mailing lists, issue trackers, IRC chat logs, and code co-changes [Panichella et

al. 2014]. The primary goal was to obtain evidence that a single communication channel

offers a misleading portrait of developers’ interaction, and that different combinations

of sources may provide different views of it.

According to their findings, not all developers use all communication sources,

and the use of different communication channels in studies and tasks (e.g., identifying

key project roles such as developers with a high communication degree or mentors) can

lead to different results. Another finding is that the overlap of communication links

between various sources is relatively low (generally below 30%-40%) and varies

depending on the project. Therefore, one should merge data from multiple channels to

have a better view of developers’ interactions [Panichella et al. 2014].

These works demonstrate the importance and usefulness of analyzing how

different sources of information can support different aspects of software development:

Ko et al. focus on general information from collocated development teams, Treude and

Storey aim at project development tasks, and Panichella et al. correlate collaboration

aspects and code changes. In the scope of software reuse, the most related works

identified are the ones proposed by [Ye & Fischer 2002], [Holmes & Walker 2012], and

[Kula et al. 2014].

Ye and Fischer aim at reducing the difficulty of locating components from a

large reuse repository [Ye & Fischer 2002]. To this end, they propose a tool (called

CodeBroker) that uses doc comments and signatures to extract queries from partially

written programs and retrieve matching components. For filtering results, CodeBroker

uses as information the knowledge about components, taking into account components

known to individual software developers. It also relies on previous interactions with the

system, excluding components that developers have explicitly indicated that are of no

interest in the current development session [Ye & Fischer 2002].

Holmes and Walker state that, to investigate a pragmatic reuse task, a developer

must navigate through, and reason about, source code dependencies in order to identify

program elements that are relevant to the task and to decide how those elements should

be reused. The tool proposed by the authors uses a reuse model that aims at

investigating low-level details of an originating system to transform the selected source

code from such system and integrate it into the developer’s system in a semiautomatic

way [Holmes & Walker 2012].

115


Kula et al. present visualizations of the co-evolution of a system and its library

dependencies, in order to ease the understanding of this phenomenon and help deciding

to upgrade systems to a newer version of an outdated library [Kula et al. 2014]. They

focus solely on releases of project and libraries, not taking into account fine-grained

elements, e.g., commits from VCSs, and other sources of history information. An

apparent evolution of this work [Yano et al. 2015] encompasses information from

GitHub repositories, but it seems to focus solely on releases.

These works do not thoroughly explore available sources of information

regarding software reuse (e.g., production and consumption information). Additionally,

in contrast to [Holmes & Walker 2012], APPRAiSER does not directly aim at helping

to identify if a given project is reusable or not. The Repository Miner goes a step

beyond, providing other sorts of metadata (especially high-level ones) that are important

for decision-making about reuse in different levels. No other work discussing or

exploring different kinds of information was found, specifically aiming at supporting a

broad range of software reuse tasks.

Regarding the state-of-the-practice, there are several web-based version control

repositories (such as SourceForge, BitBucket, GitHub etc.) and release repositories

(e.g., Maven Central, Node Package Manager – NPM –, etc.) available. These version

control repositories provide a wealth of information and resources that help software

developers in keeping up with development tasks (many of them also include an

integrated issue tracker). However, although they store a huge amount of open source

assets, they do not provide quantitative or qualitative information that helps developers

decide whether or not to reuse an asset. In GitHub, for instance, it is up to the repository

owner to incorporate a generated label showing test results in the repository homepage.

Release repositories, in turn, do not aim at supporting reuse management (i.e.,

their focus is on storing software releases and related information), requiring consumers

to check periodically the status of the reused assets – which does not seem to be a wide-

ranging practice, given the effort involved. Besides, some of these repositories do not

provide consumption information of a given release61.

61 MvnRepositoy (http://mvnrepository.com/) collects information from the Maven Central Repository to

indicate which assets listed on Maven Central depend on which assets (probably based on the declared

dependencies in the POM file). The website does not provide an API for information exchanging.

116


4.8.3 Visualization Feature Model

Some studies in the literature propose means to organize a body of knowledge in

terms of techniques and algorithms, recognizing the importance and utility of

information visualization. Although none of these works are feature model proposals,

they seek to comprise a set of techniques related to visualizations. Some of these works

are listed as follows.

The Data State Model (DSM) approach [Chi 2000] shows the similarities in

terms of operation steps that can be reused. Its goal is to support programmers in

understanding the broad application possibilities of visualization techniques. The

presented taxonomy groups the techniques into several data domains, facilitating the

analysis. The included techniques were chosen according to their relevance to

information visualization systems.

Another approach presents a high-level visualization taxonomy [Tory & Moller

2004], classifying algorithms instead of data. The taxonomy is considered flexible

because it is based on assumptions that algorithms make about the data to visualize.

These assumptions are categorized based on (i) whether they are continuous or discrete,

and (ii) according to how much they constrain display attributes. This taxonomy helps

organizing the visualization literature to address future research.

The InfoVis Wiki project [INFOVIS WIKI 2015] is a website that provides

general information about information visualization elements. It also provides other

kinds of information, such as general news about the visualization field. The website

does not present how visualization elements relate to each other, and does not show

constraints on their use. To be fair, since the Wiki philosophy usually does not enforce

filling out predefined sections, this is not required or suggested when someone includes

an information).

There are also other works aiming to organize information about visualization

elements, such as Treevis.net [Schulz 2011] and SurVis [Beck et al. 2016]62. These

works are restricted to a specific design space (e.g., dynamic graph visualizations), and

are not intended to provide a “big picture” of general visualization features. Besides,

they have a descriptive nature (presenting what has been done in a given design space)

instead of a prescriptive one (showing how elements can or cannot be used/combined).

62 Available at https://github.com/fabian-beck/survis. An instance of SurVis was used for organizing the

findings of the secondary study presented in Section 3.3.3 – available at [Schots 2014c]

117


These related works propose different taxonomies for the visualization domain.

Despite presenting different modes of classifying the techniques, none of these studies

focuses on the identification of features and their constraints to compose visualizations.

Besides, although several studies mention the application of visualization elements in

software tools, no work categorizing a large set of elements in terms of feature models

was found, in order to perform a proper comparison.

4.8.4 Mapping Structure of Goals and Visualizations

Before elaborating the mapping structure, an analysis of related work was

performed to find out whether existing solutions would meet the aforementioned needs.

Some of these works are presented as follows.

The well-known and largely applied Goal-Question-Metric (GQM) approach

[Basili et al. 1994] comprises the setting of goals, the derivation of questions from such

goals, and the choice of metrics to answer these questions. GQM was the first attempt to

derive the necessary data for Zooming Browser. However, it was soon recognized that a

metric or a set of metrics is usually not enough to answer all the questions developers

have. It becomes necessary to perform some kind of task to find out the answers to

those questions. Besides, GQM does not aim at mapping metrics and visualizations.

Some approaches offer a customizable mapping between visual elements and

data. CogZ [Falconer et al. 2009], for instance, is a set of tools that provides a module

for the rapid development of specific visualizations for ontologies. It provides drag and

drop mechanisms for mapping concepts (ontology terms) to visual representations.

Apart from the benefits and the customization facilities, the mapping process starts from

the data, not focusing on the goals that led to choosing such data.

Beck et al. (2013) aim at helping visualization experts to choose visualization

techniques for dynamic graph visualization scenarios. Profiles reflecting different

aesthetic criteria describe both the techniques and the application: their similarity shows

how appropriate a visualization technique is for such application (it may be necessary to

refine profiles or consider other criteria to achieve a best match). A solid knowledge of

visualization techniques and significant experience in visualization design are required

[Beck et al. 2013].

These approaches support particular stages of the mapping process, but none of

them provide the full picture on the mapping between a set of goals and visualizations.

118


4.9 Final Remarks

This chapter described APPRAiSER, including its tools and conceptual

elements, aiming to assist the execution of some tasks related to software reuse, both at

the organizational level and project level, providing reuse awareness and visually

supporting the execution of these tasks. The approach was based on some desirable

features obtained from two studies: a semi-structured interview with practitioners and a

secondary study with respect to the state-of-the-art. Through its core elements,

APPRAiSER intends to support reuse managers and developers in performing their

tasks with less effort, quickly and easily.

A quote attributed to Cicero63 is that “the causes of events are ever more

interesting than the events themselves”. This maxim leads to exploring the facts that

made an event happen. However, the information about these facts is often unavailable

or not explicit. In order to enable the understanding of the causes of any problem

detected in the reuse scenario, further investigation and exploration of the available data

are required. APPRAiSER makes it possible by allowing to obtain useful contextual

information that may help understanding reuse events more precisely.

This work also aims to encourage a better exploration of software-related

information that can be helpful in solving, at least partially, some of the still remaining

software reuse issues. In this sense, it is easier to perform analyses by querying and

interacting with the available data. By turning such data into visual abstractions, it is

possible to build visualization tools (such as Zooming Browser) that can considerably

enhance the exploration and understanding of a particular event of interest.

As mentioned previously, APPRAiSER aims at promoting software reuse in a

progressive way, so that cultural barriers can be gradually overcome and all

stakeholders can become committed with the reuse initiatives by perceiving the benefits

brought by them, without causing cognitive overload. In this sense, for meeting RA2,

Table 4.7 presents a suggestion on how APPRAiSER (particularly Zooming Browser

and its perspectives) could be used in different stages of reuse initiatives, i.e., the

expectations with its use.

63 Marcus Tullius Cicero (106 BC – 43 BC) was a Roman philosopher, politician, lawyer, orator, political

theorist, consul and constitutionalist.

119


Table 4.7 – The use of APPRAiSER in different stages of reuse initiatives

 Initial stages Intermediate stages Advanced stages

Dashboard

perspective

Supports awareness and

communication of first

reuse achievements,

communicating results in

a fast and effective way.

Keeps stakeholders’

motivation and help

institutionalizing a reuse

program.

Provides relevant data for

supporting decision-

making.

Metadata

Exploration

perspective

Provides information

about reusable assets in a

centralized way, easing

and stimulating their

reuse.

Supports exploring the

sources of information,

avoiding user

disorientation when there

are a reasonable number

of reusable assets.

Provides a better

understanding and

exploration of

relationships between

developers, assets, and

projects, while avoiding

information overloading

(when there is a large

amount of information).

Also helps identifying

kinds of projects in which

assets are usually reused

(for identifying domains

with greater reuse

potential) and top

producers (to lead

development for reuse).

History

perspective

Supports finding

occurrences of candidate

reusable assets in the

organization projects,

helping to populate the

reuse repository and

stimulating further reuse.

Supports deeper analyses

of the assets’ history,

when the organization is

already used to the reuse

practices.

Supports allocating teams

for the development of

reusable assets and

monitoring the

development history

aiming to identify how

producers work together.

Low-Level

Data

Representation

perspective

Helps understanding

underlying details (e.g.,

structure) of assets in

order to [better] reuse

them.

Helps understanding

common characteristics of

reusable assets and

potentially detecting

refactoring opportunities.

Helps analyzing how

assets are being developed

and detecting potential

bottlenecks for their reuse.

Zooming

Browser as a

whole

Helps engaging

stakeholders in the

establishment of a reuse

program.

Helps identifying key

consumers and domains in

which there are more

reuse opportunities,

towards consolidating a

reuse program.

Provides information for

supporting continuous

improvement of reuse

activities and processes.

It is important to highlight that APPRAiSER can only partially support the

achievement of these results, and it may be necessary to extend it in order to provide a

better support, especially for more advanced stages.

It is known that some repository data may be sometimes incorrect or do not

necessarily represent actual development data (e.g., data from issue trackers may be

outdated or not be filled out at all). However, the Repository Miner implementation

assumes that the development team uses software repositories properly, and that the

120


data about assets, developers, and projects are up-to-date. If this is not the case, this will

only count against the projects/developers/assets (i.e., it will be an evidence against

reuse). The purpose of APPRAiSER is not to handle this problem: it may at most point

it out (which is believed to be relevant for stakeholders). Thus, such scenario is not

considered as a limitation for this work.

Other potential sources not listed in this work should be explored as well. Social

media tools geared to software development such as forums, mailing lists of

development communities, and Q&A (question-and-answer) websites (e.g.,

StackOverflow) have been receiving a growing attention in the last years. An insight for

future research is the analysis of the role of these sources of information for better

supporting software reuse and other software engineering fields.

Finally, the following considerations are concerned with the conceptual

contributions of APPRAiSER:

 Although the composition process of the visualization feature model is based on

different literature references, with the confirmation of some applications of the

features through a quasi-systematic review, it is important to check the

categorization options and the model completeness in terms of visualization

elements. Since novel visualization and interaction resources are steadily under

development by several researchers and practitioners, it is expected to constantly

expand this model based on findings of new studies.

 The mapping structure has proved to be useful in the design of Zooming Browser,

and it is expected that it can serve as an initial guidance to future developments of

other visualization tools as well, emphasizing the importance of performing each

stage carefully. In order to deepen the understanding of the usefulness of this

mapping, it is important to investigate with the visualization community answers to

the following questions (and others that may emerge through other applications of

the mapping):

 Does this mapping structure actually support developers of visualization tools in

better planning the visualization metaphors and resources to use?

 How can each stage of this mapping be facilitated, i.e., what additional support

can be provided for easing such stages?

 Is it relevant (or crucial) to build tools to help performing this mapping?

These points, along with the problems, limitations, open issues, and features not

handled by the current implementation of APPRAiSER (including the recommendation

121


of assets and the suggestions for refactoring an asset to improve its reusability), are part

of a research agenda, to be conducted in collaboration with the software engineering

research community.

In order to help with understanding to which extent APPRAiSER can support

reuse tasks, and whether the provided information and visualizations are useful to

answer some of the questions listed in Appendix A, it becomes necessary to perform

some kind of evaluation. This topic is presented in the next chapter.

122


CHAPTER 5 – EVALUATION

This chapter describes the evaluation of APPRAiSER main elements,

including the planning, execution, results, and conclusions.

5.1 Evaluation Scope

The evaluation of APPRAiSER consists of 3 steps:

 the evaluation of the visualization feature model,

 the evaluation of Zooming Browser, and

 the evaluation of some outputs from the mapping structure applied to the Zooming

Browser (in terms of their relevance).

The visualization feature model encompasses the knowledge acquired through

the performed studies. Thus, in the scope of this thesis, experts and intermediate-level

researchers in the visualization domain evaluated some aspects of the features through a

peer review. This evaluation is the third step of the domain analysis mentioned in

Section 4.5.1, and is described in Section 5.2.

The evaluation of the performed mapping in the context of Zooming Browser is

a result of the evaluation and use of the tool. This can eventually provide information on

what aspects are lacking or could be mapped differently. Besides, some outputs of the

mapping are evaluated indirectly through the Zooming Browser evaluation questions.

The Zooming Browser evaluation (presented in Section 5.3) consisted of a

feasibility study with reuse managers and developers from the industry. Repository

Miner is integrated to Zooming Browser (which visually presents the information

collected by it), and the relevance of the collected data composes one of the steps of the

Zooming Browser evaluation (through a survey with the participants). The CAVE tool,

in turn, was already evaluated in [Vasconcelos 2015].

Table 5.1 summarizes the aforementioned aspects. Other aspects that were not

evaluated in the scope of this thesis may be object of evaluation as part of a research

agenda. More details can be found in Section 5.4.

123


Table 5.1 – Evaluation scope

Elements

presented in

this thesis

Considerations on their evaluation

Visualization

Feature Model
The evaluation of the model features is described in Section 5.2.

Mapping

Structure

The relevance and usefulness of the outputs were already discussed in

Sections 4.6 and 4.9. Some outputs of the mapping are evaluated indirectly

through the Zooming Browser evaluation questions.

Zooming

Browser
The evaluation is described in Section 5.3.

Repository

Miner
The relevance of the outputs is described as a constituent part of Section 5.3.

CAVE Evaluated in [Vasconcelos 2015].

The next sections present the steps for evaluating the selected approach

elements. No gender distinction is made during the description due to the imbalance of

male and female participants, which could enable their identification among them.

5.2 Evaluation of the Visualization Feature Model

A preliminary evaluation of the feature model was conducted, aiming at

assessing its syntax/form and content. The study was designed taking some elements of

a feature model checklist [Mello et al. 2014] as a basis. Some researchers that have

publications in the information visualization field or related fields were invited to

perform a peer review by means of a questionnaire (presented in Appendix B).

Due to its size and complexity, the model was divided into categories (listed in

Appendix B and throughout this section), so that each potential participant could

evaluate a smaller set of features. Each of the evaluated features is composed by a

description, an illustrating figure (if applicable), the possible constraints on the use of

such feature (if applicable), and the references used for these aspects.

5.2.1 Planning

Five parts compose the questionnaire. The characterization (first part) allows

obtaining the participants’ background on the topics involved in the study, as well as

their academic degree. The overview of the visualization feature model (second part)

provides a “big picture” of the model, with all its features and constraints, for

contextualization purposes; in this part, the participant must select which category of

features is going to be evaluated.

124


The third and fourth parts compose the evaluation of the feature model itself,

which encompasses questions regarding the clarity of descriptions, appropriateness of

figures, assessment of the identified constraints, and some aspects for its inspection

(such as checking for inconsistency, omission, ambiguity, and so on). Finally, the last

part comprises some follow-up questions for identifying potentialities of the model and

opportunities for further research.

A pilot study was run with one master student and one undergraduate student.

They filled out the questionnaire in order to identify any potential problems in the study

and specify an estimated time average for participants. They suggested the inclusion of

animated images (e.g., .gif files) for illustrating some features whose understanding

would require such resource, and a better explanation of some instructions. Besides, one

participant identified inconsistencies between what was presented and what was asked.

The corrections were made before sending the invitations to potential participants.

5.2.2 Execution

The division of categories between participants followed the criterion of keeping

at least one participant with Ph.D. (or D.Sc.) degree in each category. However, since

some of the invited participants did not reply to the invitation e-mail, some changes

were made so that each category would have at least one participant with ongoing or

finished Ph.D. course. Some master students that were working with visualization

and/or interaction resources were also invited for participation; for proper balance, these

stayed in a category that included a participant with at least an ongoing Ph.D. course.

Table 5.2 – Participant’s academic background according to the categories

Category
Participants’ Academic

Background

Information Visualization – Focus + Context,

Overview + Detail, and Details on Demand features
Ph.D. Degree Master Student

Information Visualization – Hierarchical Layout

and Perspective features
Ph.D. Degree Master Student

Information Visualization – Layout features Ph.D. Student Ph.D. Student

Information Visualization – Other features Ph.D. Degree Ph.D. Student

Interaction – Filtering features Ph.D. Degree Master Student

Interaction – Panning, Browsing, and Zooming

features
Ph.D. Degree Ph.D. Student

Interaction – Other features Ph.D. Student Master Degree

Each category had two respondents. The participants’ level of experience on

some topics related to the study is presented in Figure 5.1.

125


Figure 5.1 – Participant’s level of experience on related topics

126


4 out of 7 categories had at least one participant who stated to have practical

knowledge about information visualization in industry projects, while other 2 categories

had at least one participant who declared to have practical knowledge based on personal

projects in the topic. In general, participants had a medium- to high-level of experience

in information visualization.

Regarding the level of experience in Computer-Human Interaction (CHI),

participants had mostly an intermediary level: in 4 categories, there was at least one

participant with practical experience (being two in industry projects and two in personal

projects). Finally, with respect to feature modeling, most participants had a superficial

knowledge on the topic. Only one participant stated to have practical experience (in

industry projects).

5.2.3 Analysis and Results

The participants who evaluated the category “Information Visualization – Focus

+ Context, Overview + Detail, and Details on Demand features” agreed most of the

times that the features had a proper description. The only exception is the Focus +

Context feature. According to the participant, “for concepts such as this, it is very useful

to use examples, so one might understand what ‘focus’ and ‘context’ mean”.

Regarding the figures used for representing the features and the associated

restrictions, there was no consensus in most of the cases. One of the participants stated

that he/she did not understand the goal of using the figure (which is an illustration

example of the feature). Besides, he/she was in doubt if “the term ‘constraints’ meant

that the feature can always be present” or “the idea of something else (other features?),

imposing constraints on this feature”. Either way, the participant was not sure if this was

true. The other participant missed a self-explanatory legend in the figures for improving

their understanding.

In the “Magic Lens” feature, both participants agreed that the figure is not

adequate; besides the lack of a legend, one of the participants stated that the image

presented is more close to a “magnifying glass” than the Magic Lens concept. However,

the figure is similar to the one in the original publication that proposed the concept.

With respect to the relationships between the features from this category, one of

the participants considered adequate, while the other stated that he/she “did not know”

or “was not sure”. By their comments, it was noticed that the concept of “feature” might

have been misleading in the context of this study, which might have hampered the

127


evaluation (since the participant asked what was the purpose of the model, which was

not clear in his/her opinion). The participant also asked if the goal was aiding in the

analysis of existing visualizations or helping to build new ones. This misunderstanding

also impacted his/her answers to check for ambiguity, inconsistency, and omission.

The description of most features from the “Information Visualization –

Hierarchical Layout and Perspective features” category was considered adequate by the

participants. The only exception was the 3D feature, whose description was not

considered adequate by one of the participants, since he/she stated that there could be

more information about the disadvantages on the use of the third dimension for

enriching the description.

Regarding the images, one participant considered that some were not adequate,

as he/she stated, “features associated with visualization should make use of images to

better understand the spatial placement of its elements”. However, he/she only made

this comment for abstract features, whose concretization had an illustrating figure.

Other comments related to the figures include the presentation of other Cone Tree, Tree,

and Cluster representations, and a less complex example for the Treemap feature.

One of the participants was not sure about the concept of constraints, since in

this category all of them were described as “N/A”; thus, he/she asked these questions

with the “I don’t know/I am not sure” option.

All the relationships between features in this category were considered adequate.

However, one participant suggested restructuring some parts (e.g., including Tree in a

more generic level which would be derived in items such as Cone Tree, Treemap,

Partition, and so on). Furthermore, this participant suggested an additional level on the

feature model to present the different layouts of a feature. Finally, the participant did not

feel comfortable with the use of the term “Perspective” as being a generalization of 2D

and 3D, but he/she stated that he/she did not find a more suitable term.

In the “Information Visualization – Layout features” category, one of the

participants did not consider the description of some features (Scatter Plot, Parallel

Coordinates, and Bar Chart/Histogram) adequate. He/she suggested a literature

reference for improving the description of the Scatter Plot feature, and pointed out some

improvements for making the description more clear. One participant suggested making

a better differentiation between Pie Chart and Bar Chart.

With respect to the figure, with the exception of the Stack feature, all the other

features contained adequate images. The participants also suggested other figures. The

128


constraints defined in the Scatter Plot and the Parallel Coordinates features were

considered incorrect. One participant did not agree that Details on Demand is a

mandatory constraint for the Scatter Plot (“maybe a desirable one”), since this can be

produced on paper, without interactivity. For the Parallel Coordinates feature, one

participant suggested interaction constraints for allowing the reordering of dimensions.

One participant did not agree with the relationship of the Bar Chart/Histogram;

however, the description of the problem could not be identified. Another participant

suggested including other kinds of visual paradigms (i.e., Graph-based, Hierarchical,

Geometric Projection, Pixel-Oriented technique, and Iconographic). Both participants

provided literature references for supporting these improvements.

Regarding the description of features of the “Information Visualization – Other

features” category, in most cases participants agreed that the description was correct;

only the description of Overlap, Stereovision, and Presentation features were pointed

out as incorrect (or, in most cases, incomplete).

Both the figures and the constraints were considered adequate in this category,

with the exception of the Binning: one participant stated that Binning should require the

Interaction feature, since the user could zoom in and out. Both participants agreed that

the relationships between features were adequate and did not point out problems

regarding ambiguity, inconsistency, omission, or extraneous information.

In the “Interaction – Filtering features” category, participants agreed, for most

of the features, that the description, figure, and constraints identified were adequate.

Regarding the description, one participant did not consider 3 features adequate: Mode,

Method, and Tuning/Tweaking. In Mode and Method, the participant suggested the

presentation of the subtypes of the respective features for making their description

adequate. In Tuning/Tweaking, the participant stated that the definition was not clear,

since it employed other terms that were not previously presented “(e.g., ‘tweaking’ and

‘stand from the screen’)”.

According to one participant, only the Tuning/Tweaking and Segmentation

figures were not considered appropriate, since the former did not have a higher

resolution and the latter was not clear enough to represent Segmentation. Both

participants agreed that the relationships between features were adequate, and there

were no problems with ambiguity, inconsistency, and extraneous information. However,

one participant thought there was omission of some features, such as “Filter by

keyword” and those that contain information regarding augmented reality.

129


For the “Interaction – Panning, Browsing, and Zooming features” category, only

the Drag and Drop feature was pointed out as inadequate by one participant. However,

the problems pointed out by him/her refer to its relationship with Panning, not its

description. Regarding the figures, both participants affirmed that the “Drag and Drop”

and “Querying” were not clear, since (i) they did not reflect the description of the

feature, and (ii) some elements used in the figure were not clear. One participant also

did not consider appropriate the Browsing, Navigation, and Zooming figures. He/she

asked for “more clarity” in the two former, since some elements of the figure made it

confusing. Regarding the latter, according to him/her, the figure should present the same

object with three different zoom levels to make the concept clearer. The Semantic

variation of the Zooming feature presented such example, but maybe the participant

expected this to be on the higher-level feature.

Four feature constraints were not adequate for one participant. Most of the times,

the participant suggested the addition of some constraints (e.g., Expand/Collapse for the

Browsing feature, Selection for Querying, and Zooming for Geometric). Regarding the

relationships between features, one of the participants seemed to disagree with the

established “hierarchies” (e.g. Drag and Drop as a child of Panning), although he/she

did not provide any explanation for this.

No participant identified problems with respect to ambiguity, inconsistency, and

extraneous information. Regarding omissions, one participant stated that the feature

“Details on Demand” could be incorporated in this category as well.

Finally, for the “Interaction – Other features” category, both participants found

the description of the Aggregation feature as not adequate. One of them found the

definition vague and imprecise, while the other suggested that the definition should

inform that aggregation is very important for the summarization of large data.

One participant did not consider adequate the description of Linking (since it

uses the term ‘highlighting’, which makes some confusion with the

Highlighting/Mitigation filtering feature) and Selection (due to the “poor” description of

the feature, emphasizing its frequency of use and relevance instead).

According to one participant, the Selection and Aggregation figures were not

appropriate. In the Selection figure, “the mouse pointer does not look like it is selecting

some of the graph nodes”, while in the Aggregation feature, “the figure does not

demonstrate the concept of aggregation, and the correspondence between figures is not

clear”.

130


With respect to the constraints, both participants agreed they were adequate,

except the Aggregation constraint, since one participant did not agree that Zooming

mandatorily requires Aggregation, “although it would be very useful”. Regarding the

relationship between features, participants agreed that they were adequate. One

participant informed, during the check for ambiguity, that the clustering feature

appeared two times (as an information visualization method and as a hierarchical

positioning feature); the participant stated, “it is better to say that it is an information

visualization method”.

During the follow-up questions, when asked about the scenarios in which the

feature model could be used, five participants mentioned its contribution for knowledge

management:

 “it might be useful for analyzing existing visualizations”;

 “it is a way of organizing the knowledge in the field”;

 “it could be used as a basis for the creation of an ontology or a Wiki about

information visualization”;

 “it shows different ways of visualizing data”;

 “it shows the different possibilities on combining visualization features”.

One participant also pointed out the potential of using it in “teaching/training for

beginners in the field”.

Four participants stated that it could be used in practice in different ways:

 “it can be a driver towards identifying reusable parts for accelerating the

development of visualization tools”;

 “it would be very useful for building a visualization product line and for general

decision about which visualization can be more useful in a given scenario”;

 “it could be used in projects in which the interaction between the user and the

system are of great importance, and for contextual application design”;

 “it is useful for building systems with large amounts of data”.

As it can be noticed, two participants mentioned the model as an initial step for

supporting the reuse of visualization features. If one could build systems or frameworks

in a “feature-based” way, this could potentially ease and accelerate the construction of

visualization tools. However, one participant pointed out that the feature model “seems

of little use in building new visualizations”. The same participant stated that the model

concepts and examples “are useful in analyzing and thinking about visualizations”.

131


Regarding suggestions for improving the description of the feature model, one

participant said that there should be more examples of use of each visual metaphor.

Another participant stated that the model needs to keep growing, and it would be

interesting to represent that somehow.

Based on the comments and suggestions made by the participants, an improved

version of the visualization feature model will be prepared and made available through

an interactive website (a kind of visual catalog of features) for allowing a better

exploration of features and their relationships/constraints. This might also help

performing further evaluations. For performing the improvements, the answers pointed

out by all participants will be discussed for ponderation.

Some limitations and threats to validity of this study include: (i) the closeness to

some participants, which may have caused bias, (ii) the low familiarity of many

participants with feature modeling (shown in Figure 5.1), (iii) the lack of answers when

a participant disagreed with something, since it is not possible to improve the model

without an explicit statement of the problems, (iv) the low number of participants, and

(v) the size of the questionnaire, which may have tired some participants to properly

analyzing the questions.

5.3 Evaluation of Zooming Browser

This section presents the study for evaluating the feasibility of Zooming

Browser. The goals of this study are described in Table 5.3, according to the GQM

approach [Basili et al. 1994].

Table 5.3 – Identification of the study goals

Questions Answers

Object of study (what is going to be

analyzed?)
the Zooming Browser tool

Purpose (why / for which purpose the object

is going to be analyzed?)
characterizing

Quality focus (what properties of the object

will be analyzed?)

feasibility in supporting the execution of

reuse tasks

Viewpoint (who will use the collected data?) software developers and reuse managers

Context (in which context the analysis will

be performed?)

software development tasks and

organizational tasks

Thus, this study can be defined as follows:

Analyze the Zooming Browser tool

For the purpose of characterizing

With respect to the feasibility in supporting the execution of reuse tasks

132


Under the point of view of software developers and reuse managers

In the context of software development project tasks and organizational tasks

Similarly to [Fritz & Murphy 2010], it was decided not to perform a comparative

study, as it was not possible to identify any other approach close to Zooming Browser

that provides a similar support. The only analogous alternative to the execution of most

tasks is to search for the information provided by the tool in several different websites

and perform data aggregation manually, which is an obviously time-consuming

approach.

Thus, due to the exploratory nature of the study, there is no baseline for

comparison (i.e., there is no setting for the execution of such tasks without visual

support). The goal of this study is to obtain quantitative and (mainly) qualitative

information regarding the extent to which Zooming Browser can achieve the purposes

for which it was built.

5.3.1 Planning

The next subsections describe details on the planning.

5.3.1.1 Study research questions

In order to consider Zooming Browser useful, developers and reuse managers

must be able to easily use its visualization and interaction resources to answer questions

of interest about software reuse. The main research question of this study aims to assess

the following: Is the use of Zooming Browser feasible in supporting the execution of

reuse tasks? Some study research questions (SRQs) were derived from it for

investigating some aspects in more detail, as follows:

 SRQ1. Is the information provided by Zooming Browser useful for supporting the

execution of reuse tasks?

 SRQ2. Are the visualizations and interaction resources employed in Zooming

Browser useful for supporting the execution of reuse tasks?

 SRQ3. By performing the reuse tasks through Zooming Browser, is the efficacy

considered satisfactory?

 SRQ4. By performing the reuse tasks through Zooming Browser, is the efficiency

considered satisfactory?

 SRQ5. To which extent does Zooming Browser ease the execution of the reuse tasks?

133


5.3.1.2 Variables

The evaluation uses the following quantitative variables: efficacy (measured

through precision and recall) and efficiency. They are described as follows:

 Precision (exactness)

 number of correct answers given by the participant divided by the total number

of answers given by the participant.

 Recall (completeness)

 number of correct answers given by the participant divided by the total number

of expected correct answers.

 Efficacy (correctness)

 the F-measure64 is used in the context of this work for analyzing efficacy as a

tradeoff between precision and recall; it is calculated as two times the precision

times the recall, divided by the sum of the precision and the recall.

 Efficiency (time needed to answer each question)

 number of answers given by the participant (including incorrect and duplicate

answers) divided by the time spent.

When measuring time, two different aspects are considered: (i) the time spent

for starting to answer, and (ii) the time spent on answering. The former is accounted

since the moment the reading of the question is finished until the moment the participant

starts answering verbally. Thus, it encompasses interactions performed and the rationale

to answer the question. The latter is accounted since the moment the participant starts

answering verbally until he/she finishes answering. This decision is based on previous

experiences, which showed that people might find the answer quickly, but take some

time to elaborate it orally or textually. The opposite also applies.

The assessment of the adequacy of both efficiency and efficacy values obtained

is made qualitatively, since there is no baseline for comparison and this is not a

comparative study. Thus, although it is measured quantitatively for providing the

efficiency of executing reuse tasks with Zooming Browser, its adequacy is evaluated in

terms of the participants’ perception with respect to this variable.

The qualitative information is composed by the following variables:

 Perceived usefulness of the presented information

64 The traditional F-measure (or balanced F-score, or F1 score) is known as the weighted harmonic mean

of the precision and the recall, with equal balance between these variables.

134


 Perceived usefulness of the presented visualizations

 Perceived usefulness of the employed interaction resources

 Perceived efficiency of the tool (to contrast with the efficiency variable)

 Perceived easiness in performing the tasks

 Perceived difficulties identified in performing the tasks

With the exception of the perceived difficulties, all these variables are measured

through a 5-point Likert scale [Likert 1932]. In addition, the researcher may take notes

related to the difficulties not made explicit by the participants, based on his observation.

5.3.1.3 Study population

Reuse managers and software developers compose the population of this study.

To be eligible to participate in the study, reuse managers should have participated in an

MR-MPS-SW implementation of levels E or above or have led reuse initiatives on their

organization, being aware of the assignments of this role. Software developers, in turn,

must have a minimum knowledge of software reuse practices, i.e., must have at least

tried to reuse an asset in the context of a project. The selection of participants is based

on convenience sampling, i.e., because of their convenient accessibility and proximity

to the researcher. Potential participants are selected based on their availability, and can

also recommend other participants.

The tasks to be performed by reuse managers are different from the ones

targeted to software developers (although some questions are common to both roles, as

shown in Section C.3 of Appendix C). The characterization of the participants defines

the role that they will perform.

5.3.1.4 Study method and instruments

This study uses a replicated project study design, i.e., it employs multiple

subjects (or teams of subjects), all working on the same application and scenario

[Seaman 1999]. The advantage of keeping the application constant is “to isolate the

effect of differences between subjects, especially, it is hoped, the treatment effect”

[Seaman 1999].

For the study setup, a set of questions was selected from the original questions

for this study (presented in Appendix A) and grouped in tasks. They were chosen based

on the performed mapping (also presented in Appendix A) to cover the Zooming

Browser goals in a hypothetical setting. Similarly to [Fritz & Murphy 2010], each

135


question was made more specific in this study for two reasons: (i) to reduce the range of

interpretations of the questions (so that the different approaches of participants to

answer the questions could be compared), and (ii) to match the data in the study setup.

The participants are oriented not to interact with the tool, neither while the tasks

and questions are being presented to them nor while asking clarification questions, for a

proper accounting of the time spent. Each question is presented for the participants

orally, one at a time; otherwise, in the later analysis of the sessions, it would not be

possible to differentiate when the participant is reading the question or using the tool.

The study is composed of four steps, each with a corresponding instrument (all

of them are presented in Appendix C). First, participants must fill out a characterization

questionnaire (presented in Section C.1). This is followed by the application of a survey

on the relevance of some information on executing reuse tasks (presented in Section

C.2)65. The third step is the execution of a list of tasks (presented in Section C.3) with

Zooming Browser, according to the performed role. Finally, participants fill out a

follow-up questionnaire (presented in Section C.4). Some of the questions from the

characterization questionnaire were inspired in previous works ([Oliveira 2011] [Pötter

et al. 2014]) and in [Bauer et al. 2014].

Each task is composed by a set of questions. The initial question of each task

requires the participant to inform how he/she would perform the task in his/her day-to-

day activities without the tool support. For its answer, the time was not taken into

account, because no interaction is made with the tool. The last question of each task, in

turn, involves taking a decision related to the task after having access to the data

provided by the tool. Although it did not involve tool interactions, the answer was

accounted in the time variable because it is a result of the previous interactions. Both

kinds of questions do not have an expected answer, since different participants can have

different opinions and take different decisions based on their background experience.

5.3.1.5 Data collection methods

The data collection methods are (i) the participant observation (whose idea is to

capture firsthand behaviors and interactions that might not be noticed otherwise

[Seaman 1999]), and (ii) the application of the instruments mentioned in Section

5.3.1.4. Because much of software development work takes place inside a person’s

65 This survey evaluates the relevance of the information collected by Repository Miner.

136


head, such activity is difficult to observe. Thus, think aloud protocols are used in

addition to the participant observation. These protocols require the participant to

verbalize his/her thought process so that the observer can understand the process going

on [Seaman 1999].

The recording of study sessions is based on audio recording (if authorized by the

participant) to save participant’s time and to keep track of some reactions and

observations more carefully, improving the quality of the data and the analysis.

5.3.1.6 Evaluation setting

The study setup is based on a set of tasks elaborated for each role (reuse

manager and developer), described in Appendix C (Section C.3). Such tasks use a

subset of real data (collected from open source projects) and some hypothetical

situations, inspired on previous experiences of the author of this thesis in implementing

and assessing reuse processes in software organizations66. Since the resulting scenario is

a combination of real data and hypothetical situations, it is characterized as fictitious,

i.e., neither the problems listed in the tasks nor the answers and solutions provided to

them represent the reality of any organization or any open source project.

5.3.1.7 Analysis procedure

The mapping presented in Table 5.4 shows the strategy used for answering the

study research questions based on the variables presented in Section 5.3.1.2. All these

questions contain a direct measure of the variables in the follow-up questionnaire, with

the exception of SRQ3, which is evaluated solely through the results of the execution of

the tasks. SRQ4, in turn, involves both the results of the execution of the tasks and a

direct measure of the perceived efficiency through the follow-up questionnaire.

Table 5.4 – Mapping for the analysis procedure

Study Research Questions Variables Questionnaire Items

SRQ1. Is the information provided by

Zooming Browser useful for supporting

the execution of reuse tasks?

 Perceived usefulness

of the presented

information

Corresponding question in

the follow-up questionnaire

AND

Results of the questionnaire

on the relevance of the

information

66 Due to that, there is a field in the follow-up questionnaire asking if participants think that the executed

tasks in the scenario match the day-to-day reality of their performed role.

137


Study Research Questions Variables Questionnaire Items

SRQ2. Are the visualizations and

interaction resources employed in

Zooming Browser useful for supporting

the execution of reuse tasks?

 Perceived usefulness

of the presented

visualizations

 Perceived usefulness

of the employed

interaction resources

Corresponding questions in

the follow-up questionnaire

SRQ3. By performing the reuse tasks

through Zooming Browser, is the

efficacy considered satisfactory?

 Efficacy (Precision

and Recall)

Results of the execution of

the tasks

SRQ4. By performing the reuse tasks

through Zooming Browser, is the

efficiency considered satisfactory?

 Efficiency

 Perceived efficiency

of the tool

Results of the execution of

the tasks AND

Corresponding question in

the follow-up questionnaire

SRQ5. To which extent Zooming

Browser eases the execution of the

reuse tasks?

 Perceived easiness in

performing the tasks

 Perceived difficulties

identified in

performing the tasks

Corresponding questions in

the follow-up questionnaire

The open coding technique [Seaman 2009] is also used for better organizing the

qualitative data obtained from the study.

5.3.1.8 Threats to validity identified during the study design

Some threats to validity of this study were identified during its design. Each

description is followed by the decision made in its regard. Table 5.5 lists the identified

threats and the planned actions for mitigation each of them, when possible.

Table 5.5 – Identified threats to validity and actions for mitigating them

Threat Action(s) for mitigation

The observational nature of the study

may cause anxiety or influence the

behavior of some participants (causing

observation bias67).

This is something hard to control. The participants must

be comfortable to perform the study and aware that

what is under evaluation is the tool, not the participant.

Besides, they are free to ask for pausing or stopping the

recording at any time, as well as make questions.

Think aloud protocols are limited by

the comfort level of the participants

and their ability to articulate their

thoughts.

This is an underlying threat to validity when using this

protocol. However, although automatic data collection

is sometimes more suitable (as posed by [Kagdi &

Maletic 2008]), participants’ reactions and difficulties

(which are highly relevant for this characterization

study) would not be properly tracked. Through the

audio recording and the participants’ observation, it is

possible to detect how this impacts each participant.

67 This is also known as the Hawthorne effect (also referred to as the observer effect). It is a type of

reactivity in which individuals modify or improve some aspect of their behavior in response to their

awareness of being observed [Franke & Kaul 1978].

138


Threat Action(s) for mitigation

The researcher created the scenario

setting and chose the set of questions

for the study; they may not be

representative of the software

development scenario.

These aspects must be assessed in terms of

representativeness of a software development scenario.

In this sense, a follow-up question is added to ask if the

scenario setting reflects the reality of the software

development scenario (i.e., if the identified needs are

actually relevant), in the participants’ opinion.

As the information provided by

Zooming Browser was tailored towards

the questions asked, participants may

have had to spend less time than

otherwise to answer a question of

interest.

A similar threat was pointed out in [Fritz & Murphy

2010]. This is a limitation that cannot be overcome at

the time, because an evaluation in an industry setting

would require both collecting industry data and

selecting an organization that is currently implementing

reuse processes (i.e., that faces the needs that the tool is

intended to support). It was not possible to identify (at

the time of the evaluation) an organization with such

characteristics and availability.

Participants may not be representative

of the population to which Zooming

Browser is intended.

It was decided to take the risk. The researcher did not

consider selecting subjects that are representative of the

entire population due to the difficulty and effort

involved in this procedure. Instead, the selection of

participants is based on convenience sampling, as

stated previously. Thus, it is known beforehand that

results cannot be generalized.

External factors may distract the

participant while performing the task.

This is not under total control of the researcher, as the

experiment cannot take place in a single locus, due to

restrictions on the availability of potential participants.

The only criterion is that the place for the evaluation

sessions must be an environment that avoids

interruptions as much as possible.

5.3.1.9 Pilot study

A pilot study was run with one master student and one specialization student

(i.e., both with an undergraduate degree). The former has 3 years of practical experience

in object-oriented (OO) development, while the latter has 6 months. Both stated that

they have advanced knowledge in software reuse, and while the master student stated

he/she has an advanced knowledge in software development (programming), the

specialization student has a deeper knowledge in the reuse management process of MR-

MPS-SW. Thus, the former (hereafter referred to as PilotSD) performed the software

developer role and the latter performed the reuse manager role (hereafter referred to as

PilotRM). The list of executed tasks can be found in Section C.3 of Appendix C.

The pilot study followed the expected flow of the evaluation (described in

Section 5.3.1.4). A short explanation of each perspective was given to the participants

before the actual execution of the tasks. During this explanation, they were not allowed

to interact with the tool, in order to allow verifying the intuitiveness, affordance, and

“actionability” of visualizations.

139


The participants of the pilot study indicated two questions that sounded

confusing in the characterization questionnaire, and pointed out a question that was out

of place. During the execution of the tasks, PilotSD (which has an intermediate

expertise level in software visualization) indicated the lack of affordance because of the

mouse cursor. “When hovering some items, the cursor remains as an arrow, but should

be a pointer, which indicates that there is something else there to be explored”. None of

them could answer one of the questions properly, due to the lack of information in a

tooltip. Some questions asked during the tasks were not clear and should be rewritten.

According to both participants, the text size was too small for the screen size,

and the title of each perspective was disproportionally large, in spite of the responsive

design. Some texts were cropped in some charts and in the reuse map. Besides,

participants complained about the impossibility of interacting with the tool before

executing the tasks. According to PilotSD, “it is ok not to provide great level of details

in the explanation, for not anticipating answers and for assessing the intuitiveness of the

tool. However, participants need some immersion time with the tool; otherwise, they

will not be able to achieve good efficiency”.

All these items were subsequently corrected before the execution with the

participants. Based on the last comment by PilotSD, an additional time of interaction

(without supervision by the researcher) was included in the task execution.

5.3.2 Execution

The characterization questionnaire and the survey were sent by e-mail to the

participants who agreed with participating in this study. They were answered before the

execution of the tasks. 12 participants answered the questionnaire and participated in the

full study. From those, 3 participants performed the role of reuse managers (RMs),

while 9 performed the role of software developers (SDs), according to their profiles.

The sessions were scheduled and executed in places that were as free of

interruptions as possible. The experiment was run in a 13.3’’ notebook with a Core-i5

processor, CPU @ 1.60GHz, 4GB RAM memory, running 64-bit Windows 7 Home

Premium, with maximum brightness level. All the study sessions were run on the same

machine, in order to avoid issues on hardware performance differences. In addition, all

the participants used the same initial configuration of views.

All participants agreed with audio recording their sessions. They were instructed

to express themselves according to the think-aloud protocol. They were told they could

140


make any clarification questions whenever they wanted; however, in some cases, the

researcher could ask what they thought was the answer (e.g., to assess if they interpreted

the underlying concepts in the visualizations). They had a brief explanation of Zooming

Browser and its goals, along with a basic training of its perspectives. Following the

presentation of each perspective, participants were given some limited time to interact

with them and check the visual responses to their interactions.

After that, participants started executing the tasks, according to the role they

performed. When the tasks sessions were done, participants filled out the follow-up

questionnaire, without the presence of the researcher.

5.3.3 Analysis

The analysis of this study was divided into four parts: characterization data,

results from the survey (on the relevance of information for software reuse), analysis of

the task executions, and follow-up data. The detailed analysis of each aspect will be

published as a technical report, due to the broadness of results. The main results of this

analysis are presented in the next subsections.

5.3.3.1 Characterization data

The academic level background of the participants is shown in Figure 5.2. All

RMs were at least coursing a specialization. All SDs had at least finished the

undergraduate course, but most of them (5) range between an ongoing master course

and a finished specialization/master course.

Figure 5.2 – Participants’ academic level background

Figure 5.3 shows the participants’ OO development experience. 2 out of 3 RMs

and 7 out of 9 SDs have developed OO as part of a team in the industry. Besides,

participants in general have at least four years of OO development experience, and 4 of

them have 10 or more years.

141


The organizations in which they work include a Brazilian government-owned

corporation of IT services, a rendering services organization for a semi-public Brazilian

multinational energy corporation, two IT consulting organizations (one is a provider of

consulting services, development of business solutions, and marketing, and the other is

a management consulting and technology services). There are also specialized

companies that provide products on-demand (one of them develops websites for e-

commerce and marketing sectors, another is specialized in cloud computing,

outsourcing, and services). Finally, other two organizations use IT as a medium for

improving their activities (i.e., software development is not their core business).

Figure 5.3 – Participants’ OO development experience

The level of familiarity with some topics related to the evaluation is depicted in

Figure 5.4. Three participants (all of them SDs) have no expertise in issue tracking

systems, and three participants (one RM and two SDs) have no expertise in software

visualization. All participants have at least a basic expertise in the other topics.

Figure 5.4 – Participants’ level of familiarity with topics involved in the study

Regarding the knowledge about the MR-MPS-SW, only two participants (all

RMs) participated in an implementation or assessment involving reuse processes, and

both executed the role of reuse managers. The third RM led reuse initiatives on his/her

organization (not related to MR-MPS-SW), being aware of the assignments of this role.

When asked about what they consider for deciding whether or not to reuse an

asset, responses were the following:

142


 Meeting of project needs (3 participants, all SDs);

 Asset compatibility (2 participants, being 1 RM and 1 SD);

 Asset documentation (2 participants, both SDs);

 Asset development/release history (2 participants, both SDs);

 Asset reviews by consumers (2 participants, both SDs);

 Asset issues (2 participants, both SDs);

 Asset popularity (1 participant, RM);

 Asset stability (1 participant, RM); and

 Projects in which the asset was reused successfully (1 participant, RM).

Some of these responses seem to have some intersection. For instance, the

reviews by consumers and projects that reused the asset relate to the asset popularity,

while the asset development/release history and its issues partially denote the asset

stability. Zooming Browser already encompasses some of these data, as shown in the

next subsection. The other mentioned information can be taken into account for

improvements of the approach.

5.3.3.2 Results of the survey (on the relevance of information for software reuse)

Participants’ responses to the relevance of information for software reuse are

presented in Figure 5.5. Values range between 1 (totally irrelevant) and 4 (totally

relevant), in an ordinal scale. Responses are ordered (from top to bottom) according to

the relevance assigned by the participants for each information, and the median values

depict the most common opinion among them.

Figure 5.5 – Participants’ opinion on the relevance of information for software reuse

tasks

143


Results show that the asset license is one of the most relevant information for

these participants, followed by asset issues, since in both cases only one participant

considered these kinds of information “somewhat irrelevant”, while the others

considered at least “quite relevant”. In fact, asset licenses must be checked due to their

conditions and restrictions, which may incur in legal concerns. Besides, asset issues

represent an important indicator of its quality and frequency of corrections, which are

crucial aspects when it comes to reuse. The asset dependencies on other assets and the

asset release history also play an important role according to these participants.

The less relevant information, according to the participants, is the list of other

assets that depend on the asset, followed by the asset consumers’ contact information.

Interestingly, 2 out of the 3 RMs informed that such contact information is “somewhat

irrelevant”, although it is necessary to communicate them about changes in the status of

the assets.

An observation extracted from these results is that each single information in

considered “totally relevant” by at least one participant, which shows that some

information may be considered of no importance for some, but is very important for

others. Another remark is that RMs considered a larger number of information as

relevant (along with two developers).

Comparing with the information that participants considered relevant (asked in

the characterization questionnaire), the items asset development/release history, asset

issues, and projects in which the asset was reused are the only ones that directly match

the set of information listed in the survey. However, participants seem to agree with

most of the information presented in the survey.

5.3.3.3 Analysis of the task executions

The duration of the individual sessions ranged between 35 minutes and 1 hour,

without considering the preparation time. The differences are due to several reasons:

some participants found it difficult to start using the tool, but ended up getting used to it

during the study. Besides, some participants requested for repeating the questions more

than once, because they were missing the question goal while interacting with the tool

and exploring the available options.

For illustration purposes, Figure 5.6 shows the performance of the three RMs for

each question based on the time spent (in seconds).

144


Figure 5.6 – Participants’ performance (in seconds) in executing Reuse Management

(RM) questions

It can be noticed that there is a considerable variation among participants not

only in the time for finding the information and starting to answer, but also in the time

spent on answering. In addition, occasionally the time for starting to answer is close to

or equals zero because the participant already realized (based on previous interactions)

where the information is, or because the information is in the last perspective he/she

used. However, even in cases like this, some participants spent an additional time

searching for the information in other places.

145


Results for precision, recall, and efficacy per RM question are presented in

Figure 5.7. A zoomed copy of the varying parts is positioned on the right side of the

figure.

Figure 5.7 – Precision, recall, and efficacy per question (reuse managers)

In RM1g, participants were asked to answer which assets (among the most

reused ones) were reused by the 3 most active asset producers. The question might have

been “tricky” to answer using the dashboard, because one could interact with the pie

chart (so that the producer bar chart is updated) or the opposite way, depending on the

interpretation of the necessary steps to answer the question. However, when hovering a

slice of the pie chart, the producer chart updates itself with who produced that asset,

while when hovering a bar of the producer bar chart, the pie chart updates itself with the

assets reused by the producer (as the title of the pie chart indicates), which was the

expected answer. Two out of three RMs gave an incomplete answer (lowering their

precision), but the answers they gave were correct (keeping a high recall).

Questions RM2b and RM2f required the participant to make an estimation of the

frequency of releases and the time it takes for asset producers to fix reported bugs,

respectively, by interacting with a bubble chart. Since this information was not readily

available visually (it required reading the bubble tooltips), all RMs took some

interaction time for answering the question. Some tried to be more precise than others.

The bubble size (which indicates the time) should be used as a starting point, so that the

participant could answer the question based on a small number of similar bubbles.

One of the RMs provided an incorrect answer to both RM2b and RM2f. In the

former, he/she did not provide a quantitative or qualitative answer, just a statement that

there were several releases, while in the latter he/she provided an incorrect answer

146


(overestimating the time, because he/she mixed up bugs and improvement requests).

The other two RMs answered the questions correctly.

Figure 5.8 presents results for precision, recall, and efficacy per SD question. A

zoomed copy of the varying parts is positioned on the right side of the figure.

Figure 5.8 – Precision, recall, and efficacy per question (software developers)

Regarding SDs, questions SD1c and SD1e asked which version of the asset were

reused and which consumers reused it in which projects, respectively. These questions

required the participant to answer orally each of the reused versions and each of the

asset reuse occurrences, which can be considered as error-prone tasks due to the amount

of presented information. The latter also involved several interactions with the tool,

since the information was presented in a tooltip.

The answers provided by SDs for SD1c were all correct (maximum precision),

but two participants missed one asset version each (decreasing the recall). This can be

due to the amount of bubbles (i.e., versions) that were part of the answer – there were 12

reused versions in total. Regarding SD1e, one SD missed a reuse occurrence (decreasing

recall). Another SD provided 19 answers (there were 21 expected answers): he/she

missed 4 reuse occurrences (decreasing recall) and provided the same answer twice for

2 reuse occurrences (decreasing the precision).

Questions SD1f, SD1i and SD1j also had a decrease in both precision, recall,

and efficacy, at the same proportion. Since SD1f is the same as RM2d and SD1i is the

same as RM2f, the reasons stated for these RM questions also apply to SDs. SD1j, in

turn, refers to the frequency with which producers implement improvement suggestions.

For SD1f, two SDs did not provide a valid answer, and one overestimated the release

frequency. For SD1i, one SD overestimated the time (he/she also mixed up bugs and

improvement requests). In SD1j, one SD underestimated the implementation frequency.

147


For all the other questions, all RMs and SDs achieved maximum precision and

recall (therefore, maximum efficacy). Many participants provided oral feedback about

question SD1e being tiresome; they lacked a filter mechanism to ease the answering.

Because there is no baseline for comparison and since there is not an “ideal” pre-

established value for the efficiency, this variable is analyzed by comparing the

participants’ results with respect to the average of their results. However, results can

only be compared in the context of the same question, since the efficiency value does

not take into account the different underlying levels of complexity involved in each

question, neither the different number of answers when comparing the questions.

The measures for the efficiency variable values per question for each RM are

presented in Figure 5.9. The perceived efficiency is analyzed in Section 5.3.3.4.

Figure 5.9 – Efficiency values per question for each reuse manager

Although some RMs may seem to be outliers in some of the questions, each

participant achieved a considerably greater efficiency (in isolate questions) in different

questions. Besides, the sample is too small to perform outlier analyses.

RM1 stayed above the average in 10 out of the 16 questions, and had a particular

high efficiency in question RM1h. This question involved the reuse map, and the other

participants spent a significant time trying to use another metaphor (due to the lack of a

filter option, according to them). RM2 stayed above the average in 7 questions,

outperforming the other participants in RM3c. Although all participants spent the same

time for starting to answer RM3c, RM2 answered it faster. However, the difference in

time to RM1 was not too significant (only 5 seconds).

148


Finally, RM3 stayed above the average efficiency in only 3 questions. In many

cases, he/she stayed under half of the average. This RM stated that he/she lacked

familiarity with the tool, and had a particular analysis profile: for answering most

questions, he/she kept interacting with the tool in order to explore the available options,

even in cases in which the answer was already in the currently open perspective. It is

not possible, though, to state that he/she is an outlier: many developers are curious for

exploring and understanding the tool features, and the lack of familiarity with the tool

impacted his/her performance (as stated in the follow-up questionnaire).

The measures for the efficiency variable values per question for each SD are

presented in Figure 5.10. An excerpt of this figure with a detailed view of questions

SD1e to SD2b is depicted in Figure 5.11, with a different y-axis scale.

Figure 5.10 – Efficiency values per question for each software developer

Figure 5.11 – Efficiency values per question for each software developer (excerpt)

149


It was not possible to identify patterns between participants. In most questions,

there was no homogeneity of efficiency. An observation was that most participants did

not stay too far from the average in SD1e. In the other questions, there was a large

variance between participants’ efficiency.

Participant SD01, for instance, stayed above the average in 6 questions, being an

isolated case especially in SD1d and SD2e. However, he/she also had the worst

efficiency in SD1h and SD1j (related to estimating the frequency with which producers

fix bugs and implement improvement suggestions, respectively). Another SD09 had low

efficiency values when compared to the others in each question, except in SD2c (for

identifying the 3 main producers of an asset), in which he/she achieved the greatest

efficiency. In fact, it can be noticed that there is no SD who is the most or the least

efficient in all the questions.

One of the questions (asking which consumers reused a given asset in which

projects) took a longer time because it required participants to identify a large set of

information by interacting with the tool. Moreover, some participants initially refused to

use the available view (because it would require several interactions with the reuse map,

due to the lack of a filter resource) and kept searching for the information in other

views/perspectives. Some participants selected other options more than twice trying to

find an alternative way of answering the question, but without success.

Other questions (common to RMs and SDs) that some participants found

tiresome were the ones related to the issues bubble chart. Participants in general had

difficulties in finding the average time that producers had taken to fix a bug, which

should be based on the average size of the bubbles and the tooltip that showed the exact

time. The interpretation of the color scheme varied a lot between participants: some

thought that red bubbles were the ones that were delayed, other stated that they

represented urgent issues, and a few identified that it represented a bug. When

participants saw this bubble chart, no legend was initially presented (intentionally) for

capturing what they thought the colors meant. After they stated their opinions, a legend

was given with an explanation (the time variable did not consider the explanation time).

During the evaluation, there were some interesting findings. Some participants

who evaluated the relevance of a given information as “somewhat irrelevant” and

“totally irrelevant” ended up using the information for answering some questions

(related to the information taken into account for performing the task). For instance, in

SD2a, one of the participants who found the consumers’ contact information as “totally

150


irrelevant” stated, “I could also ask for some help from developers, in order to integrate

it to the project (preferably developers who already reused the asset); I would identify

these developers by asking if they already reused it”.

A curiosity is that one SD mentioned that he/she thought the information

presented in the tool was more administrative. This was mentioned when answering

SD1j. However, for answering SD2a, he/she said that the first thing he/she would do is

“to look at the Dashboard and check who is using the asset more often and for a longer

time, in order to contact these people to know where to start from”. The participant

added that he/she “would also check what are the versions most reused”. This reinforces

the fact that the information provided by the tool is not limited to administrative roles,

but it is also a way to provide reuse awareness that can promote communication

between team members.

Besides, in RM1h, all RMs noticed that more than 3 projects contained the same

amount of assets, so they were not sure about which ones to consider for answering this

question. A similar situation occurred in RM1f: RMs were asked to indicate the “top 3”

consumers, but a fourth consumer reused the same amount of assets compared to the

second and third consumers. After noticing these situations, they were told to consider

the ones in order of appearance. This demonstrates that they have not answered the

questions “automatically”, but paid attention to surrounding information for providing

the answer (which could be relevant in a real scenario).

Most participants were able to understand the semantics of the visual attributes

used in the Metadata Exploration perspective (especially size and color) and the reuse

map (the color scale, without using the available legend). They either stated this

explicitly in the think-aloud protocol or provided this information when asked by the

researcher (“what did you use to answer this question?”) after answering the question.

Finally, three SDs noticed that, in one of the tasks, the suggestion of reusing the

asset was given by two developers, but one of them had never reused it, according to the

data presented in the perspectives. Interestingly, each participant realized it using a

different perspective: one used the Dashboard, another used the Metadata Exploration,

and the third one noticed while interacting with the Reuse Map. Besides, 5 participants

(1 RM and 4 SDs) figured out that the tool drilled down to the issue webpage for

additional information, by selecting a bubble in the issues bubble chart.

151


5.3.3.4 Follow-up data

Some aspects defined in the planning were evaluated in the follow-up

questionnaire. The results are depicted in Figure 5.12.

Figure 5.12 – Participants’ perception on some aspects of Zooming Browser

As it can be seen, all the participants considered the usefulness of the presented

information at least high. One participant complained, “the tool is missing auxiliary data

that can be tabulated to complement the displayed data”. The usefulness of the

presented visualizations was the most well evaluated aspect (8 out of the 12 participants

considered its usefulness as very high and the other 4 considered it high).

Regarding the usefulness of the employed interaction resources, one participant

(a SD) found it low, while all the others found it at least high. In other follow-up

questions, this participant stated that his/her “greatest difficulty was the lack of a steady

‘Back’ button”. He/she stated, “At first, I experienced some difficulty in navigating and

changing context between the available perspectives, especially in interpreting and

deciding which perspective or visualization would help me perform the tasks the best

way”.

The efficiency of the tool was considered very high by 6 participants, high by 4

participants, and medium by 2 participants (a RM and a SD). The RM stated in another

comment that the “unfamiliarity with the tool” was one of his/her perceived difficulties,

which may be the reason for this perception. The SD, in turn, complained about the

“lack of clarity and organization in the issues bubble chart”. Indeed, he/she was the

participant who took the longest time to answer one of the questions related to this

152


chart, and the second longest time in another question on the same chart. One

participant added, “If I already knew the interface, I would probably be significantly

more efficient”.

Regarding the easiness on executing the tasks, only 3 participants considered it

very high, while 5 found it high and 4 stated it was medium (one of them is the RM who

felt unfamiliar with the tool). Other comments include “not knowing in advance (a

priori) where to find the required information” and “the lack of auxiliary tabulated data

to complement the displayed data” (as stated previously).

When asked if the executed tasks match the day-to-day reality of the role they

performed, all participants answered positively, but one of them (a RM) mentioned

“partially”. According to him/her, “in the day-to-day, the developers’ feedback would

be useful combined with the static analysis of the dependencies and other information

provided by the tool”.

Most of the identified difficulties seem to be related to the lack of familiarity

with Zooming Browser. Participants perceived the following difficulties:

 Some tool issues (mentioned in the improvements for the tool);

 “Navigating and changing context between the available perspectives” (as stated

previously);

 “At first, because there is too much information on the tasks, I was a little confused;

however, when I got used to the tool, I could perform tasks more easily”;

 “Unfamiliarity with the tool” (as mentioned previously);

 “The first contact with the tool; at the beginning of use, I was more apprehensive

(mood), but over time I’ve had a better understanding in practice. In addition, the

tool has several features, so recalling where I could obtain an information and in

which perspective was more difficult at first”.

With respect to the benefits of Zooming Browser, the following answers were

given:

 Regarding the provided information:

 “Detailed and quantitative information about reuse”;

 “With the tool, it was possible to identify all the information required to manage,

maintain, and execute some reuse tasks without any kind of problem or

difficulty”;

153


 “The tool allows to obtain relevant information about an asset, such as usage

history, developers who used it etc., linked with the asset repository. Such

information greatly helps in choosing an asset for reuse”;

 “The tool favors the decision making for choosing the asset, based on a

consolidated view. The fact that the information is made available in a

summarized and totalized form is itself a benefit (for example, in the

dashboard)”.

 Regarding the interface and intuitiveness:

 “The tool has an intuitive and simple interface, so that within a few minutes I

was already familiar with it”;

 “The tool is intuitive and allows for a more practical analysis of assets with

respect to their reuse”;

 “The ease of discovering how the interaction between the assets, the

organization, its projects, and developers occurs”.

 Regarding its contribution to software organizations:

 “I believe that this tool would help a lot in the context of a large organization, or

even for small ones”;

 “This tool presents in a simple way the assets that can be reused. Many

organizations do not have control or do not provide visibility over the assets they

own and that could be reused in other projects”;

 “There is nothing on the market that brings information with so much

completeness as this tool does; by using a tool of this kind in the reuse process,

such process would no longer be complex as regards to the audits, asset

analyses, and asset provisioning”.

 Regarding the visualizations:

 “I found the tool very useful. The visual forms from which I could get

information about the assets were very interesting. It was very easy to use the

tool. The icons and tooltips displayed made it easier for me to achieve the

desired goals and answer to the asked questions”;

 “The different visualizations about the assets are very useful because they allow

understanding a lot of information concisely. I would highlight the visualization

of issues, producers, and consumers [as useful]”;

154


 “The visualizations of the information are clear and help making decisions

quickly. Finding information is easy after the adaptation time”;

 “In a single view, I can get a variety of information, such as when analyzing the

issue tracker”;

 “The interactive dashboard stands out, from which one can check, in a

summarized manner, information regarding reuse within the organization very

efficiently”.

The pointed drawbacks (besides the aforementioned ones in the overview of the

participants’ perceptions) are the following:

 “Maybe some people might have difficulties or a greater learning curve to deal with

a tool that presents all in such a visual way”;

 “The absence of the legends” (4 participants) “when visualizing issue tracker

information” (2 participants);

 “In some cases the tooltip appeared over the items” (5 participants), e.g., in the reuse

map (4 participants) and in the release history view when collapsing/expanding

items (1 participant). According to one participant, “although there is no loss of

information, the visualization part becomes impaired”.

Finally, they pointed out the following improvements:

 Some participants (4) still complained about the font size (which had been increased

after the pilot study);

 Two participants suggested improvements on the navigation between items.

Particularly, one participant stated that he/she “was hoping to find a ‘starting point’

perspective for the application (i.e., a ‘Home’ perspective). Having only the separate

perspectives hindered understanding the purpose of each of them”;

 One participant suggested “a qualification or rating of assets (1 to 5 stars, for

example) from the opinion of the developers, as well as other attributes inferred by

the experience of use” (which meets some ideas from [Caldiera & Basili 1991] that

are not yet fully put into practice);

 One participant suggested to “improve the legend color scheme of the issues bubble

charts”, which in fact was interpreted differently by several participants;

 Creating additional filters (for instance, for the reuse map visualization) (2

participants).

155


With the exception of one participant (a SD)68, none of the participants stated

that they would change their answer regarding reuse-related information. This may be

because their answers were not available for them when this question was asked, or

because they believe their answers indeed should not change. However, most

participants who stated that some information are of little of no relevance ended up

mentioning the use of such information for taking a decision in the execution of tasks.

5.3.3.5 Considerations regarding the study

The study research questions listed in Section 5.3.1.1 are answered in Table 5.6.

Table 5.6 – Analysis of the Zooming Browser study research questions

Study Research Questions Variables Study results

SRQ1. Is the information

provided by Zooming

Browser useful for supporting

the execution of reuse tasks?

 Perceived

usefulness of the

presented

information

In the follow-up questionnaire,

participants confirmed that the information

presented by the tool was highly useful (as

depicted in Figure 5.12). Besides, in the

relevance questionnaire, the majority of

information was pointed out as relevant

(all of them – even the less relevant ones –

were considered quite relevant for at least

one participant). Finally, although only

one participant stated that he/she would

change his/her answer regarding reuse-

related information, most participants

ended up mentioning the use of such

information for taking a decision in the

execution of tasks.

SRQ2. Are the visualizations

and interaction resources

employed in Zooming

Browser useful for supporting

the execution of reuse tasks?

 Perceived

usefulness of the

presented

visualizations

 Perceived

usefulness of the

employed

interaction

resources

The usefulness of the presented

visualizations was the most well evaluated

aspect, with very positive feedback as one

of the benefits of the tool. All participants,

except one, considered the interaction

resources highly relevant.

SRQ3. By performing the

reuse tasks through Zooming

Browser, is the efficacy

considered satisfactory?

 Efficacy

(Precision and

Recall)

The efficacy variable was smaller than 1 in

3 RM tasks and 5 SD tasks (given that two

of these tasks were common to SDs and

RMs). In one RM task and two SD tasks,

the efficacy was greater than 0.9, while in

the other three tasks it stayed between 0.6

and 0.7. For all the other 26 tasks, all

participants achieved total efficacy.

68 This participant stated that he/she would increase the relevance of information about asset consumers

and projects in which the asset was reused. One of them was previously considered somewhat irrelevant.

156


Study Research Questions Variables Study results

SRQ4. By performing the

reuse tasks through Zooming

Browser, is the efficiency

considered satisfactory?

 Efficiency

 Perceived

efficiency of the

tool

The quantitative results of the efficiency

variable did not support to draw any

conclusions, since values varied

considerably in the same question. It only

allowed making some observations. The

perceived efficiency was considered very

high by 6 participants, high by 4

participants, and medium by 2 participants

(mostly due to the lack of familiarity with

the tool).

SRQ5. To which extent

Zooming Browser eases the

execution of the reuse tasks?

 Perceived

easiness in

performing the

tasks

 Perceived

difficulties

identified in

performing the

tasks

Eight participants considered the easiness

as at least high, while four considered it

medium. Most of the difficulties were due

to the lack of familiarity with the tool, as

pointed out by many participants. Other

difficulties are related to some interaction

issues, in spite of the relevance of the

interaction resources.

Thus, to sum up, it is believed that the main study research question (Is the use

of Zooming Browser feasible in supporting the execution of reuse tasks?) can be

answered positively, based on the provided information and assuming that the

familiarity with the tool increases its benefits. However, some aspects need

improvements for increasing the support for reuse managers and software developers.

Regarding the potential threats to the study validity listed in Table 5.5, no

problems with the think-aloud protocol were identified by the researcher. Besides,

participants agreed that the scenario setting represents to some extent the reality of

software development scenarios (although it is known that an evaluation in a real setting

can provide concrete evidence to such statement). Since participants were selected by

convenience sample, results cannot be generalized; new evaluations are necessary in

this regard. There was only one interruption among all the experiment sessions, which

did not seem to impact the study – the participant kept performing the task and achieved

good results. Finally, one participant seemed a little nervous at the beginning, but no

great impact on his/her performance was observed.

A threat that was not considered previously is the fact that the notebook in use

for the experiments had problems with its battery charger in two SD sessions. This was

noticed before the conduction of one session, and it required the researcher to “hold” the

charger, which may have disturbed the participants. The analysis of their data does not

allow drawing any parallel in this regard, so it is not possible to know the influence of

this event in the experiment, if any. The charger was replaced in the remaining sessions.

157


5.4 Final Remarks

The evaluations performed with some elements of APPRAiSER provided

positive evidence on their use and important consideration for their improvement.

Results also provide positive evidence to RQ3, stated in Section 1.3.

Participants of the evaluation of the visualization feature model pointed out

opportunities for improving the description and organization of features, which will be

taken into consideration in future works. This is also an opportunity for collaborative

research on the topic. Besides, most participants believe the model has the potential of

organizing and structuring the knowledge related to visualization and interaction.

Through the evaluation of Zooming Browser, participants stated (and

demonstrated though the execution of tasks) that the tool can help raising reuse

awareness in software organizations. The major contribution of Zooming Browser is the

use of visualizations for presenting reuse-related information – in fact, according to the

evaluation data, the visualizations were the top rated aspect of the tool.

The performed study with Zooming Browser was also a source of several

opportunities for improvement that will be considered in future work. Some include the

incorporation of additional interaction resources in some views (e.g., filtering), the

redesign or combination of some views that required many interactions for answering a

question (e.g., including a summarization view with aggregated information that could

only be found individually through tooltips), the creation of a “Home” perspective

displaying all available perspectives in a nutshell, and so on.

Other aspects of the APPRAiSER contributions were not evaluated in the scope

of this thesis. For instance, a proper evaluation of the proposed mapping structure (used

for the design of Zooming Browser and presented in Section 4.6) would require its

application by other researchers in the development of other visualization tools. The

integration between CAVE and Zooming Browser would require the setting of more

complex scenarios, which was not feasible for the context of this thesis.

158


CHAPTER 6 – CONCLUSION

This chapter presents the contributions and results obtained from this

work, as well as a research agenda for handling open questions and

opportunities for improvement.

6.1 Epilogue

Software reuse provides several benefits throughout the software development

process, such as the decrease of implementation efforts, the reduction on time-to-

market, and the amortization of test and inspection costs, favoring an increase of

quality. Nevertheless, organizations still find difficulties in implementing reuse due to

several reasons, including technical and non-technical aspects. It can be noticed, though,

that many of these difficulties, if not most of them, are recurring throughout the years,

as illustrated in the study with Brazilian organizations, presented in Chapter 2.

A comprehensive study (described in Chapter 3) was conducted for identifying

software visualization approaches targeted to reuse-related tasks. Results pointed out

that no work addressed a number of reuse tasks in an integrated way, and the existing

ones that address particular tasks are limited in terms of collecting information from

different data sources and lack support for reuse management. Besides, most of them do

not provide properly evaluated evidence on their effectiveness.

To this end, APPRAiSER was defined, (described in Chapter 4) encompassing

interactive visualization tools for assisting stakeholders (mainly reuse managers and

developers) in executing software reuse tasks, such as obtaining and understanding

information regarding assets, developers, and projects, and being aware of reuse

initiatives. The realization of APPRAiSER was achieved through its tools, which

incorporate elements for gathering, processing and visually presenting information that

is relevant for software reuse. APPRAiSER also contains conceptual elements to

understand visualization concepts and support the construction of visualization tools.

The evaluations performed (Chapter 5) showed that the integrated APPRAiSER

tools have the potential to enhance software reuse tasks and awareness, while the

visualization feature model is promising for organizing visualization knowledge.

159


In summary, this thesis (i) revealed some recurring software reuse issues in

some Brazilian organizations, (ii) pointed out drawbacks and gaps in current

visualization tools for supporting reuse tasks, (iii) presented an approach composed by

tools for collecting and presenting data related to the reuse scenario, raising awareness

on information that can be used for taking informed reuse decisions, and (iv) provided

initial evidence on the use of such tools. In addition, the approach presented in this

thesis also comprises conceptual elements for engineering interactive visualization

tools, to be used in the evolution of APPRAiSER and in other fields of research.

6.2 Contributions and Results

The research and work described in this thesis has the following contributions:

 A primary study on issues related to software reuse in some Brazilian organizations

(Section 2.5.2): The results from the semi-structured interviews conducted with

Brazilian implementers and assessors of MR-MPS-SW allowed the definition of

some reuse tasks that need more support. This can be used not only for other

research initiatives, but also for the development of additional tool support for the

implementation of reuse processes in software organizations.

 A secondary study on visualization approaches geared to software reuse (Section

3.3.3): The results from the quasi-systematic review, available in a website [Schots

2014c], can be used as a starting point for future research directions to be addressed

by the software engineering community, as well as for other secondary studies

correlating visualization with another software engineering field of interest. Besides,

the presented information can be used as a body of knowledge to support the

decision making regarding the choice of visualization approaches for software reuse.

 The implementation of the APPRAiSER tools (described in Chapter 4 and its

sections): Zooming Browser and Repository Miner, both contributions from the

author of this thesis, help obtaining and visualizing pertinent information about

assets, developers, and projects. The collected information can also be used for the

construction of other visualization tools and for performing a variety of studies and

analyses in the software engineering field, especially on software reuse. The

visualization perspectives can also be adapted to represent other kinds of reusable

content, not limited to software assets. Finally, the flexible architecture of

APPRAiSER allows adapting Zooming Browser and Repository Miner to handle

different kinds of information/visualizations.

160


 The APPRAiSER conceptual elements (namely the visualization feature model and

the mapping structure) (Sections 4.5 and 4.6): These elements can be used for

supporting the selection of features and the construction of other visualization tools,

and are intended to be improved along time based on other research results.

 The conducted evaluation studies (described in Sections 5.2 and 5.3): The

evaluations provide evidence on the usefulness of Zooming Browser and the

visualization feature model. They also pointed out suggestions for improving

APPRAiSER. It is believed that the presented details of the studies allow replication

and adaptation to other studies related to visualization in software development.

Although not considered as a contribution, the framework extension for

categorizing visualization approaches (presented in Section 3.3.2 and in [Schots &

Werner 2014b]), with the two new dimensions and the definition of research questions

for all dimensions, can help the planning and construction of novel approaches, besides

indicating information that should ideally be described in publications. Such framework

may also support the conduction of other secondary studies on software visualization

applied to another field of interest.

Regarding the awareness and comprehension challenges listed in Section 3.2.3,

the listed contributions aim to address the following ones in the context of this work:

 The semi-structured interviews, as well as the experiments on industry, represent a

step towards understanding the real needs of the software development industry

stakeholders in terms of awareness and comprehension, and bridging the gap and

encouraging interaction between academia and industry;

 In terms of identifying and developing suitable mechanisms and adequate

abstractions and building specialized, personalized/customizable visualizations

according to the comprehension needs, APPRAiSER and its tools provide

abstractions that were considered (in general) useful in supporting reuse tasks;

 Repository Miner and the survey performed in the context of the evaluation of

Zooming Browser allowed identifying relevant data, and the integration between

Zooming Browser and Repository Miner is a step towards evaluating the quality of

existing data sources in future works.

6.2.1 Research achievements

The conduction of this research allowed the following research achievements:

161


 Publications and research projects related to the APPRAiSER tools:

 CAVE is part of a M.Sc. thesis at COPPE/UFRJ developed in the context of this

work [Vasconcelos 2015] informally co-supervised by the author of this thesis;

some preliminary results focusing on the use of a context model for supporting

context-aware visualizations are described in [Vasconcelos et al. 2013] and

[Vasconcelos et al. 2014b];

 VCS Miner uses an infrastructure previously developed [Werner et al. 2011]

[Silva 2012] in collaboration with the author of this thesis. The GitHub

integration was developed by the author of this thesis;

 Reuse Repository Miner was inspired by MPS-Reuse69 [Chaves 2013], an

Undergraduate Final Project at UERJ advised by the author of this thesis;

 Issue Tracker Miner was produced in the context of an Undergraduate Research

at COPPE/UFRJ [Queiroz et al. 2012] and extended by [Vasconcelos 2015] to

export Redmine data in the JSON format. The GitHub integration was developed

by the author of this thesis;

 GraphVCS (which partially inspired the History perspective) was developed in

the context of an Undergraduate Final Project at UERJ advised by the author of

this thesis. It was presented as an ongoing work in [Pereira & Schots 2011] and

as a complete work in [Pereira & Schots 2014];

 ReuseDashboard (which partially inspired the Zooming Browser’s Dashboard

perspective) is described in [Palmieri et al. 2013], in the context of a M.Sc.

thesis proposal informally co-supervised by the author of this thesis;

 Rec4Reuse, a tool that composed APPRAiSER’s original proposal, was

developed in the context of an Undergraduate Final Project [Vital & Krause

2013] at UERJ advised by the author of this thesis.

 Publications and research projects related to the APPRAiSER conceptual elements:

 Details on the construction of the visualization feature model are described in

[Vasconcelos et al. 2014a] and in a technical report to be published [Schots et al.

2015]. The original idea of using feature models for supporting information

visualization comes from a previous work [Silva 2012] [Silva et al. 2012]

conducted under informal co-supervision of the author of this thesis;

69 MPS-Reuse was developed in another technology and did not contain visualization resources, so it only

served as inspiration.

162


 The extension and usage of the task-oriented framework to characterize

visualization approaches was presented in [Schots & Werner 2014b];

 The mapping structure that correlates goals and visualizations was presented in

[Schots & Werner 2015].

 Research on software visualization:

 The research on software visualization allowed the identification of awareness

and comprehension challenges in a special track of the Brazilian Symposium on

Software Engineering (SBES) [Schots et al. 2012];

 Furthermore, an introductory tutorial in software visualization was presented at

the Brazilian Conference on Software (CBSoft) [Schots & Werner 2012].

 Performed studies:

 The preliminary results from the semi-structured interviews are described in

[Schots & Werner 2013]. A technical report with all the details is available at

[Schots & Werner 2014a];

 A preliminary study on mapping visualizations according to the focus of

representation/analysis was developed in the context of an Undergraduate

Research [Queiroz et al. 2013] and included in a technical report [Schots et al.

2015];

 The full protocol and the results from the quasi-systematic review are described

in a technical report [Schots et al. 2014] and in a website [Schots 2014c] built

for this purpose.

 Research proposal:

 The research proposal of this thesis [Schots 2014] was presented at the Doctoral

Symposium of the 36th International Conference on Software Engineering.

 Other works not directly related to the scope of this research:

 The collaboration between members of the Reuse group and the Experimental

Software Engineering group resulted in a publication [Mello et al. 2014] that

was used as basis for the evaluation of the visualization feature model.

6.3 Open Questions and Research Agenda

The research conducted during the Ph.D. course, along with the feedback

received from some submitted papers, provided input for building an initial research

agenda. This will also allow for the improvements expected in the last step of the

163


research methodology presented in Section 1.5 towards engineering interactive

visualization tools for providing awareness in software reuse tasks.

The APPRAiSER elements will be evolved for improving their contributions,

subject to further evaluations. The visualization feature model can be improved in

collaboration with experts in the field, based on the currently identified information

[Schots et al. 2015] along with the corrections and suggestions made by the participants

of the study. With the help of an intuitive user interface (e.g., a visual catalog) that

explains each feature, its constraints, and so on, it is possible to evaluate how it can

contribute to the understanding of visualization concepts. As one participant of the

feature model study pointed out, some improvements can be made to make it adequate

to help education and training in information visualization.

The visualization feature model can also be evaluated by experts in feature

modeling (through the complete checklist [Mello et al. 2014]) for improving the results.

Besides, its use in combination with the mapping structure for choosing visualization

features can be evaluated in scenarios that demand the construction of visualization

tools (not necessarily related to software). The use of visualization resources is

continuously growing in the industry, so there may be opportunities in this scenario.

Another possibility is the integration with the extended version of the task-oriented

framework.

The relevance and usefulness of the two novel dimensions of such task-oriented

framework (requirements and evidence, presented in Section 3.3.2) were discussed in

[Schots & Werner 2014b], and this version was used for categorizing the results of the

secondary study presented in Section 3.3.3. Other studies on information/software

visualization might benefit from this extension, but an evaluation of this hypothesis

requires its practical use by other researchers. This also helps improving the framework.

Regarding the APPRAiSER tools, the use of Repository Miner for obtaining

other kinds of information from other relevant sources can also be explored. Besides,

based on the extracted data, the use of data mining techniques can help extracting

unnoticed facts, as well as creating clusters of core elements to ease the navigation.

The detection strategies of Repository Miner can be improved through the use

and application of search-based algorithms and techniques. Such techniques can also be

used to provide suggestions and recommendations of assets.

APPRAiSER can also benefit from the creation of recommendation systems

[Robillard et al. 2010] that take into account consumers’ usage data of assets in projects

164


and producer’s contribution data, combined with their development profile. This can

provide interesting suggestions, for instance, for project team allocation or

collaborations in asset development.

Finally, the amount and variety of available software-related information has

opened opportunities for investigating the use of software engineering in Big Data, and

vice-versa. Improvements in the collection and storage mechanisms can help managing

data from software repositories with different focuses, supporting awareness and

decision-making in several kinds of software development activities.

165


REFERENCES

[ABES 2014] ABES (2014). “Brazilian Software Market: Scenario and Trends”.

Associação Brasileira das Empresas de Software, 1st ed., São Paulo, June. ISBN

978-8586700-03-3. Available at http://www.abessoftware.com.br/dados-do-setor/.

[Agrawala et al. 2011] Agrawala, M., Li, W., Berthouzoz, F. (2011). “Design principles

for visual communication”. Communications of the ACM, v. 54, n. 4, pp. 60-69,

April.

[Alonso & Frakes 2000] Alonso, O., Frakes, W. B. (2000). “Visualization of Reusable

Software Assets”. In: 6th International Conference on Software Reuse (ICSR 2000),

Vienna, Austria, pp. 251-265, June.

[Anslow et al. 2004] Anslow, C., Marshall, S., Noble, J., Biddle, R. (2004). “Software

visualization tools for component reuse”. In: 2nd Workshop on Method Engineering

for Object-Oriented and Component-Based Development, 19th Annual ACM

Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA 2004), Vancouver, Canada, pp. 1-11, October .

[Baldauf et al. 2007] Baldauf, M., Dustdar, S., Rosenberg, F. (2007). “A survey on

context-aware systems”. International Journal of Ad Hoc and Ubiquitous Computing

(IJAHUC), v. 2, n. 4, pp. 263-277.

[Basili et al. 1994] Basili, V., Caldiera, G., Rombach, H. (1994). “Goal Question Metric

Paradigm”, Encyclopedia of Software Engineering, v. 1, edited by John J. Marciniak,

John Wiley & Sons, pp. 528-532.

[Bauer et al. 2014] Bauer, V., Eckhardt, J., Hauptmann, B., Klimek, M. (2014). “An

Exploratory Study on Reuse at Google”. In: 1st International Workshop on Software

Engineering Research and Industrial Practices (SER&IPs 2014), Hyderabad, India,

pp. 14-23, June.

[Beck et al. 2013] Beck, F., Burch, M., Diehl, S. (2013). “Matching application

requirements with dynamic graph visualization profiles”. In: 17th International

Conference on Information Visualisation (IV), London, UK, pp. 11-18, July.

166


[Beck et al. 2016] Beck, F., Koch, S., Weiskopf, D. (2016). “Visual analysis and

dissemination of scientific literature collections with SurVis”. IEEE Transactions on

Visualization and Computer Graphics, v. 22, n. 1, January (in press).

[Benedicenti et al. 1996] Benedicenti, L., Succi, G., Valerio, A., Vernazza, T. (1996).

“Monitoring the efficiency of a reuse program”. SIGAPP Applied Computing

Review, v. 4, n. 2, pp. 8-14, September.

[Biddle et al. 1999] Biddle, R., Marshall, S., Miller-Williams, J., Tempero, E. (1999).

“Reuse of debuggers for visualization of reuse”. In: Proceedings of the 5th

Symposium on Software Reusability (SSR 1999), Los Angeles, USA, pp. 92-100,

May.

[Blois et al. 2006] Blois, A. P. T. B., Oliveira, R. F., Maia, N., Werner, C., Becker, K.

(2006). “Variability modeling in a component-based domain engineering process”.

Reuse of Off-the-Shelf Components, pp. 395-398. Springer Berlin Heidelberg.

[Bostock et al. 2011] Bostock, M., Ogievetsky, V., Heer, J. (2011). D³: Data-Driven

Documents. IEEE Transactions on Visualization and Computer Graphics, v. 17, n.

12, pp. 2301-2309, December.

[Braga et al. 1999] Braga, R. M., Werner, C. M. L., Mattoso, M. (1999). “Odyssey: A

reuse environment based on domain models”. In: 2nd IEEE Symposium on

Application-Specific Systems and Software Engineering Technology (ASSET 1999),

Richardson, USA, pp. 50-57, March.

[Braga et al. 2006] Braga, R. M. M., Werner, C. M. L., Mattoso, M. (2006). “Odyssey-

Search: A Multi-Agent System for Component Information Search and Retrieval”.

Journal of Systems and Software, v. 79, n. 2, pp. 204-215, February.

[Brazilian Computer Society 2006] Brazilian Computer Society (2006). “Grand

Challenges of Computing Research in Brazil – 2006-2016”. Available at

http://www.sbc.org.br/.

[Brooks Jr. 1987] Brooks, Frederick P. (1987). “No Silver Bullet: Essence and

Accidents of Software Engineering”. Computer, v. 20, n. 4, pp. 10-19, April.

[Buering et al. 2006] Buering, T., Gerken, J., Reiterer, H. (2006). “User Interaction with

Scatterplots on Small Screens – A Comparative Evaluation of Geometric-Semantic

167


Zoom and Fisheye Distortion”. IEEE Transactions on Visualization and Computer

Graphics, v. 12, n. 5, pp. 829-836, September.

[Caldiera & Basili 1991] Caldiera, G., Basili, V. R. (1991). “Identifying and qualifying

reusable software components”. Computer, v. 24, n. 2, pp. 61-70, February.

[Card et al. 1999] Card, S. K., Mackinlay, J. D., Shneiderman, B. (1999). Readings in

information visualization: using vision to think. 1st ed., Morgan Kaufmann

Publishers, San Francisco, USA, 712p.

[Card & Comer 1994] Card, D., Comer, E. (1994). “Why do so many reuse programs

fail?” IEEE Software, v. 11, n. 5, pp. 114-115, September.

[Carneiro et al. 2010] Carneiro, G. F., Sant’Anna, C., Mendonça, M. (2010). “On the

Design of a Multi-Perspective Visualization Environment to Enhance Software

Comprehension Activities”. In: 7th Workshop on Modern Software Maintenance

(WMSWM), Belém, Brazil, pp. 61-68, June.

[Chaves 2013] Chaves, V. B. C. (2013. “MPS-Reuse: A tool for supporting the

execution of reuse management tasks and reusable assets management” [MPS-Reuse:

Uma ferramenta de apoio à execução de tarefas de gerência de reutilização e à gestão

de ativos reutilizáveis] (in Portuguese). Undergraduate Final Project, Universidade

do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.

[Chen 2006] Chen, C. (2006). Information Visualization: Beyond the Horizon. 2nd ed.

Springer.

[Chi 2000] Chi, E. H. H. (2000). “A taxonomy of visualization techniques using the

data state reference model”. In: IEEE Symposium on Information Visualization

(InfoVis 2000), Salt Lake City, USA, pp. 69-75, October.

[Clements & Northrop 2002] Clements, P., Northrop, L. (2002). Software product lines.

Addison-Wesley, Boston.

[CMMI Product Team 2010] CMMI Product Team (2010). “CMMI for Development,

Version 1.3”, Technical Report CMU/SEI-2010-TR-033, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, USA. Available at

http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm.

168


[Cockburn et al. 2008] Cockburn, A., Karlson, A., Bederson, B. B. (2008). “A Review

of Overview+Detail, Zooming, and Focus+Context Interfaces”. ACM Computing

Surveys, v. 41, n. 1, pp. 1-31, December.

[Constantopoulos et al. 1995] Constantopoulos, P., Jarke, M., Mylopoulos, J., Vassiliou,

Y. (1995). “The software information base: A server for reuse”. The VLDB Journal,

v. 4, n. 1, pp. 1-43.

[Cooper et al. 2009] Cooper, J. R., Lee, S.-W., Gandhi, R. A., Gotel, O. (2009).

“Requirements Engineering Visualization: A Survey on the State-of-the-Art”. In: 4th

International Workshop on Requirements Engineering Visualization (REV 2009),

Atlanta, USA, pp. 46-55.

[Craft & Cairns 2005] Craft, B., Cairns, P. (2005). “Beyond guidelines: what can we

learn from the visual information seeking mantra?” In: Proceedings of the 9th

International Conference on Information Visualization (IV 2005), London, UK, pp.

110-118, July.

[Diehl 2007] Diehl, S. (2007). Software Visualization: Visualizing the Structure,

Behaviour, and Evolution of Software, 1st ed., Springer-Verlag Heidelberg New

York.

[Dourish & Bellotti 1992] Dourish, P., Bellotti, V. (1992). “Awareness and

Coordination in Shared Workspaces”. In: 1992 ACM Conference on Computer-

Supported Cooperative Work (CSCW 1992), Toronto, Canada, pp. 107-114,

November.

[Duru et al. 2013] Duru, H. A., Çakır, M. P., İşler, V. (2013). “How Does Software

Visualization Contribute to Software Comprehension? A Grounded Theory

Approach”. International Journal of Human-Computer Interaction, v. 29, n. 11, pp.

743-763, November.

[Duszynski et al. 2011] Duszynski, S., Knodel, J. Becker, M (2011). “Analyzing the

source code of multiple software variants for reuse potential”. In: Proceedings of the

18th Working Conference on Reverse Engineering (WCRE 2011), Limerick, Ireland,

pp. 303-307, October.

[Falconer et al. 2009] Falconer, S. M., Bull, R. I., Grammel, L., Storey, M.-A. (2009).

“Creating Visualizations through Ontology Mapping”. In: International Conference

169


on Complex, Intelligent and Software-Intensive Systems (CISIS), Fukuoka, Japan,

pp.688-693, March.

[Feigenspan et al. 2013] Feigenspan, J., Kästner, C., Apel, S., Liebig, J., Schulze, M.,

Dachselt, R., Papendieck, M., Leich, T., Saake, G. (2013). “Do background colors

improve program comprehension in the #ifdef hell?” Empirical Software

Engineering, v. 18, n. 4, pp. 699-745, February.

[Fernandes et al. 2011] Fernandes, P., Werner, C., Teixeira, E. (2011). “An Approach

for Feature Modeling of Context-Aware Software Product Line”. Journal of

Universal Computer Science, v. 17, n. 5, pp. 807-829, March.

[Few 2009] Few, S. (2009). Now You See it: Simple Visualization Techniques for

Quantitative Analysis, 1st ed., Analytics Press, 327p.

[Fielding 2000] Fielding, R. T. (2000). “Architectural styles and the design of network-

based software architectures”, Ph.D. Thesis, University of California, Irvine, USA.

[Fowler & Highsmith 2001] Fowler, M., Highsmith, J. (2001). “The agile

manifesto”. Software Development, v. 9, n. 8, pp. 28-35.

[Frakes & Fox 1995] Frakes, W. B., Fox, C. J. (1995). “Sixteen questions about

software reuse”. Communications of the ACM, v. 38, n. 6, pp. 75-87, June.

[Frakes & Fox 1996] Frakes, W., Fox, C. (1996). “Quality Improvement Using a

Software Reuse Failure Modes Model”. IEEE Transactions on Software

Engineering, v. 22, n. 4, pp. 274-279, April.

[Frakes & Kang 2005] Frakes, W. B., Kang, K. (2005). “Software reuse research: Status

and future”. IEEE Transactions on Software Engineering, v. 31, n. 7, pp. 529-536.

[França & Travassos 2013] França, B. B. N., Travassos, G. H. (2013). “Are We

Prepared for Simulation Based Studies in Software Engineering Yet?” CLEI

Electronic Journal, v. 16, n. 1, paper 8, pp. 1-25, April.

[Franke & Kaul 1978] Franke, R. H., Kaul, J. D. (1978). “The Hawthorne experiments:

First statistical interpretation”. American sociological review, v. 43, n. 5, pp. 623-

643, October.

[Fritz & Murphy 2010] Fritz, T., Murphy, G. C. (2010). “Using information fragments

to answer the questions developers ask”. In: 32nd ACM/IEEE International

170


Conference on Software Engineering (ICSE 2010), Cape Town, South Africa, pp.

175-184, May.

[Gallagher et al. 2008] Gallagher, K., Hatch, A., Munro, M. (2008), “Software

Architecture Visualization: An Evaluation Framework and its Application”, IEEE

Transactions on Software Engineering, v. 34, n. 2, pp. 260-270.

[Gill 2006] Gill, N. S. (2006). “Importance of Software Component Characterization for

Better Software Reusability”. SIGSOFT Software Engineering Notes, v. 31, n. 1, pp.

1-3, January.

[Gousios et al. 2014] Gousios, G., Vasilescu, B., Serebrenik, A., Zaidman, A. (2014).

“Lean GHTorrent: GitHub data on demand”. In: Proceedings of the 11th Working

Conference on Mining Software Repositories (MSR 2014), Hyderabad, India, pp.

384-387, May.

[Griss et al. 1994] Griss, M. L., Favaro, J., Walton, P. (1994). “Managerial and

organizational issues – Starting and Running a Software Reuse Program”. In:

Schäfer, W., Prieto-Díaz, R., Matsumoto, M. (eds.), Software Reusability, pp. 51-78,

Ellis Horwood Ltd.

[Haefliger et al. 2008] Haefliger, S., von Krogh, G., Spaeth, S. (2008). “Code Reuse in

Open Source Software”. Management Science, v. 54, n. 1, pp. 180-193, January.

[Hattori 2010] Hattori, L. (2010). “Enhancing collaboration of multi-developer projects

with synchronous changes”. In: 32nd ACM/IEEE International Conference on

Software Engineering, Cape Town, South Africa, pp. 377-380, May.

[Holmes 2008] Holmes, R. (2008). “Pragmatic software reuse”. Ph.D. Thesis,

University of Calgary, Calgary, Canada, November.

[Holmes & Walker 2012] Holmes, R., Walker, R. J. (2012). “Systematizing pragmatic

software reuse”. ACM Transactions on Software Engineering and Methodology

(TOSEM 2012), v. 21, n. 4, November.

[Hooper & Chester 1991] Hooper, J. W., Chester, R. O. (1991). “Software Reuse:

Guidelines and Methods”, Springer, 180p.

[Hove & Anda 2005] Hove, S. E., Anda, B. (2005). “Experiences from conducting

semi-structured interviews in empirical software engineering research”. In: 11th

IEEE International Software Metrics Symposium, Como, Italy, pp. 1-10, September.

171


[IEEE 2010] IEEE (2010). “IEEE Std. 1517-2010: IEEE Standard for Information

Technology – System and Software Life Cycle Processes – Reuse Processes”, 39p,

Institute of Electrical and Electronics Engineers.

[INFOVIS WIKI 2015] The InfoVis:Wiki Team (2015). “The InfoVis:Wiki project”.

Available at http://www.infovis-wiki.net/.

[ISO/IEC 2008] ISO/IEC (2008). “ISO/IEC 12207:2008 – Systems and software

engineering – Software life cycle processes”, 123p, International Organization for

Standardization and the International Electrotechnical Commission, Geneva,

Switzerland.

[ISO/IEC 2012] ISO/IEC (2012). “ISO/IEC 15504-5:2012 – Process assessment, Part 5:

An exemplar software life cycle process assessment model”, 196p, International

Organization for Standardization and the International Electrotechnical Commission,

Geneva, Switzerland.

[Kagdi & Maletic 2008] Kagdi, H., Maletic, J. I. (2008). “Expressiveness and

effectiveness of program comprehension: Thoughts on future research directions”.

In: Proceedings of the IEEE Frontiers of Software Maintenance (FoSM 2008),

Beijing, China, pp. 31-37, October.

[Kang et al. 1990] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., Peterson, A. S.

(1990). Feature-oriented domain analysis (FODA) feasibility study (No. CMU/SEI-

90-TR-21). Software Engineering Institute, Carnegie-Mellon University, Pittsburgh,

USA.

[Keim et al. 2008] Keim, D. A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler,

H. (2008). “Visual analytics: Scope and challenges”. In: Simoff, S. J., Böhlen, M. H.,

Mazeika, A. (eds.), Visual Data Mining, pp. 76-90, Springer Berlin Heidelberg.

[Kelleher 2005] Kelleher, J. (2005). “A reusable traceability framework using patterns”.

In: Proceedings of the 3rd International Workshop on Traceability in Emerging

Forms of Software Engineering (TEFSE 2005), Long Beach, USA, pp. 50-55,

November.

[Kim & Stohr 1998] Kim, Y., Stohr, E.A. (1998). “Software reuse: survey and research

directions”. Journal of Management Information Systems, v. 14, n. 4, pp. 113-147,

March.

172


[Kitchenham 2004] Kitchenham, B. (2004). “Procedures for Performing Systematic

Reviews”, Keele University Technical Report TR/SE-0401. Available at

http://www.scm.keele.ac.uk/ease/sreview.doc.

[Kitchenham et al. 2007] Kitchenham, B. A., Mendes, E., Travassos, G. H. (2007).

“Cross versus Within-Company Cost Estimation Studies: A Systematic Review”,

IEEE Transactions on Software Engineering, v. 33, n. 5, pp. 316-329, May.

[Kitchenham & Charters 2007] Kitchenham, B., Charters, S. (2007). “Guidelines for

performing Systematic Literature Reviews in Software Engineering”. Technical

Report EBSE 2007-001, Keele University and Durham University Joint Report, July.

[Kitchenham et al. 2009] Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M.,

Bailey, J., Linkman, S. (2009). “Systematic literature reviews in software

engineering – A systematic literature review”, Information and Software Technology,

v. 51, n. 1, pp. 7-15, January.

[Klerkx et al. 2006] Klerkx, J., Verbert, K., Duval, E. (2006). “Visualizing Reuse: More

than Meets the Eye”. In: 6th International Conference on Knowledge Management

(I-KNOW), Graz, Austria, pp. 489-497.

[Ko et al. 2007] Ko, A. J., DeLine, R., Venolia, G. (2007). “Information needs in

collocated software development teams”. In: 29th International Conference on

Software Engineering (ICSE 2007), Minneapolis, USA, pp. 344-353, May.

[Koschke 2003] Koschke, R. (2003). “Software visualization in software maintenance,

reverse engineering, and re-engineering: a research survey,” Journal of Software

Maintenance and Evolution: Research and Practice, v. 15, n. 2, pp. 87-109.

[Krueger 1992] Krueger, C. W. (1992). “Software reuse”. ACM Computing Surveys, v.

24, n. 2, pp. 131-183, June.

[Kula et al. 2014] Kula, R. G., De Roover, C., German, D., Ishio, T., Inoue, K. (2014).

“Visualizing the evolution of systems and their library dependencies”. In: 2nd IEEE

Working Conference on Software Visualization (VISSOFT 2014), Victoria (BC),

Canada, pp. 127-136, September.

[Lab Mouse Security 2014] Lab Mouse Security (2014). “Raising Lazarus – The 20

Year Old Bug that Went to Mars”. Available at

http://blog.securitymouse.com/2014/06/raising-lazarus-20-year-old-bug-that.html.

173


[Lanza & Marinescu 2006] Lanza, M., Marinescu, R. (2006). Object-Oriented Metrics

in Practice. Springer-Verlag Berlin Heidelberg.

[Leach 2012] Leach, R. J. (2012). Software Reuse: Methods, Models, and Costs, 2nd

ed., ISBN-13: 978-0-9853685-1-7, 656p.

[Lee et al. 2002] Lee, K., Kang, K. C., Lee, J. (2002). “Concepts and Guidelines of

Feature Modeling for Product Line Software Engineering”. In: Software Reuse:

Methods, Techniques, and Tools, pp. 62-77. Springer Berlin-Heidelberg.

[Lee et al. 2012] Lee, B., Isenberg, P., Riche, N. H., Carpendale, S. (2012). “Beyond

Mouse and Keyboard: Expanding Design Considerations for Information

Visualization Interactions”. IEEE Transactions on Visualization and Computer

Graphics, v. 18, n. 12, pp. 2689-2698, December.

[Likert 1932] Likert, R. (1932). “A technique for the measurement of attitudes”.

Archives of Psychology, v. 22, n. 140, pp. 1-55.

[Lucrédio et al. 2008] Lucrédio, D., Brito, K. S., Alvaro, A., Garcia, V. C., Almeida, E.

S., Fortes, R. P. M., Meira, S. L. (2008). “Software reuse: The Brazilian industry

scenario”. Journal of Systems and Software, v. 81, n. 6, pp. 996-1013, June.

[Maletic et al. 2002] Maletic, J. I., Marcus, A., Collard, M. L. (2002). “A task oriented

view of software visualization”. In: Proceedings of the 1st International Workshop

on Visualizing Software for Understanding and Analysis (VISSOFT 2002), Paris,

France, pp. 32-40, June.

[Mancoridis et al. 1993] Mancoridis, S., Holt, R. C., Penny, D. A. (1993). “Conceptual

framework for software development”. In: Proceedings of the 1993 ACM Computer

Science Conference, Indianapolis, USA, pp. 74-80, February.

[Marshall 2001] Marshall, S. (2001). “Using and Visualizing Reusable Code: Position

Paper for Software Visualization Workshop”. In: Workshop on Software

Visualization, 2001 ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA 2001), Tampa, USA, pp. 1-4,

October.

[Marshall et al. 2003] Marshall, S. Jackson, K., Anslow, C., Biddle, R. (2003). “Aspects

to visualising reusable components”. In: Proceedings of the Australasian Symposium

174


on Information Visualisation (InVis.au 2003), Adelaide, Australia, pp. 81-88,

February.

[Mello et al. 2014] Mello, R. M., Teixeira, E. N., Schots, M., Werner, C. M. L.,

Travassos, G. H. (2014). “Verification of Software Product Line Artefacts: A

Checklist to Support Feature Model Inspections”. Journal of Universal Computer

Science (J.UCS), v. 20, n. 5, pp. 720-745.

[Mili et al. 1995] Mili, H., Mili, F., Mili, A. (1995). “Reusing software: Issues and

research directions”. IEEE Transactions on Software Engineering, v. 21. n. 6, pp.

528-562.

[Moore & Bailin 1991] Moore, J. M., Bailin, S. C. (1991). “Domain Analysis:

Framework for reuse”. In: Prieto-Díaz, R., Arango, G. (eds.), Domain Analysis and

Software System Modeling, pp. 179-202, IEEE Computer Society Press, Los

Alamitos, USA.

[Morisio et al. 2002] Morisio, M., Ezran, M. and Tully, C. (2002). Success and failure

factors in software reuse. IEEE Transactions on Software Engineering, v. 28, n. 4,

pp. 340-357.

[Mukherjea & Foley 1996] Mukherjea, S., Foley, J. (1996). “Requirements and

Architecture of an Information Visualization Tool”. In: Database Issues for Data

Visualization, Springer Berlin/Heidelberg, pp. 57-75.

[Naur & Randell 1968] Naur, P., Randell, B. (1968). “Software Engineering”, Scientific

Affairs Division, NATO, Brussels, Garmisch, Germany, Report on a conference

sponsored by the NATO Science Committee, October.

[Novais et al. 2012] Novais, R., Nunes, C., Lima, C., Cirilo, E., Dantas, F., Garcia, A.,

Mendonça, M. (2012). “On the proactive and interactive visualization for feature

evolution comprehension: An industrial investigation”. In: 34th International

Conference on Software Engineering (ICSE 2012) – Software Engineering in

Practice (SEIP) Track, Zürich, Switzerland, pp. 1044-1053, June.

[Novais et al. 2014] Novais, R., Brito, C., Mendonça, M. (2014). “What Questions

Developers Ask During Software Evolution? An Academic Perspective”. In: 2nd

Workshop on Software Visualization, Evolution, and Maintenance (VEM 2014),

Maceió, Brazil, pp. 14-21, September.

175


[Oliveira 2011] Oliveira, M. S. (2011). “PREViA: An Approach for Visualizing the

Evolution of Software Models” [PREViA: Uma Abordagem para a Visualização da

Evolução de Modelos de Software] (in Portuguese). M.Sc. Thesis, COPPE/UFRJ,

Rio de Janeiro, Brazil, March.

[Orso et al. 2000] Orso, A., Harrold, M. J., Rosenblum, D. S. (2000). “Component

Metadata for Software Engineering Tasks”, 2nd International Workshop on

Engineering Distributed Objects, Davis, USA, pp. 126-140, November.

[Ouyang et al. 2014] Ouyang, Y., Zeng, S., Yang, C., Wang, Q. (2014). “Improving

guide-based vulnerability detection with hybrid symbolic execution”. In: 2nd

International Conference on Systems and Informatics (ICSAI 2014), Shanghai,

China, pp. 1038-1043, November.

[Palmieri et al. 2013] Palmieri, M., Schots, M., Werner, C. (2013). “ReuseDashboard:

Supporting Stakeholders in Monitoring Software Reuse Programs”

[ReuseDashboard: Apoiando Stakeholders na Monitoração de Programas de

Reutilização de Software] (in Portuguese). In: 1st Brazilian Workshop on Software

Visualization, Evolution, and Maintenance (VEM 2013), Brasília, Brazil, pp. 54-61,

September.

[Panichella et al. 2014] Panichella, S., Bavota, G., Di Penta, M., Canfora, G., Antoniol,

G. (2014). “How Developers’ Collaborations Identified from Different Sources Tell

Us about Code Changes”. In: 30th IEEE International Conference on Software

Maintenance and Evolution (ICSME 2014), Victoria (BC), Canada, pp. 251-260,

September.

[Pereira & Schots 2011] Pereira, T. A., Schots, M. (2011). “GraphVCS: An Approach

for Visualizing and Understanding Version Control Repositories” [GraphVCS: Uma

Abordagem para a Visualização e Compreensão de Repositórios de Controle de

Versão] (in Portuguese). In: 1st Brazilian Workshop on Software Visualization

(WBVS 2011), São Paulo, Brazil, pp. 1-8.

[Pereira & Schots 2014] Pereira, T. A., Schots, M. (2014). “GraphVCS: A Visualization

Approach for Supporting the Understanding of Version Control Repositories”

[GraphVCS: Uma Abordagem de Visualização para Apoio à Compreensão de

Repositórios de Controle de Versão] (in Portuguese). In: 1st Minas Gerais

176


Symposium on Software Engineering (SMES 2011), Belo Horizonte, Brazil, pp. 72-

81.

[Pötter et al. 2014] Pötter, H., Schots, M., Duboc, L., Werneck, V. (2014). “InspectorX:

A game for software inspection training and learning”. In: 27th IEEE Conference on

Software Engineering Education and Training (CSEE&T 2014), Klagenfurt, Austria,

pp. 55-64, April.

[Poulin et al. 1993] Poulin, J. S., Caruso, J. M., Hancock, D. R. (1993). “The Business

Case for Software Reuse”. IBM Systems Journal, v. 32, n. 4, pp. 567-594, October.

[Prieto-Díaz & Arango 1991] Prieto-Díaz, R., Arango, G. F. (1991). Domain Analysis

and Software Systems Modeling. IEEE Computer Society Press.

[Queiroz et al. 2012] Queiroz, A. R., Oliveira, M. S., Werner, C. M. L. (2012).

“Supporting Project Management through Visual Analytics of Scenario Data” [Apoio

ao Gerenciamento de Projetos por Meio da Análise Visual de Dados de Cenários].

In: XXXIV Jornada Giulio Massarani de Iniciação Científica, Tecnológica, Artística

e Cultural UFRJ, pp. 229.

[Queiroz et al. 2013] Queiroz, A. R., Oliveira, M. S., Werner, C. M. L. (2013).

“Systematic Support for the Choice of Information Visualizations based on

Representation Constraints” [Apoio Sistemático à Escolha de Visualizações de

Informação Baseada em Restrições de Representação]. In: XXXV Jornada Giulio

Massarani de Iniciação Científica, Tecnológica, Artística e Cultural UFRJ, pp. 102.

[Ripley et al. 2007] Ripley, R. M., Sarma, A., Van der Hoek, A. (2007). “A

Visualization for Software Project Awareness and Evolution”. In: Proceedings of the

4th IEEE International Workshop on Visualizing Software for Understanding and

Analysis (VISSOFT 2007), Banff, Canada, pp. 137-144, June.

[Robertson et al. 1989] Robertson, G., Card, S. K., Mackinlay, J. D. (1989). “The

cognitive coprocessor architecture for interactive user interfaces”. In: Proceedings of

the 2nd Annual ACM SIGGRAPH Symposium on User Interface Software and

Technology (UIST 1989), Williamsburg, USA, pp. 10-18, November.

[Robertson et al. 2009] Robertson, G., Ebert, D., Eick, S., Keim, D., Joy, K. (2009).

“Scale and complexity in visual analytics”. Information Visualization, v. 8, n. 4, pp.

247-253, July.

177


[Robillard et al. 2010] Robillard, M., Walker, R., Zimmermann, T. (2010).

“Recommendation System for Software Engineering”. IEEE Software, v. 27, n. 4,

pp. 80-86, July.

[Rocha et al. 2007] Rocha, A. R. C., Montoni, M., Weber, K. C., Araujo, E. E. R.

(2007). “A Nationwide Program for Software Process Improvement in Brazil”. In:

6th International Conference on Quality of Information and Communications

Technology (QUATIC 2007), Lisbon, Portugal, pp. 167-176, September.

[Rodrigues & Werner 2011] Rodrigues, C. S. C., Werner, C. M. L. (2011). “Making the

comprehension of software architecture attractive”. In: 24th IEEE-CS Conference on

Software Engineering Education and Training (CSEE&T 2011), Honolulu, Hawaii,

pp. 416-420.

[Sá et al. 1997] Sá, M. L. B., Werner, C. M. L., Goldman, I. (1997). “Introduction of

Reuse in a Brazilian Enterprise on Software Production” [Introdução da Reutilização

em uma Empresa Brasileira de Produção de Software] (in Portuguese). In: 11th

Brazilian Symposium on Software Engineering (SBES 1997), Fortaleza, Brazil, pp.

233-248, October.

[Sametinger 1997] Sametinger, J. (1997). Software Engineering with Reusable

Components. Ed. 1997. Springer-Berlin, 288p.

[Santa Isabel 2011] Santa Isabel, S. L. (2011). “Selection of Testing Approaches for

Web Applications” [Seleção de Abordagens de Teste para Aplicações Web] (in

Portuguese). M.Sc. Thesis, COPPE/UFRJ, Rio de Janeiro, Brazil, July.

[Santos et al. 2009] Santos, G., Zanetti, D., Maciel, M., Simões, C. A., Werner, C.,

Rocha, A. R. (2009). “The Experience of the Implementation of Reuse Management

and Development for Reuse Processes in Synapsis-Brazil” [A Experiência de

Implantação dos Processos Gerência de Reutilização e Desenvolvimento para

Reutilização na Synapsis-Brasil] (in Portuguese). In: Proceedings of the 5th Annual

Workshop of MPS (WAMPS), Campinas, Brazil, pp. 128-135, October.

[Schots et al. 2010] Schots, M., Silva, M. A., Murta, L. G. P., Werner, C. M. L. (2010).

“Adherence Checking between Conceptual and Emerging Architectures by Using the

PREViA Approach” [Verificação de Aderência entre Arquiteturas Conceituais e

Emergentes Utilizando a Abordagem PREViA] (in Portuguese). In: 7th Brazilian

178


Workshop on Modern Software Maintenance (WMSWM 2010), Belém, Brazil, pp 1-

8, June.

[Schots & Werner 2012] Schots, M., Werner, C. (2012). “Exploiting the Intangible: An

Overview of Software Visualization and its Applications” [Explorando o Intangível:

Um Panorama da Visualização de Software e suas Aplicações] (in Portuguese).

Tutorial. In: III Brazilian Congress on Software: Theory and Practice (CBSoft 2012),

Natal, Brazil.

[Schots et al. 2012] Schots, M., Werner, C., Mendonça, M. (2012). “Awareness and

Comprehension in Software/Systems Engineering Practice and Education: Trends

and Research Directions”. In: 26th Brazilian Symposium on Software Engineering

(SBES), Natal, Brazil, pp. 186-190.

[Schots & Werner 2013] Schots, M., Werner, C. (2013). “Characterizing the

Implementation of MR-MPS-SW Reuse Processes: Preliminary Results”

[Caracterizando a Implementação de Processos de Reutilização do MR-MPS-SW:

Resultados Preliminares]. In: Proceedings of the 9th Annual Workshop of MPS

(WAMPS 2013), Campinas, Brazil, pp. 44-53, October.

[Schots 2014a] Schots, M. (2014a). “On the Use of Visualization for Supporting

Software Reuse”. Qualifying Examination, COPPE/UFRJ, Rio de Janeiro, Brazil,

April.

[Schots 2014b] Schots, M. (2014b). “On the Use of Visualization for Supporting

Software Reuse”. In: 36th International Conference on Software Engineering (ICSE

2014), Doctoral Symposium, Hyderabad, India, pp. 694-697, June.

[Schots 2014c] Schots, M. (2014c). “How do visualization approaches support software

reuse tasks?” Available at http://www.cos.ufrj.br/~schots/survis_reuse/.

[Schots et al. 2014] Schots, M., Vasconcelos, R., Werner, C. (2014). “A Quasi-

Systematic Review on Software Visualization Approaches for Software Reuse”,

Technical Report ES-748/14, COPPE/UFRJ, Rio de Janeiro, Brazil, June.

[Schots & Werner 2014a] Schots, M., Werner, C. (2014a). “Characterizing the

Implementation of Software Reuse Processes in Brazilian Organizations”, Technical

Report ES-749/14, COPPE/UFRJ, Rio de Janeiro, Brazil, August.

179


[Schots & Werner 2014b] Schots, M., Werner, C. (2014b). “Using a Task-Oriented

Framework to Characterize Visualization Approaches”. In: 2nd IEEE Working

Conference on Software Visualization (VISSOFT 2014) – New Ideas and Emerging

Results (NIER) track, Victoria (BC), Canada, pp. 70-74, September.

[Schots & Werner 2015] Schots, M., Werner, C. (2015). “On Mapping Goals and

Visualizations: Towards Identifying and Addressing Information Needs”. In: 3rd

Workshop on Software Visualization, Evolution, and Maintenance (VEM 2015), Belo

Horizonte, Brazil, pp. 25-32, September.

[Schots et al. 2015] Schots, M., Vasconcelos, R., Queiroz, A. R., Werner, C. (2015).

“Organization of Visualization Knowledge for Supporting the Choice of Software

Visualizations”. Technical Report, COPPE/UFRJ, Rio de Janeiro, Brazil, December

(to appear).

[Schulz 2011] Schulz, H. J. (2011). “Treevis.net: A tree visualization reference”. IEEE

Computer Graphics and Applications, v. 31, n. 6, pp. 11-15, November.

[Seaman 1999] Seaman, C. B. (1999). “Qualitative methods in empirical studies of

software engineering”. IEEE Transactions on Software Engineering, v. 25, n. 4, pp.

557-572, July.

[Seaman 2009] Seaman, C. (2009). “Using Qualitative Methods in Empirical Studies of

Software Engineering”. Short course. In: VI Experimental Software Engineering

Latin American Workshop (ESELAW 2009), São Carlos, Brazil, November.

[Selby 2005] Selby, R. W. (2005). “Enabling reuse-based software development of

large-scale systems”. IEEE Transactions on Software Engineering, v. 31, n. 6, pp.

495-510, June.

[Sensalire et al. 2009] Sensalire, M., Ogao, P., Telea, A. (2009). “Evaluation of

software visualization tools: Lessons learned”. In: 5th IEEE International Workshop

on Visualizing Software for Understanding and Analysis (VISSOFT 2009),

Edmonton, Canada, pp. 19-26, September.

[Sherif & Vinze 2003] Sherif, K., Vinze, A. (2003). “Barriers to adoption of software

reuse: A qualitative study”. Information & Management, v. 41, n. 2, pp. 159-175,

December.

180


[Shi et al. 2005] Shi, K., Irani, P., Li, B. (2005). “An Evaluation of Content Browsing

Techniques for Hierarchical Space-Filling Visualizations”. In: IEEE Symposium on

Information Visualization (InfoVis 2005), Minneapolis, USA, pp. 81-88, October.

[Shi et al. 2011] Shi, Z., Wang, X., Yue, J. (2011) “Cognitive Cycle in Mind Model

CAM”. International Journal of Intelligence Science, v. 1, n. 2, pp. 25-34.

[Shneiderman 1996] Shneiderman, B. (1996). “The eyes have it: A task by data type

taxonomy for information visualizations”. In: Proceedings of the IEEE Symposium

on Visual Languages, Boulder, USA, pp. 336-343, September.

[Silva 2012] Silva, M. A. (2012). “Software Visualization Product Line: An

Infrastructure for Supporting Comprehension Activities by Visualization

Mechanisms Generation” [Linha de Produtos para Visualização de Software: Uma

Infraestrutura para Apoiar Atividades de Compreensão por meio da Construção de

Mecanismos de Visualização] (in Portuguese). M.Sc. Thesis, COPPE/UFRJ, Rio de

Janeiro, Brazil, December.

[Silva et al. 2012] Silva, M., Schots, M., Werner, C. (2012). “Supporting Software

Maintenance Activities through a Software Visualization Product Line

Infrastructure”. In: 9th Workshop on Modern Software Maintenance (WMSWM

2012), Fortaleza, Brazil, pp. 1-8, June.

[Silva Filho et al. 2008] Silva Filho, R. C., Katsurayama, A. E., Santos, G., Murta, L.,

Rocha, A. R. C. (2008). “Deploying Software Reuse Management at COPPE/UFRJ

Software Engineering Laboratory”. In: 1st Workshop on Software Reuse Efforts

(WSRE), 2nd RiSE Summer School on Software Product Lines (RiSS 2008), Recife,

Brazil, pp. 1-5, November.

[SOFTEX 2012] SOFTEX (2012). “MPS.BR – Brazilian Software Process

Improvement – General Guide” [MPS.BR – Melhoria de Processo do Software

Brasileiro – Guia Geral] (in Portuguese), August. Available at

http://www.softex.br/mpsbr.

[SOFTEX 2013a] SOFTEX (2013a). “Implementation Guide – Part 3: Reasoning for

the Implementation of Level E of MR-MPS-SW:2012” [Guia de Implementação –

Parte 3: Fundamentação para Implementação do Nível E do MR-MPS-SW:2012] (in

Portuguese), September. Available at http://www.softex.br/mpsbr/guias/.

181


[SOFTEX 2013b] SOFTEX (2013c). “Assessment Guide” [Guia de Avaliação] (in

Portuguese), September. Available at http://www.softex.br/mpsbr/guias/.

[Spence 2001] Spence, R. (2001), Information Visualization, Addison Wesley

Publisher, 1st edition.

[Telea et al. 2010] Telea, A., Ersoy, O., Voinea, L., (2010). “Visual Analytics in

Software Maintenance: Challenges and Opportunities”. In: 1st European Symposium

on Visual Analytics (EuroVAST), Bordeaux, France, pp. 65-70, June.

[Thomas & Cook 2006] Thomas, J. J, Cook, K. A. (2006) “A visual analytics agenda”.

IEEE Computer Graphics and Applications, v. 26, n. 1, pp. 10-13, January.

[Tory & Moller 2004] Tory, M., Moller, T. (2004). “Rethinking visualization: A high-

level taxonomy”. In: IEEE Symposium on Information Visualization (InfoVis 2004),

Austin, USA, pp. 151-158, October.

[Travassos et al. 2008] Travassos, G. H., Santos, P. S. M., Mian, P. G., Dias Neto, A.

C., Biolchini, J. (2008). “An environment to support large scale experimentation in

software engineering”. In: 13th IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS 2008), Belfast, Northern Ireland, pp. 193-202,

April.

[Treude & Storey 2010] Treude, C., Storey, M.-A. (2010). “Awareness 2.0: staying

aware of projects, developers and tasks using dashboards and feeds”. In: 32nd

ACM/IEEE International Conference on Software Engineering (ICSE 2010), Cape

Town, South Africa, pp. 365-374, May.

[Vasconcelos et al. 2013] Vasconcelos, R. R., Schots, M., Werner, C. (2013).

“Recommendations for Context-Aware Visualizations in Software Development”.

In: 10th Workshop on Modern Software Maintenance (WMSWM 2013), Salvador,

Brazil, pp. 41-48, July.

[Vasconcelos et al. 2014a] Vasconcelos, R., Schots, M., Werner, C. (2014). “An

Information Visualization Feature Model for Supporting the Selection of Software

Visualizations”. In: 22nd International Conference on Program Comprehension

(ICPC 2014), Early Research Achievements Track, Hyderabad, India, pp. 122-125,

June.

182


[Vasconcelos et al. 2014b] Vasconcelos, R., Schots, M., Werner, C. (2014). “On the

Use of Context Information for Supporting Software Visualizations”. In: 2nd

Workshop on Software Visualization, Evolution, and Maintenance (VEM 2014),

Maceió, Brazil, pp. 54-61, September.

[Vasconcelos 2015] Vasconcelos, R. R. (2015). “A Context-Aware Approach for

Information Visualization: An Example in Software Development Scenarios” [Uma

Abordagem Sensível ao Contexto para Visualização de Informação: Um Exemplo

em Cenários de Desenvolvimento de Software] (in Portuguese). M.Sc. Thesis,

COPPE/UFRJ, Rio de Janeiro, Brazil, April.

[Vital & Krause 2013] Vital, G. B., Krause, V. S. (2013). “Rec4Reuse: A system for

performing evaluations and recommendations based on desirable properties of

reusable software” [Rec4Reuse: Um sistema de avaliação e recomendação baseado

em propriedades desejáveis a software reutilizável] (in Portuguese). Undergraduate

Final Project, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro,

Brazil.

[Von Mayrhauser & Vans 1995] Von Mayrhauser, A., Vans, A. M. (1995). “Program

comprehension during software maintenance and evolution”, Computer, v. 28, n. 8,

pp. 44-55, August.

[Werner et al. 2011] Werner, C., Murta, L., Schots, M., Magdaleno, A., Silva, M.,

Cepeda, R., Vahia, C. (2011). “EvolTrack: A Plug-in-Based Infrastructure for

Visualizing Software Evolution”. In: 1st Brazilian Workshop on Software

Visualization (WBVS 2011), São Paulo, Brazil, pp. 1-8.

[Wettel & Lanza 2008] Wettel, R., Lanza, M. (2008). “Visual Exploration of Large-

Scale System Evolution”. In: 15th Working Conference on Reverse Engineering

(WCRE 2008), Antwerp, Belgium, pp. 219-228, October.

[Wong et al. 2007] Wong, K., Stroulia, E., Tonella, P. (2007). “Message from the

Chairs”. In: 15th IEEE International Conference on Program Comprehension (ICPC

2007), Banff, Canada, pp. ix, June.

[Wu & Storey 2000] Wu, J., Storey, M.-A. D. (2000). “A Multi-Perspective Software

Visualization Environment”. In: Conference of the Centre for Advanced Studies on

Collaborative Research, Mississauga, Canada, pp. 1-10, November.

183


[Yano et al. 2015] Yano, Y., Kula, R. G., Ishio, T., Inoue, K. (2015). “VerXCombo: An

interactive data visualization of popular library version combinations”. In: 23rd IEEE

International Conference on Program Comprehension (ICPC 2015), Tool Demo

Session, Firenze, Italy, pp. 291-294, May.

[Yazdanshenas et al. 2012] Yazdanshenas, A. R., Moonen, L. (2012). “Tracking and

visualizing information flow in component-based systems”. In: 20th IEEE

International Conference on Program Comprehension (ICPC 2012), Passau,

Germany, pp. 143-152, June.

[Ye & Fischer 2000] Ye, Y., Fischer, G., Reeves, B. (2000). “Integrating Active

Information Delivery and Reuse Repository Systems”. In: ACM SIGSOFT

Symposium on Foundations on Software Engineering (FSE 2000), San Diego, USA,

pp. 60-68, November.

[Ye & Fischer 2002] Ye, Y., Fischer, G. (2002). “Supporting reuse by delivering task-

relevant and personalized information”. In: 24th International Conference on

Software Engineering (ICSE 2002), Orlando, USA, pp. 513-523, May.

[Yi et al. 2007] Yi, J. S., Kang, Y., Stasko, J. T., Jacko, J. A. (2007). “Toward a Deeper

Understanding of the Role of Interaction in Information Visualization”, IEEE

Transactions on Visualization and Computer Graphics, v. 13, n. 6, pp.1224-1231,

December.

184


APPENDIX A – MAPPING BETWEEN GOALS AND

VISUALIZATIONS

This appendix presents the results of the mapping performed for the construction

of Zooming Browser. It lists the elements that have been derived from the meet-in-the-

middle strategy (mentioned in Section 4.6.1).

Table A.1 presents the reuse goals, divided into project goals (PG) and

organizational goals (OG). It is noteworthy that Zooming Browser only provides partial

support for each of these goals. One must resort to other resources (e.g., CAVE) in

order to perform analyses in a more detailed level.

Table A.1 – Reuse goals

Goal ID Description

PG01 Identify an asset that fits the project needs

PG02
Decide whether an asset or an asset version can/should be reused in (incorporated to)

a project or not

PG03
Decide whether an existing project that already contains a given asset version should

upgrade/downgrade to a newer/older asset version

OG01

Maintain the reuse repository/library (i.e., include, exclude, request maintenance or

discontinue/deprecate asset versions, as well as keep metadata information for

communication purposes)

OG02

Manage and monitor the implementation of reuse processes and evaluate the

effectiveness of reuse practices (progresses and efforts), in the context of local

projects/assets/developers (i.e., belonging to the organization)

These goals were broken down into a set of questions, presented in tables (from

Table A.2 to

Table A.5). The relationship/mapping between goals and questions is presented

in Table A.6, and the main elements from the mapping between questions and

visualizations are presented in Table A.7.



1
8
5

Table A.2 – Questions on general asset/consumer/project information (related to reuse occurrences)

Asset-Centric Project-Centric Developer-Centric

Asset-Developers Developer-Assets Asset-Projects Project-Assets Developer-Projects Project-Developers

Which [versions of] assets have ever been reused? Which projects have ever had an asset included (i.e.,

contain at least one reusable asset in their development

history)?

Which developers are consumers (i.e., have ever reused

an asset)? Which versions of this asset were reused?

Which [versions of] assets are most often reused?
Which consumers reuse assets more often?

Which versions of this asset are most often reused?
In which projects assets are most often reused (i.e., which

projects contain the largest number of assets)?
How often are [versions of] assets reused over time? How active is this consumer in terms of number of

reuses? How often is this asset [version] reused over time?

Table A.3 – Questions on project/producer information related to asset development/release history and asset maintenance

 Project information Producer information

A
ss

et

d
ev

el
o
p
m

en
t/

re
le

as
e

h
is

to
ry

Which assets have the most active development project?
Which developers are producers (i.e., have ever produced an asset or

contributed to the development of an asset)?

Which versions of this asset were released? Which consumers are also producers?

How active is the development project of this asset?
Which producers develop assets more often?

How active is this producer in terms of assets’ development?

A
ss

et

m
ai

n
te

n
an

ce

Among the reported bugs, improvement suggestions, or feature requests related

to this asset [version], are most of them fixed or open?

Among the reported bugs, improvement suggestions, or feature requests

assigned to this producer, are most of them fixed or open?

How often do producers of this asset fix reported bugs? How often does this producer fix reported bugs?

How long does it take for producers of this asset to fix reported bugs? How long does it take for this producer to fix reported bugs?

How often do producers of this asset implement improvement suggestions or

feature requests?

How often does this producer implement improvement suggestions or feature

requests?



1
8
6

Table A.4 – Asset/consumer/project information (related to reuse occurrences)

Asset-Centric Project-Centric Developer-Centric

Asset-Assets
Developer-

Developers
Project-Projects

Asset-Developers Developer-Assets Asset-Projects Project-Assets
Developer-

Projects

Project-

Developers

Which assets were reused by which consumers in which projects? Which [versions

of] assets were

reused in the

development of

which [versions

of] assets?

(CAVE)

Which consumers

reused the same

[version(s) of]

asset(s) reused by

which consumers?

Which projects

contain the same

[version(s) of]

asset(s) reused in

another project?

Which consumers reused which

assets?

Which assets were reused in which

projects?

Which consumers reused assets in

which projects?

Which consumers

reused this asset

[version]?

Which assets did

this consumer

reuse?

In which projects

was this asset

[version] reused?

Which assets were

reused in this

project?

In which projects

did this consumer

reuse [versions of]

assets?

Which consumers

reused [versions

of] assets in this

project?

Which [versions

of] assets were

reused in the

development of

this asset

[version]?

(CAVE)

Which consumers

reused the same

[version(s) of]

asset(s) reused by

this consumer?

Which projects

contain the same

[version(s) of]

asset(s) reused in

this project?

Which versions of

this asset did this

consumer reuse?

Which versions of

this asset were

reused in this

project?

In which projects

did this consumer

reuse this asset

[version]? Which consumers

reused this asset

[version] in this

project?

Which [versions

of] assets does

this asset

[version] depend

on?

Which consumers

reused [version(s)

of] asset(s)

developed by

which producers?

Which [versions

of] assets did this

consumer reuse in

this project?

Which [versions

of] assets depend

on this asset

[version]?

Which consumers

reused [version(s)

of] asset(s)

developed by this

producer?



1
8
7

Asset-Centric Project-Centric Developer-Centric

Asset-Assets
Developer-

Developers
Project-Projects

Asset-Developers Developer-Assets Asset-Projects Project-Assets
Developer-

Projects

Project-

Developers

Who are the main

consumers of this

asset [version]

(i.e., the

consumers who

reused this asset

[version] more

often)?

Which [versions

of] assets does this

consumer reuse

most often?

Which project

contains the largest

number of reuse

occurrences of this

asset (i.e., the

largest number of

distinct versions of

this asset)?

Which assets are

most often reused

in this project (i.e.,

have the largest

number of distinct

versions included

in this project)?

In which projects

did this consumer

include the largest

number of

[versions of]

assets?

Who are the main

consumers in this

project (i.e., the

consumers who

included different

[versions of] assets

in this project more

often)?

How often does this consumer reuse

this asset [version]?

How often is this asset reused in this

project (i.e., are there distinct versions

of this asset reused in this project)?

How often does this consumer reuse

[versions of] assets in this project (i.e.,

are there distinct [versions of] assets

reused in this project by this

consumer)?

For how long (over time) does this project contain this asset included by this consumer?

For how long (over time) do projects

contain this asset included by this

consumer?

For how long (over time) does this

project contain this asset?

For how long (over time) does this

project contain assets included by this

consumer?

Which projects contain reusable assets

among their releases?

Which consumers included reusable

assets that are among project releases?

Which projects

contain, among

their releases, [a

version of] this

asset?

Which [versions

of] assets are

among the releases

of this project?

Which projects

contain, among

their releases,

assets included by

this consumer?

Which consumers

included assets that

are among the

releases of this

project?

Which [versions of] assets included by

this consumer are among the releases

of this project?



1
8
8

Table A.5 – Questions on production information (related to the asset development/release history)

Asset-Centric
Developer-Developers

Asset-Developers Developer-Assets

Which [versions of] assets were developed by which producers?
Which producers contribute/collaborate with which

producers in assets development?

Which producers contributed to the development of this

asset [version]?

Which [versions of] assets contain [which kinds of]

development contributions made by this producer?

Who are the producers with whom this producer

contributes/collaborates (in assets development)?

Which producers contribute/collaborate in the

development of assets developed by this producer?

To which parts of the development history of this asset

[version] did each producer contribute?

To which parts of the assets development history did this

producer contribute?

Who are the main producers of this asset [version] (i.e.,

the producers who most contributed to the development

of this asset [version])?

What are the [versions of] assets to which development

this producer has most contributed?

Which producers contributed to which releases of [versions of] assets?

Which producers contributed to a release of this asset

[version]?

Which released [versions of] assets contain development

contributions made by this producer?

Which released versions of this asset contain development contributions made by this producer?

Which producers contributed to the development of this

asset [version] but stopped contributing afterwards?

Which [versions of] assets contain some contribution

made by this producer but such producer stopped

contributing afterwards?

Table A.6 – Mapping between questions and reuse goals

Question ID Description Goals supported by the question

GENERAL ASSET INFORMATION RELATED TO REUSE OCCURRENCES

Q01.R.A Which [versions of] assets have ever been reused? OG01;OG02

Q02.R.A Which versions of this asset were reused? PG02;PG03;OG01;OG02

Q03.R.A Which [versions of] assets are most often reused? PG02;PG03;OG01;OG02

Q04.R.A Which versions of this asset are most often reused? PG02;PG03;OG01;OG02

Q05.R.A How often are [versions of] assets reused over time? OG01;OG02



1
8
9

Question ID Description Goals supported by the question

Q06.R.A How often is this asset [version] reused over time? PG02;PG03;OG01;OG02

GENERAL PROJECT INFORMATION RELATED TO REUSE OCCURRENCES

Q07.R.P Which projects have ever had an asset included (i.e., contain at least one reusable asset in their development history)? OG01;OG02

Q08.R.P In which projects assets are most often reused (i.e., which projects contain the largest number of assets)? OG02

GENERAL CONSUMER INFORMATION RELATED TO REUSE OCCURRENCES

Q09.R.D Which developers are consumers (i.e., have ever reused an asset)? OG01;OG02

Q10.R.D Which consumers reuse assets most often? OG02

Q11.R.D How active is this consumer in terms of number of reuses? OG02

GENERAL PROJECT INFORMATION RELATED TO ASSET DEVELOPMENT/RELEASE HISTORY

Q12.P.A Which assets have the most active development project? OG02

Q13.P.A How active is the development project of this asset? PG02;PG03;OG02

Q14.P.A Which versions of this asset were released? PG02;OG02

GENERAL PRODUCER INFORMATION RELATED TO ASSET DEVELOPMENT/RELEASE HISTORY

Q15.P.D Which developers are producers (i.e., have ever produced an asset or contributed to the development of an asset)? OG01;OG02

Q16.P.D Which consumers are also producers? OG02

Q17.P.D Which producers develop assets most often? OG01;OG02

Q18.P.D How active is this producer in terms of assets’ development? OG01;OG02

GENERAL ASSET INFORMATION RELATED TO ASSET MAINTENANCE

Q19.M.A
Among the reported bugs, improvement suggestions, or feature requests related to this asset [version], are most of them

fixed or open?
PG02;PG03;OG02

Q20.M.A How often do producers of this asset fix reported bugs? PG02;PG03;OG02

Q21.M.A How long does it take for producers of this asset to fix reported bugs? PG02;PG03;OG02

Q22.M.A How often do producers of this asset implement improvement suggestions or feature requests? PG02;PG03;OG02

Q19.M.A
Among the reported bugs, improvement suggestions, or feature requests related to this asset [version], are most of them

fixed or open?
PG02;PG03;OG02

GENERAL PRODUCER INFORMATION RELATED TO ASSET MAINTENANCE

Q23.M.D
Among the reported bugs, improvement suggestions, or feature requests assigned to this producer, are most of them fixed or

open?
PG02;PG03;OG02



1
9
0

Question ID Description Goals supported by the question

Q24.M.D How often does this producer fix reported bugs? PG02;PG03;OG02

Q25.M.D How long does it take for this producer to fix reported bugs? PG02;PG03;OG02

Q26.M.D How often does this producer implement improvement suggestions or feature requests? PG02;PG03;OG02

ASSET/CONSUMER/PROJECT INFORMATION (ALL RELATED TO REUSE OCCURRENCES)

Q27.R.* Which assets were reused by which consumers in which projects? PG01;PG02;PG03;OG01;OG02

Q28.R.(AD) Which consumers reused which assets? OG01;OG02

Q29.R.AD Which consumers reused this asset [version]? PG02;PG03;OG01;OG02

Q30.R.AD Who are the main consumers of this asset [version] (i.e., the consumers who most often reused this asset [version])? PG02;PG03;OG01;OG02

Q31.R.DA Which assets did this consumer reuse? OG01;OG02

Q32.R.DA Which versions of this asset did this consumer reuse? OG01;OG02

Q33.R.DA Which [versions of] assets does this consumer reuse most often? PG02;PG03;OG01;OG02

Q34.R.(AD) How often does this consumer reuse this asset [version]? OG01;OG02

Q35.R.(AP) Which assets were reused in which projects? PG01;PG02;PG03;OG01;OG02

Q36.R.AP In which projects was this asset [version] reused? PG01;PG02;PG03;OG01;OG02

Q37.R.AP
Which project contains the largest number of reuse occurrences of this asset (i.e., the largest number of distinct versions of

this asset)?
PG03;OG02

Q38.R.AP
Which projects contain this asset [version] at some point of the development life cycle but do not contain such asset

[version] afterwards?
PG02;PG03;OG01;OG02

Q39.R.PA Which assets were reused in this project? PG01;PG02;PG03;OG01;OG02

Q40.R.PA Which versions of this asset were reused in this project? PG01;PG02;PG03;OG01;OG02

Q41.R.(AP) Which assets are most often reused in this project (i.e., have the largest number of distinct versions included in this project)? PG03;OG02

Q42.R.PA How often is this asset reused in this project (i.e., are there distinct versions of this asset reused in this project)? PG03;OG02

Q43.R.(AP)
Which [versions of] assets were included at some point of the development life cycle of this project but were removed

afterwards?
PG03;OG02

Q44.R.(AP) Which projects contain reusable assets among their releases? PG02;PG03;OG01;OG02

Q45.R.AP Which projects contain, among their releases, [a version of] this asset? PG02;PG03;OG01;OG02

Q46.R.PA Which [versions of] assets are among the releases of this project? PG02;PG03;OG01;OG02

Q51.R.(DP) Which consumers reused assets in which projects? PG01;PG02;OG01;OG02



1
9
1

Question ID Description Goals supported by the question

Q52.R.DP In which projects did this consumer reuse [versions of] assets? PG01;PG02;OG01;OG02

Q53.R.DP In which projects did this consumer reuse this asset [version]? PG02;OG01;OG02

Q54.R.(DP) Which [versions of] assets did this consumer reuse in this project? PG01;PG02;OG01;OG02

Q55.R.DP
Which projects contain, at some point of the development life cycle, [versions of] assets included by this consumer that were

removed afterwards?
PG02;OG01;OG02

Q56.R.DP In which projects did this consumer include the largest number of [versions of] assets? OG02

Q57.R.PD Which consumers reused [versions of] assets in this project? OG01;OG02

Q58.R.PD Which consumers reused this asset [version] in this project? OG01;OG02

Q59.R.PD
Who are the main consumers in this project (i.e., the consumers who most often included different [versions of] assets in this

project)?
OG02

Q60.R.(DP)
How often does this consumer reuse [versions of] assets in this project (i.e., are there distinct [versions of] assets reused in

this project by this consumer)?
OG02

Q63.R.DP Which projects contain, among their releases, assets included by this consumer? PG03;OG01;OG02

Q64.R.PD Which consumers included assets that are among the releases of this project? PG03;OG01;OG02

Q65.R.(DP) Which [versions of] assets included by this consumer are among the releases of this project? PG03;OG01;OG02

Q69.R.* For how long (over time) does this project contain this asset included by this consumer? OG02

Q70.R.(AD) For how long (over time) do projects contain this asset included by this consumer? PG02;OG02

Q71.R.(AP) For how long (over time) does this project contain this asset? PG02;OG02

Q72.R.(DP) For how long (over time) does this project contain assets included by this consumer? PG02;OG02

Q72.R.AA Which [versions of] assets were reused in the development of which [versions of] assets? (CAVE) PG02;PG03

Q73.R.AA Which [versions of] assets were reused in the development of this asset [version]? (CAVE) PG02;PG03

Q74.R.AA Which [versions of] assets does this asset [version] depend on? PG02;PG03

Q75.R.AA Which [versions of] assets depend on this asset [version]? OG01

Q76.R.DD Which consumers reused the same [version(s) of] asset(s) reused by which consumers? OG02

Q77.R.DD Which consumers reused the same [version(s) of] asset(s) reused by this consumer? PG02; OG02

Q78.R.DD Which consumers reused [version(s) of] asset(s) developed by which producers? OG02

Q79.R.DD Which consumers reused [version(s) of] asset(s) developed by this producer? OG02

Q80.R.PP Which projects contain the same [version(s) of] asset(s) reused in another project? PG01



1
9
2

Question ID Description Goals supported by the question

Q81.R.PP Which projects contain the same [version(s) of] asset(s) reused in this project? PG01

PRODUCTION INFORMATION RELATED TO ASSET DEVELOPMENT/RELEASE HISTORY

Q82.P.(AD) Which [versions of] assets were developed by which producers? PG02;OG02

Q83.P.AD Which producers contributed to the development of this asset [version]? PG02;PG03;OG01;OG02

Q84.P.AD To which parts of the development history of this asset [version] did each producer contribute? PG02;PG03;OG01;OG02

Q85.P.AD
Who are the main producers of this asset [version] (i.e., the producers who most contributed to the development of this asset

[version])?
PG02;PG03;OG01;OG02

Q86.P.AD Which producers contributed to the development of this asset [version] but stopped contributing afterwards? PG02;OG02

Q87.P.DA Which [versions of] assets contain [which kinds of] development contributions made by this producer? PG02;OG02

Q88.P.DA To which parts of the assets development history did this producer contribute? PG02;OG02

Q89.P.DA What are the [versions of] assets to which development this producer has most contributed? OG02

Q90.P.DA
Which [versions of] assets contain some contribution made by this producer but such producer stopped contributing

afterwards?
OG02

Q91.P.(AD) Which producers contributed to which releases of [versions of] assets? PG02;OG02

Q92.P.AD Which producers contributed to a release of this asset [version]? PG02;OG02

Q94.P.DA Which released [versions of] assets contain development contributions made by this producer? OG02

Q95.P.(AD) Which released versions of this asset contain development contributions made by this producer? OG02

Q97.P.DD Which producers contribute/collaborate with which producers in assets development? PG02;OG02

Q98.P.DD Who are the producers with whom this producer contributes/collaborates (in assets development)? PG02;OG02

Q99.P.DD Which producers contribute/collaborate in the development of assets developed by this producer? PG02;OG02

Table A.7 – Mapping between questions, data, visual attributes, and visualizations

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

Dash-MRA-

BarC
Dashboard -- --

Bar/Stacked

bar chart
--

Size (indicates the number of reuses of

the asset)

• Which [versions of] assets are

most often reused?

Dash-MADP-

BarC
Dashboard -- --

Bar/Stacked

bar chart
--

Size (indicates the activeness of the

development project)

• Which assets have the most

active development project?



1
9
3

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

Dash-MAC-

BarC
Dashboard -- --

Bar/Stacked

bar chart
--

Size (indicates number of assets reused

by the consumer)

• Which consumers reuse assets

most often?

Dash-MAP-

BarC
Dashboard -- --

Bar/Stacked

bar chart
--

Size (indicates number of assets

produced by the producer)

• Which producers develop assets

most often?

Dash-PLNRA-

BarC
Dashboard -- --

Bar/Stacked

bar chart
--

Size (indicates the number of reuse

occurrences in the project)

• In which projects assets are

most often reused (i.e., which

projects contain the largest

number of assets)?

Dash-MAP-

MRAC-PieC
Dashboard -- -- Pie chart

Select consumer of

interest (from the

MAP bar chart)

Pie slice (each slice represents a

[version of] asset reused by this

consumer, and its size represents the

percentage of times he/she reused it

against all his/her reuse occurrences)

• Which [versions of] assets does

this consumer reuse most often?

Dash-PLNRA-

MRAP-PieC
Dashboard -- -- Pie chart

Select project of

interest (from the

PLNRA bar chart)

Pie slice (each slice represents a

[version of] asset reused in this project,

and its size represents the percentage

of times it was reused against all the

reuse occurrences in the project)

• Which assets are most often

reused in this project (i.e., have

the largest number of distinct

versions included in this project)?

Dash-RAOT-

LC
Dashboard -- -- Line chart --

Increasing/Decreasing pattern of the

line path

• How often are [versions of]

assets reused over time?

Dash-Matrix-

ACP

Dashboard

(not sure)
-- Full Reuse Map Matrix

Perform custom

association of rows,

columns, and cells to

assets, developers

(consumers), and

projects.

Matrix cell content matching row and

column

• Which assets were reused by

which consumers in which

projects?

Dash-Matrix-

AC

Dashboard

(not sure)
--

Asset-

Consumers

Map

Matrix --

Matrix cell content matching row and

column represents projects in which a

consumer reused an asset.

• Which consumers reused which

assets?



1
9
4

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

Dash-Matrix-

AProd

Dashboard

(not sure)
--

Asset-

Producers Map
Matrix --

Matrix cell content matching row and

column represents assets to which

development a producer contributed.

• Which [versions of] assets were

developed by which producers?

Dash-Matrix-

AProj

Dashboard

(not sure)
--

Asset-Projects

Map
Matrix --

Matrix cell content matching row and

column represents consumers who

reused an asset in a project.

• Which assets were reused in

which projects?

Dash-Matrix-

CP

Dashboard

(not sure)
--

Consumer-

Projects Map
Matrix --

Matrix cell content matching row and

column represents assets that were

reused by a consumer in a project.

• Which consumers reused assets

in which projects?

A-BC-Ov
Metadata

Exploration
Assets -- Bubble Chart

Each asset can be

exploded to depict

its versions

Overview of bubbles (depicts assets or

asset versions)
No question associated

A-BC-HMF
Metadata

Exploration
Assets -- Bubble Chart

Each asset can be

exploded to depict

its versions / Filter

by Reused Assets

Highlight filter (showing assets that

have been reused) OR Mitigation

(hiding the ones who do not match the

filtering criteria) (could use color too)

• Which [versions of] assets have

ever been reused?

A-CBC-S
Metadata

Exploration
Assets --

Cartesian

Bubble Chart

(with asset

versions)

Switch to asset

versions view

Size (indicates number of reuses) AND

Row (shows an asset [version] reuse

history)

• Which [versions of] assets are

most often reused?

A-RH-RHG-SI

History

(from

Metadata

Exploration)

Assets Reuse History

VCS Release

History

Graph

Filter by

Consumption Data
Star Icon (depicts asset versions)

• Which versions of this asset

were reused?

A-RH-RHG-S

History

(from

Metadata

Exploration)

Assets Reuse History

VCS Release

History

Graph

Filter by

Consumption Data

OR Production Data

Size (indicates number of reuses (for

Consumption Data) and “Activeness”

of development (for Production Data))

• Which versions of this asset are

most often reused?

• Which assets have the most

active development project?

A-RH-LC
Metadata

Exploration
Assets Reuse History Line chart --

Line path (each line depicts an asset or

an asset version)

• How often is this asset [version]

reused over time?



1
9
5

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

A-C-BC
Metadata

Exploration
Assets Consumers Bubble Chart -- Bubble (depicts the consumers)

• Which consumers reused this

asset [version]?

A-C-BC-S
Metadata

Exploration
Assets Consumers Bubble Chart --

Size (indicates number of reuses

performed)

• Who are the main consumers of

this asset [version] (i.e., the

consumers who most often reused

this asset [version])?

A-C-BC-RCC

History

(from

Metadata

Exploration)

Assets Consumers

Range

Column

Chart

Select consumer of

interest, then choose

“Permanence of this

asset in projects over

time (included by

this consumer)”

option

Each line represents a project; Length

and position of the column-bars in the

x-axis represent the time during which

the project contains the asset

• For how long (over time) do

projects contain this asset

included by this consumer?

A-C-Proj-BC
Metadata

Exploration
Assets Consumers

Consumer’s

Bubble Chart,

drilling down

to Projects

Bubble Chart

Select consumer of

interest

Bubble (depicts projects in which the

consumer reused the asset [version])

• In which projects did this

consumer reuse this asset

[version]?

A-C-Proj-BC-

RCC-DHG-

HMF

History

(from

Metadata

Exploration)

Assets Consumers

Consumer’s

Bubble Chart,

drilling down

to Project’s

Range

Column

Chart,

drilling down

to VCS

Development

History

Graph

Select consumer of

interest, then choose

“Permanence of this

asset in projects over

time (included by

this consumer)”

option, then select

project of interest

from the Range

Column Chart

Highlight filter (showing the versions

since the moment the asset was

included in this project by this

consumer until the moment it was

removed, if so) OR Mitigation (hiding

the ones who do not match this

filtering criterion) (could use color too)

• For how long (over time) does

this project contain this asset

included by this consumer?



1
9
6

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

A-P-BC
Metadata

Exploration
Assets Producers Bubble Chart -- Bubble (depicts the producers)

• Which producers contributed to

the development of this asset

[version]?

A-P-BC-S
Metadata

Exploration
Assets Producers Bubble Chart -- Size (indicates amount of contribution)

• Who are the main producers of

this asset [version] (i.e., the

producers who most contributed

to the development of this asset

[version])?

A-P-BC-HMF
Metadata

Exploration
Assets Producers Bubble Chart

Filter by “Show only

producers who

contributed to asset

releases”

Highlight filter (showing producers

who contributed to asset releases) OR

Mitigation (hiding the ones who do not

match this filtering criterion) (could

use color too)

• Which producers contributed to

a release of this asset [version]?

A-P-BC-DHG-

PIContrib

History

(from

Metadata

Exploration)

Assets Producers

Bubble Chart,

drilling down

to VCS

Development

History

Graph

Filter by producers

that started

contributing and

stopped afterwards

AND Select

producer of interest

Bubble (each bubble represents a

producer in these conditions) AND

Producer Icon with + or - visible signs

(depicts a VCS project version in

which the producer started/stopped

contributing)

• Which producers contributed to

the development of this asset

[version] but stopped contributing

afterwards?

A-Proj-BC
Metadata

Exploration
Assets

Projects in

which this asset

was reused

Bubble Chart --
Bubble (depicts projects that contain

this asset [version])

• In which projects was this asset

[version] reused?

A-Proj-BC-S
Metadata

Exploration
Assets

Projects in

which this asset

was reused

Bubble Chart --
Size (indicates number of reuse

occurrences)

• Which project contains the

largest number of reuse

occurrences of this asset (i.e., the

largest number of distinct

versions of this asset)?

A-Proj-BC-LC
Metadata

Exploration
Assets

Projects in

which this asset

was reused

Line chart
Select project of

interest

Line path (each line depicts an asset

version)

• How often is this asset reused in

this project (i.e., are there distinct

versions of this asset reused in

this project)?



1
9
7

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

A-Proj-BC-

HMF

History

(from

Metadata

Exploration)

Assets

Projects in

which this asset

was reused

Bubble Chart

Filter by “Project

releases that contain

this asset”

Highlight filter (showing which project

releases contain this asset) OR

Mitigation (hiding the ones who do not

match the filtering criteria) (could use

color too)

• Which projects contain, among

their releases, [a version of] this

asset?

A-Proj-C-BC
Metadata

Exploration
Assets

Projects in

which this asset

was reused

Project’s

Bubble Chart,

drilling down

to Consumers

Bubble Chart

Select project of

interest

Bubble (depicts consumers who reused

the asset [version] in the project)

• Which consumers reused this

asset [version] in this project?

A-Proj-BC-

DHG-

AIContrib

History

(from

Metadata

Exploration)

Assets

Projects in

which this asset

was reused

Bubble Chart,

drilling down

to VCS

Development

History

Graph

Filter by projects

that have assets

included and

removed afterwards

AND Select project

of interest

Bubble (each bubble represents a

project in these conditions) AND Asset

icon with + or - visible signs (depicts a

VCS project version in which the asset

was included/excluded)

• Which projects contain this asset

[version] at some point of the

development life cycle but do not

contain such asset [version]

afterwards?

A-Proj-C-BC-

DHG-HMF

History

(from

Metadata

Exploration)

Assets

Projects in

which this asset

was reused

Project’s

Bubble Chart,

drilling down

to

Consumer’s

Bubble Chart,

drilling down

to VCS

Development

History

Graph

Select project of

interest, then select

consumer of interest

Highlight filter (showing the versions

since the moment the asset was

included in this project by this

consumer until the moment it was

removed, if so) OR Mitigation (hiding

the ones who do not match this

filtering criterion) (could use color too)

• For how long (over time) does

this project contain this asset

included by this consumer?



1
9
8

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

A-Proj-BC-

DHG-HMF

History

(from

Metadata

Exploration)

Assets

Projects in

which this asset

was reused

VCS

Development

History

Graph

Select project of

interest, then choose

“Permanence of this

asset in this project

over time” option

Highlight filter (showing the versions

since the moment the asset was

included in this project until the

moment it was removed, if so) OR

Mitigation (hiding the ones who do not

match this filtering criterion) (could

use color too)

• For how long (over time) does

this project contain this asset?

A-DH-DHG-

Pos

History

(from

Metadata

Exploration)

Assets
Development

history

VCS

Development

History

Graph

--
Position of elements in the x-axis

(which represents time)

• How active is the development

project of this asset?

A-DH-DHG-

Color

History

(from

Metadata

Exploration)

Assets
Development

history
Line chart --

Line path (represents the frequency of

commits over time)

• How active is the development

project of this asset?

A-DH-DHG-

Circle

History

(from

Metadata

Exploration)

Assets
Development

history

VCS

Development

History

Graph

-- Circle (depicts a VCS project version) No question associated

A-DH-DHG-SI

History

(from

Metadata

Exploration)

Assets
Development

history

VCS

Development

History

Graph

Filter activating

option “Show

releases”

Star Icon (depicts a VCS project

version that was released)

• Which versions of this asset

were released?

A-DH-DHG-

PI_Color_HMF

History

(from

Metadata

Exploration)

Assets
Development

history

VCS

Development

History

Graph

Optionally filter by

producer / Filter by

axis segment

(slider?) or, if this

information is

available, filter by

version interval

Producer Icon (depicts a VCS project

version committed by a producer)

AND Color (differentiates each

producer) AND Highlight filter

(showing parts of the development

history that match the filtering criteria)

OR Mitigation (hiding the ones who do

not match the filtering criteria) (could

use color too)

• To which parts of the

development history of this asset

[version] did each producer

contribute?



1
9
9

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

A-R-RHG-SI

History

(from

Metadata

Exploration)

Assets Releases

VCS Release

History

Graph

--
Star Icon (depicts a VCS project

version that was released)

• Which versions of this asset

were released?

A-I-BC-Color
Metadata

Exploration
Assets Issues Bubble Chart

Filter by type

(already depicted by

the bubble icon)

Color (indicates the status)

• Among the reported bugs,

improvement suggestions, or

feature requests related to this

asset [version], are most of them

fixed or open?

A-I-BC-S
Metadata

Exploration
Assets Issues Bubble Chart

Filter by type

(already depicted by

the bubble icon)

Size (indicates the time since the issue

was created)

• How long does it take for

producers of this asset to fix

reported bugs?

A-I-LC
Metadata

Exploration
Assets Issues Line chart

Filter by type

(already depicted by

the bubble icon)

Line path

• How often do producers of this

asset fix reported bugs?

• How often do producers of this

asset implement improvement

suggestions or feature requests?

A-D-EG
Metadata

Exploration
Assets Dependencies

Egocentric

graph
--

Nodes (depict assets that are depended

or dependent on other assets) AND

Arrows (point to the depended asset)

• Which [versions of] assets were

reused in the development of this

asset [version]? (CAVE)

• Which [versions of] assets does

this asset [version] depend on?

• Which [versions of] assets

depend on this asset [version]?

A-D-COM
Metadata

Exploration
Assets Dependencies

Co-

Occurrence

Matrix

Filter by asset

Matrix cell content matching row and

column represents assets that depend

on other assets - create arrows to point

the dependency direction (↑ or ←)

• Which [versions of] assets were

reused in the development of

which [versions of] assets?

(CAVE)

D-BC-Ov
Metadata

Exploration
Developers -- Bubble Chart --

Bubble (depicts the developers

(producers and/or consumers))
No question associated



2
0
0

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

D-BC-HMF
Metadata

Exploration
Developers -- Bubble Chart

Filter by consumers,

producers, or both

AND Filter by

“Consumers who

included reusable

assets among project

releases / Producers

who contributed to

asset releases”

Highlight filter (showing which are

consumers/producers/both) OR

Mitigation (hiding the ones who do not

match the filtering criteria) (could use

color too)

• Which developers are

consumers (i.e., have ever reused

an asset)?

• Which developers are producers

(i.e., have ever produced an asset

or contributed to the development

of an asset)?

• Which consumers are also

producers?

• Which consumers included

reusable assets that are among

project releases?

• Which producers contributed to

which releases of [versions of]

assets?

D-BC-Cons-S
Metadata

Exploration
Developers -- Bubble Chart Filter by consumers Size (indicates number of reuses)

• Which consumers reuse assets

most often?

D-BC-Prod-S
Metadata

Exploration
Developers -- Bubble Chart Filter by producers

Size (indicates number of

developments)

• Which producers develop assets

most often?

D-AC-BC
Metadata

Exploration
Developers

Assets

Consumed

(Reuse

Occurrences)

Bubble Chart

Each asset can be

exploded to depict

its versions

Bubble (depicts consumed assets)

• Which assets did this consumer

reuse?

• Which versions of this asset did

this consumer reuse?

D-AC-BC-S
Metadata

Exploration
Developers

Assets

Consumed

(Reuse

Occurrences)

Bubble Chart

Each asset can be

exploded to depict

its versions

Size (indicates number of reuses)
• Which [versions of] assets does

this consumer reuse most often?

D-AC-BC-LC
Metadata

Exploration
Developers

Assets

Consumed

(Reuse

Occurrences)

Line chart

Select asset of

interest / Each asset

can be exploded to

depict its versions

Line path (each line depicts an asset or

an asset version)

• How often does this consumer

reuse this asset [version]?



2
0
1

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

D-AC-A-BC
Metadata

Exploration
Developers

Assets

Consumed

(Reuse

Occurrences)

Asset’s

Bubble Chart,

drilling down

to Projects

Bubble Chart

Select asset of

interest / Each asset

can be exploded to

depict its versions

Bubble (depicts projects in which the

consumer reused the asset [version])

• In which projects did this

consumer reuse this asset

[version]?

D-AC-LC
Metadata

Exploration
Developers

Assets

Consumed

(Reuse

Occurrences)

Line chart

Filter by custom

interval (month,

week etc.)

Increasing/Decreasing pattern of the

line path

• How active is this consumer in

terms of number of reuses?

D-AC-Proj-BC-

RCC-DHG-

HMF

History

(from

Metadata

Exploration)

Developers

Assets

Consumed

(Reuse

Occurrences)

Asset’s

Bubble Chart,

drilling down

to Project’s

Range

Column

Chart,

drilling down

to VCS

Development

History

Graph

Select asset of

interest, then choose

“Permanence of this

asset in projects over

time (included by

this consumer)”

option, then select

project of interest

from the Range

Column Chart

Highlight filter (showing the versions

since the moment the asset was

included in this project by this

consumer until the moment it was

removed, if so) OR Mitigation (hiding

the ones who do not match this

filtering criterion) (could use color too)

• For how long (over time) does

this project contain this asset

included by this consumer?

D-AC-BC-RCC

History

(from

Metadata

Exploration)

Developers

Assets

Consumed

(Reuse

Occurrences)

Range

Column

Chart

Select asset of

interest, then choose

“Permanence of this

asset in projects over

time (included by

this consumer)”

option

Each line represents a project; Length

and position of the column-bars in the

x-axis represent the time during which

the project contains the asset

• For how long (over time) do

projects contain this asset

included by this consumer?

D-Proj-BC
Metadata

Exploration
Developers

Projects in

which this

consumer

reused assets

Bubble Chart --
Bubble (depicts projects in which the

consumer reused assets)

• In which projects did this

consumer reuse [versions of]

assets?



2
0
2

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

D-Proj-BC-S
Metadata

Exploration
Developers

Projects in

which this

consumer

reused assets

Bubble Chart

Filter “Granularity:”

by “Assets” or

“Asset versions”

Size (indicates the number of [versions

of] assets)

• In which projects did this

consumer include the largest

number of [versions of] assets?

D-Proj-BC-

HMF

History

(from

Metadata

Exploration)

Developers

Projects in

which this

consumer

reused assets

Bubble Chart
Filter by “Show only

project releases”

Highlight filter (showing only project

releases) OR Mitigation (hiding the

ones who do not match this filtering

criterion) (could use color too)

• Which projects contain, among

their releases, assets included by

this consumer?

D-Proj-BC-LC
Metadata

Exploration
Developers

Projects in

which this

consumer

reused assets

Line chart
Select project of

interest

Line path (each line depicts an asset or

an asset version)

• How often does this consumer

reuse [versions of] assets in this

project (i.e., are there distinct

[versions of] assets reused in this

project by this consumer)?

D-Proj-BC-

RCC

History

(from

Metadata

Exploration)

Developers

Projects in

which this

consumer

reused assets

Range

Column

Chart

Select project of

interest, then choose

“Permanence of

assets in this project

over time (included

by this consumer)”

option

Each line represents an asset in a given

project; Length and position of the

column-bars in the x-axis represent the

time during which the project contains

the asset

• For how long (over time) does

this project contain assets

included by this consumer?

D-Proj-A-BC
Metadata

Exploration
Developers

Projects in

which this

consumer

reused assets

Project’s

Bubble Chart,

drilling down

to Assets

Bubble Chart

Select project of

interest

Bubble (depicts [versions of] assets

reused by this consumer in this project)

• Which [versions of] assets did

this consumer reuse in this

project?

D-Proj-A-BC-

HMF

History

(from

Metadata

Exploration)

Developers

Projects in

which this

consumer

reused assets

Project’s

Bubble Chart,

drilling down

to Assets

Bubble Chart

Select project of

interest AND Filter

by “Show only

project releases”

Highlight filter (showing only project

releases) OR Mitigation (hiding the

ones who do not match this filtering

criterion) (could use color too)

• Which [versions of] assets

included by this consumer are

among the releases of this

project?



2
0
3

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

D-Proj-RA-BC-

RCC-DHG-

HMF

History

(from

Metadata

Exploration)

Developers

Projects in

which this

consumer

reused assets

Project’s

Bubble Chart,

drilling down

to Asset’s

Range

Column

Chart,

drilling down

to VCS

Development

History

Graph

Select project of

interest, then choose

“Permanence of

assets in this project

over time (included

by this consumer)”

option, then select

asset of interest from

the Range Column

Chart

Highlight filter (showing the versions

since the moment the asset was

included in this project by this

consumer until the moment it was

removed, if so) OR Mitigation (hiding

the ones who do not match this

filtering criterion) (could use color too)

• For how long (over time) does

this project contain this asset

included by this consumer?

D-Proj-BC-

DHG-

AIContrib

History

(from

Metadata

Exploration)

Developers

Projects in

which this

consumer

reused assets

Bubble Chart,

drilling down

to VCS

Development

History

Graph

Filter by projects

that have assets

included and

removed afterwards

AND Select project

of interest

Bubble (each bubble represents a

project in these conditions) AND Asset

icon with + or - visible signs (depicts a

VCS project version in which the asset

was included/excluded)

• Which projects contain, at some

point of the development life

cycle, [versions of] assets

included by this consumer that

were removed afterwards?

D-AP-BC_CI
Metadata

Exploration
Developers

Assets

Produced
Bubble Chart

Each asset can be

exploded to depict

its versions

Bubble (depicts produced assets or

asset versions) AND Contribution Icon

(indicates whether the developer owns

the asset project or has just contributed

to it)

• Which [versions of] assets

contain [which kinds of]

development contributions made

by this producer?

D-AP-BC-S
Metadata

Exploration
Developers

Assets

Produced
Bubble Chart

Each asset can be

exploded to depict

its versions

Size (indicates amount of contribution)

• What are the [versions of] assets

to which development this

producer has most contributed?

D-AP-BC-HMF
Metadata

Exploration
Developers

Assets

Produced
Bubble Chart

Filter by “Show only

asset releases that

contain development

contributions made

by this producer”

Highlight filter (showing asset releases

that contain development contributions

made by this producer) OR Mitigation

(hiding the ones who do not match this

filtering criterion) (could use color too)

• Which released [versions of]

assets contain development

contributions made by this

producer?



2
0
4

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

D-AP-BC-

RHG-HMF

History

(from

Metadata

Exploration)

Developers
Assets

Produced

Bubble Chart,

drilling down

to VCS

Release

History

Graph

Select asset of

interest

Highlight filter (showing releases in

which there are development

contributions made by this producer)

OR Mitigation (hiding the ones who do

not match the filtering criteria) (could

use color too)

• Which released versions of this

asset contain development

contributions made by this

producer?

D-AP-BC-

DHG-PI

History

(from

Metadata

Exploration)

Developers
Assets

Produced

Bubble Chart,

drilling down

to VCS

Development

History

Graph

Select asset of

interest

Producer Icon (depicts a VCS project

version committed by a producer)

• To which parts of the assets

development history did this

producer contribute?

D-AP-LC
Metadata

Exploration
Developers

Assets

Produced
Line chart

Filter by custom

interval (month,

week etc.)

Increasing/Decreasing pattern of the

line path

• How active is this producer in

terms of assets’ development?

D-AP-BC-

DHG-PIContrib

History

(from

Metadata

Exploration)

Developers
Assets

Produced

Bubble Chart,

drilling down

to VCS

Development

History

Graph

Filter by assets

whose projects

contain contributions

from this producer

that started

contributing and

stopped afterwards

AND Select asset

[version] of interest

Bubble (each bubble represents an

asset in these conditions) AND

Producer Icon with + or - visible signs

(depicts a VCS project version in

which the producer started/stopped

contributing)

• Which [versions of] assets

contain some contribution made

by this producer but such

producer stopped contributing

afterwards?

D-PI-BC-Color
Metadata

Exploration
Developers

Production

Issues
Bubble Chart

Filter by type

(already depicted by

the bubble icon)

Color (indicates the status)

• Among the reported bugs,

improvement suggestions, or

feature requests assigned to this

producer, are most of them fixed

or open?

D-PI-BC-S
Metadata

Exploration
Developers

Production

Issues
Bubble Chart

Filter by type

(already depicted by

the bubble icon)

Size (indicates the time since the issue

was created)

• How long does it take for this

producer to fix reported bugs?



2
0
5

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

D-PI-LC
Metadata

Exploration
Developers

Production

Issues
Line chart

Filter by type

(already depicted by

the bubble icon)

Line path

• How often does this producer

fix reported bugs?

• How often does this producer

implement improvement

suggestions or feature requests?

D-Corr-BC
Metadata

Exploration
Developers

Correlations

with

Consumers

Bubble Chart

Filter by

“Consumers who

reused the same

assets”, “Consumers

who reused assets

developed by this

producer”

Bubble (depicts developers that

correlate somehow with other

developers, according to the defined

filter

• Which consumers reused the

same [version(s) of] asset(s)

reused by this consumer?

• Which consumers reused

[version(s) of] asset(s) developed

by this producer?

D-Corr-COM
Metadata

Exploration
Developers

Correlations

with

Consumers

Co-

Occurrence

Matrix

Filter by

“Consumers who

reused the same

assets”, “Consumers

who reused assets

developed by

producers” / Filter

by specific

consumer/producer

Matrix cell content matching row and

column represents developers that

correlate somehow with other

consumers, according to the defined

filter - for producers, create arrows to

point the producer starting from the

consumer (↑ or ←)

• Which consumers reused the

same [version(s) of] asset(s)

reused by which consumers?

• Which consumers reused

[version(s) of] asset(s) developed

by which producers?

D-PCollab-EG
Metadata

Exploration
Developers

Development

Collaborations

(in Asset

Productions)

Egocentric

graph

Filter by

“Collaboration in

projects owned by

this producer” and

“Collaborations in

projects owned by

others”

Nodes (depict producers that

collaborate with the selected producer)

AND Arrows (point to the owner of

the asset project)

• Who are the producers with

whom this producer

contributes/collaborates (in assets

development)?

• Which producers

contribute/collaborate in the

development of assets developed

by this producer?



2
0
6

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

D-PCollab-

COM

Metadata

Exploration
Developers --

Co-

Occurrence

Matrix

Filter by producer

(and kind of

collaboration?)

Matrix cell content matching row and

column represents producers that

collaborate somehow with other

producers, according to the defined

filter

• Which producers

contribute/collaborate with which

producers in assets development?

P-BC-Ov
Metadata

Exploration
Projects -- Bubble Chart -- Bubble (depicts the projects) No question associated

P-BC-HMF
Metadata

Exploration
Projects -- Bubble Chart

Filter by projects

with reusable assets

OR Filter by projects

with reusable assets

in their releases

Highlight filter (showing which

projects contain reusable assets) OR

Mitigation (hiding the ones who do not

match the filtering criteria) (could use

color too)

• Which projects have ever had an

asset included (i.e., contain at

least one reusable asset in their

development history)?

• Which projects contain reusable

assets among their releases?

P-BC-S
Metadata

Exploration
Projects -- Bubble Chart

Automatically filter

by projects that

contain reusable

assets

Size (indicates number of reusable

assets)

• In which projects assets are

most often reused (i.e., which

projects contain the largest

number of assets)?

P-RA-BC
Metadata

Exploration
Projects Reused Assets Bubble Chart

Each asset can be

exploded to depict

its versions

Bubble (depicts assets reused in this

project)

• Which assets were reused in this

project?

• Which versions of this asset

were reused in this project?

P-RA-BC-S
Metadata

Exploration
Projects Reused Assets Bubble Chart --

Size (represents the number of distinct

versions of an asset in this project)

• Which assets are most often

reused in this project (i.e., have

the largest number of distinct

versions included in this project)?

P-RA-BC-LC
Metadata

Exploration
Projects Reused Assets Bubble Chart

Select asset of

interest

Line path (each line depicts an asset

version)

• How often is this asset reused in

this project (i.e., are there distinct

versions of this asset reused in

this project)?



2
0
7

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

P-RA-BC-HMF

History

(from

Metadata

Exploration)

Projects Reused Assets Bubble Chart

Filter by “Assets that

are among releases

of this project”

Highlight filter (showing which assets

are among releases of this project) OR

Mitigation (hiding the ones who do not

match the filtering criteria) (could use

color too)

• Which [versions of] assets are

among the releases of this

project?

P-RA-BC-

DHG-HMF

History

(from

Metadata

Exploration)

Projects Reused Assets

VCS

Development

History

Graph

Select project of

interest, then choose

“Permanence of this

asset in this project

over time” option

Highlight filter (showing the versions

since the moment the asset was

included in this project until the

moment it was removed, if so) OR

Mitigation (hiding the ones who do not

match this filtering criterion) (could

use color too)

• For how long (over time) does

this project contain this asset?

P-RA-C-BC
Metadata

Exploration
Projects Reused Assets

Asset’s

Bubble Chart,

drilling down

to Consumers

Bubble Chart

Select asset [version]

of interest

Bubble (depicts consumers who reused

the asset [version] in the project)

• Which consumers reused this

asset [version] in this project?

P-RA-C-BC-

DHG-HMF

History

(from

Metadata

Exploration)

Projects Reused Assets

Asset’s

Bubble Chart,

drilling down

to

Consumer’s

Bubble Chart,

drilling down

to VCS

Development

History

Graph

Select asset of

interest, then select

consumer of interest

Highlight filter (showing the versions

since the moment the asset was

included in this project by this

consumer until the moment it was

removed, if so) OR Mitigation (hiding

the ones who do not match this

filtering criterion) (could use color too)

• For how long (over time) does

this project contain this asset

included by this consumer?



2
0
8

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

P-RA-BC-

DHG-

AIContrib

History

(from

Metadata

Exploration)

Projects Reused Assets

Bubble Chart,

drilling down

to VCS

Development

History

Graph

Filter by assets

included and

removed afterwards

AND Select asset

[version] of interest

Bubble (each bubble represents an

asset in these conditions) AND Asset

icon with + or - visible signs (depicts a

VCS project version in which the asset

was included/excluded)

• Which [versions of] assets were

included at some point of the

development life cycle of this

project but were removed

afterwards?

P-C-BC
Metadata

Exploration
Projects

Consumers

who reused

assets in this

project

Bubble Chart

Each asset can be

exploded to depict

its versions

Bubble (depicts consumers who reused

assets in this project)

• Which consumers reused

[versions of] assets in this

project?

P-C-BC-S
Metadata

Exploration
Projects

Consumers

who reused

assets in this

project

Bubble Chart --
Size (indicates number of reuses in this

project)

• Who are the main consumers in

this project (i.e., the consumers

who most often included different

[versions of] assets in this

project)?

P-C-BC-HMF
Metadata

Exploration
Projects

Consumers

who reused

assets in this

project

Bubble Chart
Filter by “Show only

project releases”

Highlight filter (showing only project

releases) OR Mitigation (hiding the

ones who do not match this filtering

criterion) (could use color too)

• Which consumers included

assets that are among the releases

of this project?

P-C-A-BC
Metadata

Exploration
Projects

Consumers

who reused

assets in this

project

Consumer’s

Bubble Chart,

drilling down

to Assets

Bubble Chart

Select consumer of

interest

Bubble (depicts [versions of] assets

reused by this consumer in this project)

• Which [versions of] assets did

this consumer reuse in this

project?

P-C-A-BC-

HMF

Metadata

Exploration
Projects

Consumers

who reused

assets in this

project

Consumer’s

Bubble Chart,

drilling down

to Assets

Bubble Chart

Select consumer of

interest AND Filter

by “Show only

project releases”

Highlight filter (showing only project

releases) OR Mitigation (hiding the

ones who do not match this filtering

criterion) (could use color too)

• Which [versions of] assets

included by this consumer are

among the releases of this

project?



2
0
9

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

P-C-BC-DHG-

AIContrib

History

(from

Metadata

Exploration)

Projects

Consumers

who reused

assets in this

project

Bubble Chart,

drilling down

to VCS

Development

History

Graph

Filter consumers

who included assets

that were removed

afterwards AND

Select consumer of

interest

Bubble (each bubble represents a

consumer in these conditions) AND

Asset icon with + or - visible signs

(depicts a VCS project version in

which the asset was included/excluded)

• Which consumers included, at

some point of the development

life cycle of this project, [versions

of] assets that were removed

afterwards?

P-C-BC-RCC

History

(from

Metadata

Exploration)

Projects

Consumers

who reused

assets in this

project

Range

Column

Chart

Select project of

interest, then choose

“Permanence of

assets in this project

over time (included

by this consumer)”

option

Each line represents an asset in a given

project; Length and position of the

column-bars in the x-axis represent the

time during which the project contains

the asset

• For how long (over time) does

this project contain assets

included by this consumer?

P-C-AC-BC-

RCC-DHG-

HMF

History

(from

Metadata

Exploration)

Projects

Consumers

who reused

assets in this

project

Consumer’s

Bubble Chart,

drilling down

to Asset’s

Range

Column

Chart,

drilling down

to VCS

Development

History

Graph

Select consumer of

interest, then choose

“Permanence of

assets in this project

over time (included

by this consumer)”

option, then select

asset of interest from

the Range Column

Chart

Highlight filter (showing the versions

since the moment the asset was

included in this project by this

consumer until the moment it was

removed, if so) OR Mitigation (hiding

the ones who do not match this

filtering criterion) (could use color too)

• For how long (over time) does

this project contain this asset

included by this consumer?

P-R-RHG-Pos

History

(from

Metadata

Exploration)

Projects Releases

VCS Release

History

Graph

--
Position of elements in the x-axis

(which represents time)
No question associated



2
1
0

Visualization

ID
Perspective

Core

Element

Contextual

Element

Visualization

metaphor
Interaction Data and Visualization attribute Questions it answers

P-R-RHG-SI

History

(from

Metadata

Exploration)

Projects Releases

VCS Release

History

Graph

--
Star Icon (depicts a VCS project

version that was released)
No question associated

P-Corr-BC
Metadata

Exploration
Projects

Correlations

with Other

Projects

Bubble Chart --

Bubble (depicts projects that contain

the same asset(s) of the selected

project)

• Which projects contain the same

[version(s) of] asset(s) reused in

this project?

P-Corr-COM
Metadata

Exploration
Projects --

Co-

Occurrence

Matrix

Filter by project

Matrix cell content matching row and

column represents projects that contain

the same asset(s) of another project,

according to the defined filter

• Which projects contain the same

[version(s) of] asset(s) reused in

another project?

211


APPENDIX B – QUESTIONNAIRE FOR EVALUATING THE

VISUALIZATION FEATURE MODEL

B.1 Part 1/5: Characterization

Academic degree:

○ Ph.D. Degree

○ Ph.D. Student

○ Master Degree

○ Master Student

○ Bachelor Degree

○ Undergraduate Student

Please fill out your level of experience with INFORMATION VISUALIZATION.
Please check all the options that apply.

□ None (if you choose this option, please do not choose any other one)

□ I have a superficial knowledge about this topic

□ I have a good knowledge about this topic

□ I studied this topic in a course/discipline

□ I studied this topic by reading one or more books

□ I used my knowledge about this topic in the context of a course in practice

□ I used my knowledge about this topic in personal projects

□ I used my knowledge about this topic in industry projects

Please fill out your level of experience with COMPUTER-HUMAN INTERACTION

(CHI).
Please check all the options that apply.

□ None (if you choose this option, please do not choose any other one)

□ I have a superficial knowledge about this topic

□ I have a good knowledge about this topic

□ I studied this topic in a course/discipline

□ I studied this topic by reading one or more books

□ I used my knowledge about this topic in the context of a course in practice

□ I used my knowledge about this topic in personal projects

□ I used my knowledge about this topic in industry projects

Please fill out your level of experience with FEATURE MODELING.
Please check all the options that apply.

□ None (if you choose this option, please do not choose any other one)

□ I have a superficial knowledge about this topic

□ I have a good knowledge about this topic

□ I studied this topic in a course/discipline

□ I studied this topic by reading one or more books

□ I used my knowledge about this topic in the context of a course in practice

□ I used my knowledge about this topic in personal projects

□ I used my knowledge about this topic in industry projects

B.2 Part 2/5: Overview of the Visualization Feature Model

The following figure shows the current version of the feature model, depicting its elements and

their relationships. The notation used is described in the legend. For a better visualization of the

212


feature model as a whole, please visit http://www.cos.ufrj.br/~schots/papers/featuremodel.png

and save the image or use the zoom-in feature in your web browser.

Please notice that we are not evaluating the completeness of the visualization feature model.

This model is expected to evolve along time. The focus of this evaluation is to obtain feedback

regarding the classification or the currently identified features and obtain suggestions of

additional features in a particular category/group.

Any comments regarding the evaluation or the notation used should be kept for the comments

section, at the end of this form. For now, we are only interested in answering the questions that

will help us evaluate the model.

Thank you.

Visualization Feature Model (overview)70

Please choose one of the following groups of features to evaluate:
After selecting the group and start filling out the form, please do not press the “back” button in your web

browser for evaluating another group, otherwise all your previous responses will not be saved. Thank

you.

70 This figure may not be legible in this page. Please refer to Figure 4.16 and Figure 4.17 in this thesis,

which represent a larger version the same model, or refer to an electronic version (available at

http://www.cos.ufrj.br/~schots/papers/featuremodel.png) for a better visualization.

213


○ Information Visualization – Focus + Context, Overview + Detail, and Details on Demand

features

○ Information Visualization – Hierarchical Layout and Perspective features

○ Information Visualization – Layout features

○ Information Visualization – Other features

○ Interaction – Filtering features

○ Interaction – Panning, Browsing, and Zooming features

○ Interaction – Other features

B.3 Part 3/5: Evaluation of the Visualization Feature Model

Information Visualization – Focus + Context, Overview + Detail, and Details on Demand

features

This is an excerpt of the Visualization Feature Model. Please read carefully the description of

the features in order to answer the questions stated in this form. Also, please check if the

relationships between elements in the model are represented correctly (taking into account the

notation used, explained by the legend in the model).

The description of each feature is presented to allow a proper understanding of their

characteristics and constraints of use (i.e., its use may require or exclude the use of another

feature).

214


While reading this form, please keep in mind that the following defects are under evaluation [de

Mello et al. 2014]:

 Omission: Some information from the domain was not properly included in the feature

model.

 Incorrect Fact: Some information or behavior in the feature model contradicts its domain

specification.

 Inconsistency: Some feature model element is not consistent with another element from the

same feature model.

 Ambiguity: Some Information from the feature model is not clear, allowing multiple

interpretations for the specified domain.

 Extraneous Information: Some information in the feature model is outside the domain

scope.

IMPORTANT OBSERVATION: The questions for evaluating incorrect facts are listed

throughout the descriptions, while the questions for the remaining defects are listed at the end of

this page. Thus, if any ambiguity, inconsistency, omission, or extraneous information is

identified at any time while you are reading the form, we recommend that you instantly move to

the end of the page and indicate the problems identified, in order to avoid any forgetfulness.

Thank you.

Reference: [de Mello et al. 2014] de Mello, R. M., Teixeira, E. N., Schots, M., Werner, C. M.

L., Travassos, G. H. (2014). “Verification of Software Product Line Artefacts: A Checklist to

Support Feature Model Inspections”. Journal of Universal Computer Science, v. 20, n. 5, pp.

720-745.

A.3.1. Minimap71

Definition: A minimap (also known as miniview) comprises a scaled down version (overview)

of the data with an indication of the current viewport (detail), partially overlaid on top of the

viewport in order to provide user orientation [Roto et al. 2006]. The viewport is the main view

area, responsible for the details in the visualization [Oliveira 2011]. If there are constraints in

the display dimensions, a minimap can be adopted while scrolling a visualization to present an

overview of the content to the user [Roto et al. 2006]. Due to the reduced scale, a minimap can

present a slightly modified version of the original content, emphasizing items whose

identification in the minimap context is relevant [Oliveira 2011]. It is common to use geometric

shapes (usually rectangles) to indicate the part of the overview where the current location of the

detailed view is [Roto et al. 2006].

Constraints: Composition Rule R_1 – (Minimap) requires (Panning) [Roto et al. 2006].

References:

 [Roto et al. 2006] Roto, V., Popescu, A., Koivisto, A., Vartiainen, E. (2006). “Minimap: a

Web Page Visualization Method for Mobile Phones”. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI 2006), Montreal, Canada, pp.

35-44, April.

 [Oliveira 2011] Oliveira, M. S. (2011). “PREViA: An Approach for Visualizing the

Evolution of Software Models” [PREViA: Uma Abordagem para a Visualização da

Evolução de Modelos de Software] (in Portuguese), M.Sc. Thesis, COPPE/UFRJ, Rio de

Janeiro, Brazil, March.

71 This is just an example of the evaluated features. The full set can be found in [Schots et al. 2015].

215


A.3.1-Q1) Is the textual description of this feature correct and complete enough to

understand its meaning?
If the feature is not well described textually, please answer “No” and provide more information about

your opinion in the last question (Q4) corresponding to this category. Optionally, feel free to recommend

publications that can help describing it, if you want to.

○ Yes

○ I don’t know / I am not sure

○ No

A.3.1-Q2) Is the figure used to represent this feature clear enough to understand its usage?
If the feature has a figure that does not clearly allow understanding its usage, please answer “No” and

provide more information about your opinion in the last question (Q4) corresponding to this category.

Optionally, feel free to recommend publications or links to figures that can help describing it, if you want

to.

○ Yes

○ I don’t know / I am not sure

○ No

A.3.1-Q3) Are the constraints associated to this feature correctly identified and described?
If you think that (i) a constraint is incorrect or (ii) a constraint exists but was not described, please

answer “No” and explain your answer in the last question (Q4) corresponding to this category.

Optionally, feel free to recommend publications that can help describing it, if you want to.

○ Yes

○ I don’t know / I am not sure

○ No

A.3.1-Q4) For each negative answer to the questions related to this feature, please provide

more information according to the instructions given in such questions.
If no problems were identified (i.e., if there was no negative answer), please write “N/A”.

__

B.4 Part 4/5: Complementary Check for Clarity and Correctness

In the model, are the relationships between the features identified and described

correctly?
If you think that (i) a relationship is incorrect or (ii) a relationship exists but was not identified or

described correctly, please answer “No” and explain your answer in the following question.

216


 Yes
I don’t know / I

am not sure
No

A.1. Focus + Context ○ ○ ○

A.1.1. Magic Lens ○ ○ ○

A.1.2. Distortion ○ ○ ○

A.1.2.1. Fisheye View ○ ○ ○

A.1.2.2. Polyfocal Display ○ ○ ○

A.2. Overview ○ ○ ○

A.3. Overview + Detail ○ ○ ○

A.3.1. Minimap ○ ○ ○

A.3.2. Thumbnail Overview ○ ○ ○

A.8. Details on Demand ○ ○ ○

A.8.1. Drill-Down / Roll-Up ○ ○ ○

A.8.2. Labeling ○ ○ ○

A.8.2.1. Tooltip ○ ○ ○

For each of the Focus + Context, Overview + Detail, and Details on Demand features

whose relationship(s) are not described correctly or are missing, please provide more

information about your opinion. Optionally, feel free to recommend publications that can

help describing it, if you want to.
If no problems were identified with the relationships, please write “N/A”.

Check for Ambiguity

Are there different Focus + Context, Overview + Detail, and Details on Demand features

in the model representing the same domain concept? If so, please indicate (i) the features

to which this problem applies, and (ii) the reasons why you consider them ambiguous.

Optionally, you can suggest ways to remove the identified ambiguities.
If no ambiguity was identified, please write “N/A”.

Check for Inconsistency

Are there Focus + Context, Overview + Detail, and Details on Demand features in the

model contradicting other features? If so, please indicate (i) the features to which this

problem applies, and (ii) the reasons why you think there are contradictions. Optionally,

you can suggest ways to remove the identified contradictions.
If no inconsistency was identified, please write “N/A”.

Check for Omission

Is there any domain concept related to the Focus + Context, Overview + Detail, and

Details on Demand features that has been omitted from the model? If so, please indicate (i)

the name of this concept, (ii) a brief description of it, and (iii) where it should be located

(e.g., as a variant of feature A or as a child of feature B). Optionally, you can state the

reason why you think it should be included in the feature model, or recommend

publications that present and/or describe the missing feature.
If no omission was identified, please write “N/A”.

217


Check for Extraneous Information

Is there any feature among the Focus + Context, Overview + Detail, and Details on

Demand features that, regardless of being described correctly or not, seem to be out of the

domain scope? If so, please indicate (i) which are these features, and (ii) the reasons why

you consider it out of scope.
If no extraneous information was identified, please write “N/A”.

B.5 Part 5/5: Follow-Up

General comments
If you already evaluated another category, there is no need to answer this again – but please, inform this

as the answer to the first question. Thank you.

In which scenarios do you think the feature model can be used?
For answering this question, please take into account the idea of the feature model, not only its current

version.

Do you have suggestions for improving the description of the feature model? If so, please

state them.

Do you have suggestions for improving the research and evolution of the feature model? If

so, please state them.

If you have any additional comments, please state them.

218


APPENDIX C – INSTRUMENTS USED IN THE ZOOMING

BROWSER EVALUATION

C.1 Characterization Questionnaire

C.1.1 Part 1/3: Characterizing the participant’s background

Academic level background

○ Undergraduate course (ongoing)

○ Undergraduate course (finished)

○ Specialization course (ongoing)

○ Specialization course (finished)

○ Master course (ongoing)

○ Master course (finished)

○ Ph.D. course (ongoing)

○ Ph.D. course (finished)

What is your experience with object-oriented (OO) software development?
Please check all the items that apply

□ I have read materials about OO development

□ I have attended an OO development course

□ I have never developed OO software

□ I have developed OO software for personal use

□ I have developed OO software in the context of a course

□ I have developed OO software as part of a team in industry

Please detail your answer. Include the number of months or number of years of relevant

experience in software development.
For instance, “I worked for two years and three months as a programmer in industry”

What is your current occupation?

In what organization you currently work (or what was the last software development

organization in which you worked), and for how long (years / months)?
Information about the organization will be kept confidential and is only accounted for characterization

purposes of the organization’s profile and operational domain

Please indicate your level of familiarity with respect to the following items, based on the

presented scale:

I have no

expertise in this

topic

I believe I have a

basic expertise

level in this topic

I believe I have

an intermediate

expertise level in

this topic

I believe I have

an advanced

expertise level in

this topic

Software development

(programming)
○ ○ ○ ○

Software reuse ○ ○ ○ ○

219


I have no

expertise in this

topic

I believe I have a

basic expertise

level in this topic

I believe I have

an intermediate

expertise level in

this topic

I believe I have

an advanced

expertise level in

this topic

Version control systems ○ ○ ○ ○

Issue tracking or task

management systems
○ ○ ○ ○

Software project

management
○ ○ ○ ○

Software visualization ○ ○ ○ ○

English fluency

(reading)
○ ○ ○ ○

What is your knowledge about the MPS.BR maturity model (or a correlated

standard/model that encompasses software reuse processes)?

○ I have no knowledge about any maturity model involving reuse processes

○ I have heard or have read about it

○ I have studied about it in the context of a course

○ I have done some work involving this subject

○ I have participated in an implementation/assessment of this model, but at a level that did not

involve reuse processes

○ I have participated in an implementation/assessment of this model at a level that involved

reuse processes, but I did not worked directly in these processes

○ I have participated in an implementation/assessment of this model at a level that involved

reuse processes, and I worked directly in the execution of these processes

C.1.2 Part 2/3: Characterizing the organization

All data will be made anonymous, so that it cannot be possible to identify neither the participant

nor the organization. Besides, no one other than the researcher responsible for this work will

have access to these data under any circumstances.

Do you think the reuse initiatives (if any) in the organization you work for are effective?

○ There are no reuse initiatives in my organization

○ There are reuse initiatives in my organization, and I think they are not effective

○ There are reuse initiatives in my organization, and I think they are partially effective

○ There are reuse initiatives in my organization, and I think they are effective

Regardless of being effective, what are the problems or drawbacks of these initiatives?
If you think there are no problems or drawbacks, please write “N/A”.

What would you change? Which improvements would you make?
If you think there is nothing to change, please write “N/A”.

Could you point out success factors that make (or would make) the initiatives more

effective, even if they are not already fully realized?
If you cannot identify any success factor, please write “N/A”.

If your organization has a reuse repository, could you explain what the reuse repository is

(e.g., a tool, a shared folder, a database)?
If the organization does not have a reuse repository, please write “N/A”.

220


If your organization has a reuse repository, how are the reusable assets stored? How are

they retrieved?
If the organization does not have a reuse repository, please write “N/A”.

How often do you think the organization members attempt to reuse existing assets? Why?

C.1.3 Part 3/3: Characterizing the participant in the software development

context

What is your knowledge about the role of a reuse manager?

○ I am unaware of that role

○ I have heard or have read about it

○ I am aware of the assignments of this role

○ I worked with someone who played this role in at least one organization

○ I already played that role in at least one organization

If you already performed this role in an organization, please describe what your

responsibilities were.
In case you never performed the reuse manager role, please write “N/A”.

What sources do you use for obtaining reusable assets?

Which steps do you perform when you need or intend to reuse an asset?

Do you have any difficulty in performing these steps? If so, please describe them.

What information do you actually take into account for deciding whether or not to reuse

an asset?

Is there any additional information that you think is relevant for deciding whether or not

to reuse an asset?

C.2 On the Relevance of Information/Metadata for Software Reuse

By answering the following question, keep in mind your current beliefs about each information.

The purpose of this question is not to find out if this information may be relevant, but if actually

they are at the moment for the respondent.

Among the following information, give a scale on how relevant you think they are taking a

reuse decision (e.g., for deciding whether to reuse an asset).
By reusable asset, please consider any kind of artifact that can be reused in software development,

especially the ones with which you are used to.

221


Totally

relevant

Quite

relevant

Somewhat

irrelevant

Totally

irrelevant

Organization that developed the asset ○ ○ ○ ○

Asset producers (developers who created or

contributed to the asset development)
○ ○ ○ ○

Asset consumers (developers who reused the asset) ○ ○ ○ ○

Asset producers’ contact information ○ ○ ○ ○

Asset consumers’ contact information ○ ○ ○ ○

Number of reuse occurrences of the asset ○ ○ ○ ○

Asset development history (commit history) ○ ○ ○ ○

Asset release history ○ ○ ○ ○

Asset issues (bugs, feature requests etc.) ○ ○ ○ ○

Asset dependencies on other assets ○ ○ ○ ○

Other assets that depend on the asset ○ ○ ○ ○

Projects in which the asset was reused ○ ○ ○ ○

Asset license ○ ○ ○ ○

C.3 Descriptions of Tasks

The participants who performed the role of reuse manager received the scenario

(and associated questions) described in Section C.3.1, while the participants who

performed the software developer role received the scenario (and associated questions)

described in Section C.3.2.

C.3.1 Reuse manager

1) You were hired as the reuse manager of Melhorandus and you are responsible for checking

if the ongoing reuse initiatives are being effective and communicating it to the top

management. To this end, you have to answer the following questions:

ID Question How to answer

RM1a
What information would you consider for performing

this task?
N/A

RM1b Which assets have ever been reused? Metadata Exploration

RM1c Which assets are most often reused?
Dashboard / Metadata

Exploration

RM1d
Considering only the asset most often reused, how often

is it reused over time?
Dashboard

RM1e
How many and which assets were reused in the projects

“FeatSelect”, “Travel4All”, and “ZombieBattle3”?
Reuse Map

RM1f Who are the 3 consumers who reuse assets more often?
Dashboard / Metadata

Exploration

RM1g
Among the most reused assets, which of them were

reused by the 3 most active asset producers?
Dashboard

RM1h
Which assets were reused by which consumers in the 3

projects that contain more assets?
Dashboard + Reuse Map

RM1i What would you do in this regard? N/A

2) The asset JUnit was identified as a candidate for entering the reuse repository. In order to

approve it, you need to assess some of its properties by answering the following questions:

222


ID Question How to answer

RM2a
What information would you consider for performing

this task?
N/A

RM2b How active is the release history of this asset? History View (Releases)

RM2c
Which producers contributed to the development of this

asset?
Metadata Exploration

RM2d

Among the reported bugs, improvement suggestions, or

feature requests related to this asset, are most of them

open or fixed?

Metadata Exploration

RM2e How often do producers of this asset fix reported bugs? Metadata Exploration

RM2f
How long (in average) does it take for producers of this

asset to fix reported bugs?
Metadata Exploration

RM2g What would you do in this regard? N/A

3) After all, it was decided that JUnit should be included in the repository. Its newest version

was developed in order to fix a severe bug detected in the previous version. In order to attest

that all the organization projects that run the previous version were upgraded to the

newest one, you have to provide answers to the following questions:

ID Question How to answer

RM3a
What information would you consider for performing

this task?
N/A

RM3b What is the latest version of the asset? History View (Releases)

RM3c What is the version immediately before the latest one? History View (Releases)

RM3d When was the latest version of this asset released? History View (Releases)

RM3e

Is version 4.12-beta-3 still being reused by some

project? How many? (please assume that the other

projects that reused previous versions are no longer

being maintained).

Metadata Exploration

RM3f What would you do in this regard? N/A

C.3.2 Software developer

1) You were hired as a developer of Melhorandus and you are responsible to include unit

testing functionalities to the XHealth project. Some organization members (felixge and

jasondavies) suggested JUnit. In order to decide whether it is worth or not to reuse it in

XHealth, you have to provide answers to the following questions:

ID Question How to answer

SD1a
What information would you consider for performing

this task?
N/A

SD1b Was this asset already reused in the organization? If so:
Dashboard / Metadata

Exploration

SD1c Which versions of this asset were reused? Metadata Exploration

SD1d What are the 3 most often reused versions of this asset? Metadata Exploration

SD1e Which consumers reused this asset in which projects? Metadata Exploration

SD1f How active is the release history of this asset? History View (Releases)

SD1g

Among the reported bugs, improvement suggestions, or

feature requests related to this asset, are most of them

open or fixed?

Metadata Exploration

SD1h How often do producers of this asset fix reported bugs? Metadata Exploration

223


SD1i
How long (in average) does it take for producers of this

asset to fix reported bugs?
Metadata Exploration

SD1j
How often do producers of this asset implement

improvement suggestions or feature requests?
Metadata Exploration

SD1k What would you do in this regard? N/A

2) The project team required you to incorporate JUnit into the XHealth project (regardless of

your previous answer), but you do not know where to start from. You have to overcome this

difficulty and reuse it in the XHealth project.

ID Question How to answer

SD2a
What information would you consider for performing

this task?
N/A

SD2b
Which producers contributed to the development of this

asset?
Metadata Exploration

SD2c

Who are the 3 main producers of this asset (i.e., the

producers who most contributed to the development of

this asset)?

Metadata Exploration

SD2d Was this asset already reused in the organization? If so:
Dashboard / Metadata

Exploration

SD2e Which consumers reused this asset? Metadata Exploration

SD2f
Who are the 3 main “reusers” of this asset (i.e., the

consumers who reused this asset more often)?
Metadata Exploration

SD2g What would you do in this regard? N/A

C.4 Follow-Up Questionnaire

This is the last stage of the study. Please provide information that can help improving the

approach. Feel free to suggest, in the corresponding field, future work or developments that you

consider relevant.

Based on your experience with Zooming Browser, please classify your perception of the

following aspects according to the provided scale:

Very

high
High Medium Low

Very

low

Perceived usefulness of the presented

information
○ ○ ○ ○ ○

Perceived usefulness of the presented

visualizations
○ ○ ○ ○ ○

Perceived usefulness of the employed interaction

resources
○ ○ ○ ○ ○

Perceived efficiency of the tool (related to your

expectations for solving similar problems)
○ ○ ○ ○ ○

Perceived easiness in performing the study tasks ○ ○ ○ ○ ○

Do you think the executed tasks match the day-to-day reality of the role you performed?

Please, provide some feedback in this regard.

What are the perceived difficulties identified in performing the tasks?

224


What are the benefits of the tool, if any?

What are the drawbacks of the tool, if any?

In which aspects the tool can be improved?

Regarding the relevance of reuse-related information, would you change any of the

answers you gave after using the tool? If so, which ones and why?

Is there anything that has not been asked and you would like to say?
If there is nothing else to say, please write “N/A”.
